Physics and/of Algorithms

Michael (Misha) Chertkov

Center for Nonlinear Studies \& Theory Division, LANL and New Mexico Consortium

September 16, 2011
Advanced Networks Colloquium at U of Maryland

Preliminary Remarks [on my strange path to the subjects]

What to expect? [upfront mantra]

From Algorithms to Physics and Back

- Inference (Reconstruction), Optimization \& Learning, which are traditionally Computer/Information Science disciplines, allow Statistical Physics interpretations and benefit (Analysis \& Algorithms) from using Physics
- ... and vice versa
- Interdisciplinary Stuff is Fun ...

Outline

(1) Two Seemingly Unrelated Problems

- Error Correction: Suboptimal decoding and Error-Floor
- Particle Tracking (Fluid Mechanics): Learning the Flow
(2) Physics of Algorithms: One Common Approach
- Common Language (Graphical Models) \& Common Questions
- Message Passing/ Belief Propagation
- ... and beyond ... (theory)
(3) Some Technical Discussions (Results)
- Error Correction (Physics \Rightarrow Algorithms)
- Particle Tracking (Algorithms \Rightarrow Physics)

Error Correction

Scheme:

Hard disk

Optical disk

Fiber

Example of Additive White Gaussian Channel:

$$
\begin{gathered}
P\left(\mathbf{x}_{\text {out }} \mid \mathbf{x}_{\text {in }}\right)=\prod_{i=\text { bits }} p\left(x_{\text {out } ; i} \mid x_{\text {in } ; i}\right) \\
p(x \mid y) \sim \exp \left(-s^{2}(x-y)^{2} / 2\right)
\end{gathered}
$$

- Channel
is noisy "black box" with only statistical information available
- Encoding:
use redundancy to redistribute damaging effect of the noise
- Decoding [Algorithm]: reconstruct most probable codeword by noisy (polluted) channel

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Error Correction: Suboptimal decoding and Error-Floor Particle Tracking (Fluid Mechanics): Learning the Flow

Low Density Parity Check Codes

- N bits, M checks, $L=N-M$ information bits
example: $N=10, M=5, L=5$
- 2^{L} codewords of 2^{N} possible patterns
- Parity check: $\hat{H} \mathbf{v}=\mathbf{c}=\mathbf{0}$
example:

$$
\hat{H}=\left(\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

- LDPC = graph (parity check matrix) is sparse

Decoding as Inference

Statistical Inference

$\boldsymbol{\sigma}_{\text {orig }}$	\Rightarrow	x	\Rightarrow	σ
original		corrupted		
data	noisy channel	data:	statistical	possible
$\boldsymbol{\sigma}_{\text {orig }} \in \mathcal{C}$	$\mathcal{P}(\mathbf{x} \mid \sigma)$	log-likelihood codeword		inference

Maximum Likelihood

Marginal Probability

Decoding as Inference

Statistical Inference

\square

	corrupted				
noisy channel	data:	statistical	possible		
$\sigma_{\text {orig }} \in C$	$\mathcal{P}(\mathbf{x} \mid \boldsymbol{\sigma})$	log-likelihood	inference		preimage
:---:					
codeword					

Maximum Likelihood

Marginal Probability

Decoding as Inference

Statistical Inference

\square

	corrupted		possible
noisy channel	data:	statistical	preimage
$\mathcal{P}(\mathbf{x} \mid \boldsymbol{\sigma})$	log-likelihood	inference	$\sigma \in \mathcal{C}$

Maximum Likelihood

Marginal Probability

Decoding as Inference

Statistical Inference

$$
\Rightarrow \quad \mathbf{x} \quad \Rightarrow \quad \sigma
$$

corrupted			
noisy channel	data:	statistical	possible
$\mathcal{P}(\mathbf{x} \mid \boldsymbol{\sigma})$	log-likelihood	inference	preimage
	magnetic field		$\boldsymbol{\sigma} \in \mathcal{C}$

$$
\boldsymbol{\sigma}=\left(\sigma_{1}, \cdots, \sigma_{N}\right), \quad N \text { finite }, \quad \sigma_{i}= \pm 1 \text { (example) }
$$

