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Introduction

Introduction

Single-photon light fields have found important applications in quantum

communication, quantum computation, quantum cryptography, and
quantum metrology.

Photons are the fundamental units in quantum descriptions of light.

Photons are emitted, for example, from atoms.
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A theory for spontaneous and stimulated emission goes back to Einstein.
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Introduction

Mathematically, photon states |1¢) may be ‘created’ from the vacuum |0):

o
1= B0 = [ &b’ (r)ari0)
The function & describes the shape of the photon wavepacket.

Fields b(t) in a single photon state |1¢) have zero mean

(Le|b(t)|1e) =0,

and intensity

(Le|b*(1)b(t)|1¢) = [€(1)I?

giving the probability of detection per unit time.
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Introduction

We are interested in how photons can be transformed (scattered)

fin gout
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input output
wavepacket wavepacket

For example, a photon encountering a beamsplitter may be either
transmitted or reflected (multichannel).

The determination of the state of the output field is a key problem.
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Introduction

Wavepacket shapes are important for perfect absorption. This leads to a
zero dynamics principle, which together with the concept of decoherence
free subspaces may be applied to quantum memories.

(a) Writing (b) Storage (c) Reading
“ > ag p-1---- eeeee > Qg e e » ap @:
b —m— w0
2 ®m O
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Introduction

An important experimental problem is to create photons on demand with
prescribed wavepacket shapes, high efficiency, and high fidelity.
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Introduction

| also discuss the problem of finding the quantum filter for a system driven
by a single photon state |1¢).

wavepacket system homodyne measurement
/\—V detection  signal
E(r
) > G » | HD——>
Bin (t) B()m‘ (t) Y(t)
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Background Some Quantum Mechanics

Some Quantum Mechanics

A little history

e Black body radiation (Plank)

@ Photoelectric effect (Einstein)

@ Atomic quantization (Bohr)

@ Quantum probability (Born)

@ Spontaneous and stimulated emission of light (Einstein)
e Matter waves (De Broglie)

e Matrix mechanics, uncertainty relation (Heisenberg)

@ Wave functions (Schrodinger)

e Entanglement (EPR)

e Axiomatization, quantum probability (von Neumann)
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Background Some Quantum Mechanics

Non-commuting observables
[Q,P] = QP — PQ = ihl
Expectation
(@ = [ dlita. O da

Heisenberg uncertainty

AQAP > Z[(i[Q. P]| = 2

Schrodinger equation

L O0Y(q,t h? 0%(q,t
et LI L vigla.
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Background Quantum Stochastic Models

Quantum Stochastic Models

Recall that an open quantum system is a system interacting with an

external environment. A basic example is an atom in an electromagnetic
field.

X(t)
~ ./ Y™
- > ¥ )} —
vacuum emitted photon
atom

We now describe dynamical models for open quantum systems in terms of
quantum stochastic models in continuous time. Upon integration and
expectation, these models yield quantum operation descriptions.
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Background Quantum Stochastic Models

Quantum stochastic models describe open systems with inputs and
outputs.

0‘3

external free field with

) cavity mode
input and output components
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Background Quantum Stochastic Models

Quantum fields (boson)

Infinitely many quantum oscillators b(t) (or b(x) or b(w))

Singular commutation relations

[b(t), b*(t)] = 6(t — 1)

Quantum stochastic representation

Ito product rule
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Background Quantum Stochastic Models

An open quantum system is specified by the triple
(S,L,H)

Schrodinger equation
dU(t) = {LdB*(t) — L*dB(t) — (%L*L + iH(u))dt}U(t)

where B(t) is a quantum Wiener process.