Maximum Likelihood

Marginal Probability

$$
\arg \max _{\boldsymbol{\sigma}} \mathcal{P}(\boldsymbol{\sigma} \mid \mathbf{x}) \quad \arg \max _{\sigma_{i}} \sum_{\boldsymbol{\sigma} \backslash \sigma_{i}} \mathcal{P}(\mathbf{x} \mid \boldsymbol{\sigma})
$$

Exhaustive search is generally expensive: complexity of the algorithm $\sim 2^{N}$

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Error Correction: Suboptimal decoding and Error-Floor Particle Tracking (Fluid Mechanics): Learning the Flow

Shannon Transition

Existence of an efficient MESSAGE PASSING

 [belief propagation] decoding makes LDPC codes special!- Phase Transition
- Ensemble of Codes [analysis \& design]
- Thermodynamic limit but ...

Error-Floor

- T. Richardson '03 (EF)
- Density evolution does not apply (to EF)
- BER vs SNR = measure of performance
- Finite size effects
- Waterfall \leftrightarrow Error-floor
- Error-floor typically emerges due to sub-optimality of decoding, i.e. due to unaccounted loops
- Monte-Carlo is useless at FER $\lesssim 10^{-8}$

Two Seemingly Unrelated Problems

Error-floor Challenges

- Understanding the Error Floor (Inflection point, Asymptotics), Need an efficient method to analyze error-floor
- Improving Decoding
- Constructing New Codes

Dance in Turbulence [movie]

Learn the flow from tracking particles

Learning via Statistical Inference

Two images

Particle Image Velocimetry \& Lagrangian Particle Tracking [standard solution]

- Take snapshots often $=$ Avoid trajectory overlap
- Consequence $=\mathrm{A}$ lot of data
- Gigabit/s to monitor a two-dimensional slice of a $10 \mathrm{~cm}^{3}$ experimental cell with a pixel size of 0.1 mm and exposition time of 1 ms
- Still need to "learn" velocity (diffusion) from matching

New twist [MC, L. Kroc, F. Krzakala, L. Zdeborova, M. Vergassola - PNAS, April 2010]

- Take feimer snanshets - Let marticles averlan
- Put extra efforts into Learning/Inference
- Use our (turbulence/physics community) knowledge of Lagrangian evolution
- Focus on learning (rather than matching)

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Learning via Statistical Inference

Two images

Particle Image Velocimetry \& Lagrangian Particle Tracking [standard solution]

- Take snapshots often $=$ Avoid trajectory overlap
- Consequence $=\mathrm{A}$ lot of data
- Gigabit/s to monitor a two-dimensional slice of a $10 \mathrm{~cm}^{3}$ experimental cell with a pixel size of 0.1 mm and exposition time of 1 ms
- Still need to "learn" velocity (diffusion) from matching

New twist [MC, L.Kroc, F. Krzakala, L. Zdeborova, M. Vergassola - PNAS, April 2010]

- Take feiner snanshets - Let marticles averlan
- Put extra efforts into Learning/Inference
- Use our (turbulence/physics community) knowledge of Lagrangian evolution
- Focus on learning (rather than matching)

Learning via Statistical Inference

Two images

Particle Image Velocimetry \& Lagrangian Particle Tracking [standard solution]

- Take snapshots often $=$ Avoid trajectory overlap
- Consequence $=$ A lot of data
- Gigabit/s to monitor a two-dimensional slice of a $10 \mathrm{~cm}^{3}$ experimental cell with a pixel size of 0.1 mm and exposition time of 1 ms
- Still need to "learn" velocity (diffusion) from matching

New twist [MC, L.Kroc, F. Krzakala, L. Zdeborova, M. Vergassola - PNAS, April 2010]

- Take feimer snanshets - Let marticles averlan
- Put extra efforts into Learning/Inference
- Use our (turbulence/physics community) knowledge of Lagrangian evolution
- Focus on learning (rather than matching)

Two Seemingly Unrelated Problems

Learning via Statistical Inference

Two images

And after all we actually don't need matching. Our goal is to LEARN THE FLOW.