[Hudson-Parthasarathy (1984), Gardiner-Collett (1985)]

System operators X and output field B(t) evolve in the Heisenberg picture:

X(t) = je(X) = U"(e)(X @ ) U(¢)
B(t) = U(t)(1 @ B(t))U(t)
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Background Quantum Stochastic Models

Dynamics for X(t) = j:(X)—a quantum Markov process (given u)—and
output measurement signal Y(t) (homodyne detection, for example):

dje(X) = je(L*O(X))dt + dB*(1)je([X, L]) +je([L*, X])dB(t)
dY(t) = ji(L+ L*)dt+ dB(t) + dB*(t)

where

1 1
Measurement of the output field (e.g. amplitude quadrature observables)

Y (t) = B(t) + B*(t)

B(1) Bou(t) Y(r) X()
> ‘» @ filter —
detector
input system output measurement estimates

signal
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Background Quantum Stochastic Models

Conditional expectation
Let X commute with a commutative subspace %. The conditional
expectation

X = n(X) = E[X|¥]

is the orthogonal projection of X € o7 onto % .

X is the minimum mean square estimate of X given €.

By the spectral theorem, X is equivalent to a classical random variable.
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Background = Quantum Stochastic Models

Probe model for quantum measurement

system probe

outcomes
(numbers)
—

Lj

measurement model

Information about the system is transferred to the probe.
Quantum conditional expectation is well defined.
The von Neumann “projection postulate” is a special case.

In continuous time, this leads to quantum filtering.

Matt James (ANU) Photon Engineering
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Background Quantum Stochastic Models

Quantum conditional expectation
me(X) = ELe(X)|Y(s),0 < s < 1]
Quantum filter [stochastic Schrodinger equation]

dre(X) = m(L"(X))dt
+(me(XL + L*X) — me(X)me(L + L)) (Y (t) — me(L + L*)dt)

[Belavkin (1993), Carmichael (1993)]
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Background Quantum Stochastic Models

Open quantum harmonic oscillator
Single oscillator a interacting with field b(t) - energy exchange:

Hint = iy/y(b*(t)a — a*b(t))
Dynamics (Ito form) [more to come on this]

dU(t) = {/7adB"(t) — y7a"dB(t)
_%a*adt — jwa*adt}U(t),

Motion of oscillator mode a(t) = U*(t)aU(t)
da(t) = —(% + iw)a(t)dt — /7 dB(t)

The commutation relations are preserved
[a(t),a*(¢)] = [a,8"] = 1
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Background Quantum Stochastic Models

The output field Boyt(t) = U*(t)B(t)U(t) is given by

dBout(t) = /7 a(t) + dB(t)

b‘a

a

external free field with

) cavity mode
input and output components
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Background = Quantum Stochastic Models

The amplitude quadrature
Q(t) = B(t) + B*(t)

is self-adjoint, and commutes with itself at different times

([Q(t), Q(s)] = 0), and so by the spectral theorem it turns out that Q(t)
is equivalent to a classical Wiener process (with respect to the vacuum
state).

The phase quadrature

which is also equivalent to a classical Wiener process, but note that

[Q(2), P(£)] # 0.
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Background Quantum linear system

Quantum linear system

where

is a vectors of system (mode) and field annihilation/creation operators,
and A, B and C depend on physical parameters (Hamiltonian, field
couplings, channel scattering):

S=A(5.,0,C=A(C_,C.),B=-C" A= —%cbc — iJpH.
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Background Quantum linear system

Notation:

v# U#
X =JxtJ

A(U,V):[ v v } J:[I 0 ]

Transfer function G has the form
G=A(G, G+)

and satisfies
G(w) G(w) = G(w)G(w) =1

This characterizes physical realizability.
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Background Quantum linear system

Gaussian Mode States

Annihilation operator a, commutation relations [a, a*] = 1.
Characteristic function for zero mean Gaussian:

1
Elexp(iz*a+ iza*)] = exp(in(n +1)|z? + m* 2% + m(z*)?)

where
n=n*>0, |m?<n(n+1)

Second moments

E[laa*] =n+1 E[aa] = m
E[a*a*] = m* E[a*a] = n
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Background Quantum linear system

Gaussian Field States
Annihilation operator b(t), commutation relations [b(t), b*(s)] = d(t — s).

B(f):/f*(t)b(t)dt:/f*(t)dB(t)
Characteristic function

Elexp(iB(f) + iB*(f))]
= exp(—3(F|(2N +1)f) — 3(MF|f*) — 5{f*|Mf))

N and M are operators on $) = L2 such that N = N* >0,
M2 < N(N + 1), and [N, M] = 0.

Second moments

E[B(f)B"(g)] = (f|Ng) + (flg), E[B(f)B(g)] = (Mf|g")
E[B*(f)B*(g)] = (f*|Mg), E[B"(g)B(f)] = (f|Ng)
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Absorption and Emission of Photons

Absorption and Emission of Photons

Consider a cavity driven by a field b(t) in a single photon state |1¢)

it) = —Ja(t) — v b(t)
bout(t) = ﬁa(t)"’_b(t)

Solving for the cavity mode we have

t
a(t1) = e 2%ag — ﬁ/ e 2(1=*)b(s)ds
to
The cavity number operator is

n(tl) = a*(tl)a(tl)
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Absorption and Emission of Photons

Mean occupation in steady state, resulting from a pulse on (—o0, 0]:

E[n(0)] = (n(0)) = (01¢|n(0)[01¢)

This may be computed as follows
()0l = e a0 - vi [ eIy
= 0y [ e i ngao)s [ o e
— sy / e e p(s)b ()|}
= )5y / / ~HEIE(r) (b (s)b(r) + b(s — r))dsdh
= 0-[0)svA / e~ 4 (r)as[0)

Note the convolution.
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Absorption and Emission of Photons

Now suppose that the pulse is a rising exponential tuned to the cavity
dynamics:

f —yFert t<0
g(t)_{ 0 t>0

We then have for tg — —o0, t;1 =0,
E[n(0)] =1

The corresponds to perfect absorption: the cavity contains exactly one
photon.
Matt James (ANU) Photon Engineering 29 / 63



Absorption and Emission of Photons

The transfer function from the input to the output field is

s—2
=(s) = 2
s+3
Stable pole s = —7
Unstable zero: s = %
=7
=)= O
)
The inverse Laplace transform of
1
&(s) =
3

£(t) =e2t, —co<t<0.
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Absorption and Emission of Photons

The output response is

s—2% 1 1
Sout(s) = 2 =
s+3s—7 s+3
or
ﬁout(t)ZO, —oo < t <0,
and

Cout(t) =€ 2t 0<t < +o00

Decaying exponential (for t > 0).

.........

Cavity has emitted photon to ambient environment - emission.
31/ 63
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Zero Dynamics Principle

Zero Dynamics Principle

Energy balance identity:

/t blur($)bae(5)ds + a1 (6)a(t) = [ 5L ($)bin(5)ds + 3 (1))

to

In terms of the envelope equations and coherent or photon input states,

/ Boue(s)Pds + |a(t) / 1Bin(s)ds + [(0) 2
where

&(t) = Ax(t) — CTBin(t)
Bout(t) Co‘(t) + Bin(t)

If all input energy is stored internally, then we must have

Bout(') =0

The output pulse is zero (though the output field will be vacuum).
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Now Bout(t) = 0 implies

Bin(t) = —Ca(t) = —(t)TCT
and so the internal zero dynamics is

&(t) = (A+ CTO)a(t) = —AT«(t)
On the time interval (—oo, t1] we have

Bin(t) = —of e M CTO(ty — 1)
where ©(-) is the Heavyside step function, and
Bout(t) =0

The input Bin() is a is a rising exponential.
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Quantum Memory

Quantum Memory

Stores quantum states

For example, optical states temporarily mapped onto atomic states.

Applications include quantum repeaters and other devices in quantum
information systems.

@ Excellent experimental progress.

[http://archive.nrc-cnre.ge.ca/eng/news/sims/2010/03/07 /qmemory.html]
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Quantum Memory Perfect Quantum Memory using Atomic Ensembles

Perfect Quantum Memory using Atomic Ensembles

Networks of atomic ensembles may be engineered to have tunable
decoherence-free subsystems.

b

Combined with input matched pulse shapes designed using the zero
dynamics principle, perfect quantum memories can be realized.

[Yamamoto and James, 2014]
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Quantum Memory Perfect Quantum Memory using Atomic Ensembles

In suitable coordinates this ensemble network is described by a finite
dimensional linear quantum system of the form:

dla | _| A AApum a] [ b
dt | am o AAMB AAM am 0 n
bout = Cgag + bin

The mode ap; does not appear in the output.
When A = 0 mode ap; is decoherence free:

i an . AB 0 ap . C}; b
dt|lav | | 0 O am 0 "
[Yamamoto 2012]
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Quantum Memory Perfect Quantum Memory using Atomic Ensembles

During the write and read stages, A # 0 and all modes interact with the
input.

(a) Writing (b) Storage (c) Reading
“ > Qg f-qeeee meeeee > Qg e e » ap @:
b —m— w0

For storage, A = 0 isolating the mode ay; from the input.
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Quantum Memory Perfect Quantum Memory using Atomic Ensembles

By suitably shaping the input pulse
v(t) = skvi(t)
k

input field states may be perfectly stored and retrieved from specified
modes of the decoherence free subsystem.

(a) (b)
vt @ oy
O—@ M@—@<I
(© @

Vo A ©

S
()
E)—®
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Quantum Memory Perfect Quantum Memory using Atomic Ensembles

Define the vector of rising exponentials
B(t) = e (" CTo(n — 1)

and o1 = (s1,...,5n)".

Then the input pulse

Bin(t) = —of B(t Zskﬁk
is perfectly transferred into the memory on the time interval (—oo, t1].

The data may be stored internally on a time interval [t1, t2], and
subsequently perfectly retrieved on [ty, 00).
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Quantum Memory Perfect Quantum Memory using Atomic Ensembles

Pulse amplitude and mean internal photon number during the write stage.

(a) (b)
0.5
’ 2
P s 5o, — o)
2 — Vil T — ()
3 2 ,
=] & os — (n50)
g 02 2 — (i)
« <=
2 2 0.2
= g
2 01 g
£ 0.1
0 0
-40 -30 -20 -10 0 -40 -30 -20 -10 0
Kt/2 Kt/2
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Wavepacket Transformation

Wavepacket Transformation

Linear optical devices (for example) may be used to shape photon
wavepackets.

gin fout

M i

| G —

input output
wavepacket wavepacket
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Wavepacket Transformation

Example: beamsplitter

- (t) 0 - 1op &a(t)  &(t)
€in(t) = [ 0 fb(t) } - Eout(t) = \ﬁ { _ga(t) &,(t) :|

Vi) = (@0 +0) e (B@N0) -
Vo) = 5(BI(E)BI(€)10) 910 + Z=(BI(€)]0) & (B3 (€)0)
~(1= T5)B(E)0) © (B3 (6:)10) — 510)  (B5(6:)B3 (6)10)

Matt James (ANU) Photon Engineering



Wavepacket Transformation

Multichannel passive case with G = 0:

G=A(G,0)
Matrix of pulse shapes:
&in = A(E;,,0)
where
§in = [gi;Jk]

describes pulse shapes in each channel, and cross-channel superpositions.
Input state
Win) = MX;B; (&, 4)10)

where fi;Jk satisfy a normalization condition.
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Wavepacket Transformation

The output state (stationary) produced by a passive linear quantum
system is given by
’\UOUt> - nkz B ( outjk)’0>

where
Sout(w) = G~ (w)§;, (w)

The output state is again normalized.

The proof involves careful use of stable inverses of linear systems.

[Zhang-James, April 2011]
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Wavepacket Transformation

In general G # 0 since the linear quantum system may contain active
elements.

Degenerate parametric amplifiers (active devices) produce Gaussian states
|®g) from the vacuum, characterized by a correlation function R(7):

0) — [®g)
The states produced from a single photon state are non-trivial:

1) = (B"(Sour) — B(&au))|®r)
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Wavepacket Transformation

So we introduce a class .Z of pulsed-Gaussian states |W) of the form
W) = MiX;(B (€5) — Bi(&:))1Or)
where we write
£=A¢,¢7)
States are characterized by a pair

V) = (& R)

that satisfy a normalization condition.
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Wavepacket Transformation

The class .# of pulsed-Gaussian states is invariant under the steady state
action of a quantum linear system.

The state transfer is given by
|Win> = (éina Ri ) — |wout> = (é_outa Rout)

where

Sout(w) = G(w)Ein(w)
Rout(w) = G(w)R,-,,(w)G(w)T

Expected values of quadratic forms, field intensities, etc may be explicitly
evaluated.

[Zhang-James, 2011]
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Wavepacket Shaping

Wavepacket Shaping

Given a desired wavepacket shape £(-), how do we create a photon with
this shape?

One approach is to modulate the coupling of the system to the field.
Consider the two-level (qubit) system

(S,L,H) = (I,\(t)o—,0)
initially prepared in its excited state | 1), where
1
Y Ep——0)
Ji 1€(s)" ds

Then the desired photon is emitted:

o) = | 1) @ BT (€)10) = | 1) ® |L¢).
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Wavepacket Shaping

In practice, a basic experimental challenge is to create photons on demand
with high efficiency and fidelity. One way to reduce the randomness
inherent in the photon creation process is to use feedback.  [Furusawa et al, 2013]

random MC charging Tstore determined by feedback

0 Therald Ty

Successful charging occurs at at random herald time Tperaiy. If the desired
release time is T4, the user should store the photon energy for a time
Tstore = | d — Therald

This is a simple but important example of feedback control.
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Wavepacket Shaping

This experimental setup may be modulated to create photons with desired
wavepacket shapes on demand.

[Lecamwasam, Hush, James, Carvalho 2017]

2 : s 25 ‘
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Single Photon Filtering

Single Photon Filtering

Quantum filtering [Belavkin, 1980's]

system

outcomes

(numbers)

T

measurement model

Information about the system is transferred to the probe.

The filtering problem is to use the measurement data Y(s), 0 <s <t to
estimate system variables X at time t > 0.
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Single Photon Filtering

Quantum conditional expectation
X(t) commutes with Y(s),0 < s < t. The conditional expectation

X(t) = me(X) = E[X(t)|Y(s),0 < s < 1]

is well defined.

X(t) is the minimum mean square estimate of X(t) given Y(s),0 <s < t.

Quantum filter due to V.P. Belavkin - vacuum input |0).
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Single Photon Filtering Single Photon Input

Single Photon Input

We now consider the problem of finding the quantum filter if the vacuum
field state |0) is replaced by a single photon state |1¢).

wavepacket ~ system homodyne measurement
/\—V detection  signal
E(r
) | G » | HD——>
Biy (t) Bous (t) Y(l)
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Single Photon Filtering Single Photon Master Equation and Filter

Single Photon Master Equation and Filter

[Gough, James, Nurdin]

Single photon field state:

1) = BY(£)[0)

The basic action of the annihilation operator is

b(t)|le) = £(1)[0)

Cross expectations

@ (X) = Exlje (X)] = (nej|Alnéx)

¢J ’]'5)7 Jj=1
Matt James (ANU) Photon Engineering
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Single Photon Filtering Single Photon Master Equation and Filter

Using the quantum stochastic calculus, we can derive the master equation

£(X) = @ (LX) + = (STX LD ()
+a (IL, X]19)&() + wt®(STXS — X)e()?
@;(X) = @i (£ X) + @ (STX, L)E(t)
weH(X) = 01($X)+wt (IL", X]S)&(t)
@ (X) = wp (£X)

In contrast to the vacuum case, this is a system of coupled equations.

[Gheri, et al, 1998]
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Single Photon Filtering Single Photon Master Equation and Filter

We wish to determine the single photon conditional expectation
LX) = EelX(8) Y(5),0 < s < ¢]
Signal model: a two-level system initial state p, = | 7)(1 | (excited state)

(Sm, Lm, Hm) = (1, A (t) o, 0)

vacuum B(1) Bou(t) Y(t)
signal % !A ,El
white model - measurement
noise detector  signal

The consistency requirement
EyelX(8)] = Eqyol U (8)(1 © X @ 1) U(1)]

is satisfied for a suitable choice of A(t) (as discussed earlier).
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Single Photon Filtering Single Photon Master Equation and Filter

Extended system conditional expectation
#(A® X) = Epo[UT(£)(A® X)U(t)|l @ Y(s),0 <5 < t]
Filtering equation is standard, but using parameters for extended system:

di(A® X) = #(ZLe, (A® X))dt
+(F(A® XLt + LEA® X)
— (LT + L) (A® X))dW(t),

where dW/(t) = dY (t) — #t:(LT + L )dt.
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Single Photon Filtering Single Photon Master Equation and Filter

The single photon conditional expectation is given by
me (X) = 7e(l ® X)
and may be computed from the single photon quantum filter.

drH(X) ={m (LX) + 7P (STIX, L])¢ ()+7rt10([LT7X}S)£(t)+7r?°(STXS X)|E(t \}dt
+{m' (XL +L'X) + w?l(sfx)g*( )+ m (X 9)E(t) — mfH(X) K, W (t)
drf®(X) ={m{*(LX) + {°(ST[X, L])&"(t) pdt
+{(m* (XL + LX) + r""(S*X)E (t) = m " (X)K, }dW (1)
drf (X)) ={mP!( EX)+7rt O(STIX, L])E™ () }at
+{EFMX L+ LTX) + =° (ST )E* (1) — Kt}dW(t)
dr?(X) = 00(,cX Yt + {mf® (XL + LTX) — x°( Kt}dW

dW(t) = dY (t) = (mt"(L+ L) + 7w (S)&() + m(S7)E" (1))t
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Single Photon Filtering Single Photon Master Equation and Filter

Unconditional and conditional evolution of system number operator
n=o40_.

0.6
0.4

0.2

Time (kt)

[Gough, James, Nurdin, 2012]
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Single Photon Filtering Single Photon Master Equation and Filter

For combinations of single photon and vacuum field states, we use the
field density operator

preld = Y _ kil b5} (Dx|
Jjk
The unconditional expectation can be computed from a sum:

Enpsaa X (£)] = Z VJkW{k(X)

Jjk

=1(X) >
@’ (X) >
——> @ (X)
01

@, (X)

=(X) >

master . .

. weighting

equations

Matt James (ANU) Photon Engineering

60 / 63



Single Photon Filtering Single Photon Master Equation and Filter

The corresponding conditional expectation is a form of Bayes’ rule:
7e(R(t) @ X)

(X)) = —=
«(X) 7(R(H) @ 1)
where Yik
R(t) = LS Qix
%: wi(t)
for certain wj(t), Qjk. Then
ik
Zj,k ’YJkﬂJt (X)
> ik ke (1)
! (X) >
1 0(X) »
Y (t) ——> —> m(X)
P (X) >
0 (X) >
measurement filtering weighting and
signal equations normalization
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Absorption, Multichannel Transfer, Amplification

Absorption, Multichannel Transfer, Amplification

Other related projects:

@ Nurdin, James, Yamamoto, Perfect single device absorber of arbitrary
traveling single photon fields with a tunable coupling parameter: A
QSDE approach, CDC 2016.

@ Yamamoto, Nurdin, James, Quantum state transfer for multi-input
linear quantum systems, CDC 2016.

@ Li, Carvalho, James, Continuous-mode operation of a noiseless linear
amplifier, PRA 2017.
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Absorption, Multichannel Transfer, Amplification

Thank you for your attention!
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