Particle Image Velocimetry \& Lagrangian Particle Tracking [standard solution]

- Take snapshots often = Avoid trajectory overlap
- Consequence $=\mathrm{A}$ lot of data
- Gigabit/s to monitor a two-dimensional slice of a $10 \mathrm{~cm}^{3}$ experimental cell with a pixel size of 0.1 mm and exposition time of 1 ms
- Still need to "learn" velocity (diffusion) from matching

New twist [MC, L.Kroc, F. Krzakala, L. Zdeborova, M. Vergassola - PNAS, April 2010]

- Take fewer snapshots $=$ Let particles overlap
- Put extra efforts into Learning/Inference
- Use our (turbulence/physics community) knowledge of Lagrangian evolution
- Focus on learning (rather than matching)

Learning via Statistical Inference

Two images

And after all we actually don't need matching. Our goal is to LEARN THE FLOW.

Particle Image Velocimetry \& Lagrangian Particle Tracking [standard solution]

- Take snapshots often $=$ Avoid trajectory overlap
- Consequence $=\mathrm{A}$ lot of data
- Gigabit/s to monitor a two-dimensional slice of a $10 \mathrm{~cm}^{3}$ experimental cell with a pixel size of 0.1 mm and exposition time of 1 ms
- Still need to "learn" velocity (diffusion) from matching

[^0]
Learning via Statistical Inference

Two images

And after all we actually don't need matching. Our goal is to LEARN THE FLOW.

Particle Image Velocimetry \& Lagrangian Particle Tracking [standard solution]

- Take snapshots often $=$ Avoid trajectory overlap
- Consequence $=\mathrm{A}$ lot of data
- Gigabit/s to monitor a two-dimensional slice of a $10 \mathrm{~cm}^{3}$ experimental cell with a pixel size of 0.1 mm and exposition time of 1 ms
- Still need to "learn" velocity (diffusion) from matching

New twist [MC, L.Kroc, F. Krzakala, L. Zdeborova, M. Vergassola - PNAS, April 2010]

- Take fewer snapshots = Let particles overlap
- Put extra efforts into Learning/Inference
- Use our (turbulence/physics community) knowledge of Lagrangian evolution
- Focus on learning (rather than matching)

Lagrangian Dynamics under the Viscous Scale

Plausible (for PIV) Modeling Assumptions

- Particles are normally seed with mean separation few times smaller than the viscous scale.
- The Lagrangian velocity at these scales is spatially smooth.
- Moreover the velocity gradient, \hat{s}, at these scales and times is frozen (time independent).

Batchelor (diffusion + smooth advection) Model

- Trajectory of i 's particles obeys: $d \mathbf{r}_{i}(t) / d t=\hat{\boldsymbol{s}} \mathbf{r}_{i}(t)+\boldsymbol{\xi}_{i}(t)$
- $\operatorname{tr}(\hat{s})=0$ - incompressible flow
- $\left\langle\xi_{i}^{\alpha}\left(t_{1}\right) \xi_{j}^{\beta}\left(t_{2}\right)\right\rangle=\kappa \delta_{i j} \delta^{\alpha \beta} \delta\left(t_{1}-t_{2}\right)$

Inference \& Learning

Main Task: Learning parameters of the flow and of the medium

- Given positions of N identical particles at $t=0$ and $t=1$: $\forall i, j=1, \cdots, N, \quad \mathbf{x}_{i}=\mathbf{r}_{i}(0)$ and $\mathbf{y}^{j}=\mathbf{r}_{j}(1)$
- To output MOST PROBABLE values of the flow, \hat{s}, and the medium, κ, characterizing the inter-snapshot span: $\theta=(\hat{s} ; \kappa)$. [Matchings are hidden variables.]

Sub-task: Inference [reconstruction] of Matchings

- Given parameters of the medium and the flow, $\boldsymbol{\theta}$
- To reconstruct Most Probable matching between identical particles in the two snapshots ["ground state"]
- Even more generally - Probabilistic Reconstruction: to assign probability to each matchings and evaluate marginal probabilities ["magnetizations"]

Boolean Graphical Models = The Language

Forney style - variables on the edges

$$
\begin{array}{ll}
\mathcal{P}(\vec{\sigma})=Z^{-1} \prod_{a} f_{a}\left(\vec{\sigma}_{a}\right) \\
\underbrace{Z=\sum_{\sigma} \prod_{a} f_{a}\left(\vec{\sigma}_{a}\right)}_{\text {partition function }}
\end{array}
$$

Objects of Interest

- Most Probable Configuration $=$ Maximum Likelihood $=$ Ground State: $\arg \max \mathcal{P}(\vec{\sigma})$
- Marginal Probability: e.g. $\mathcal{P}\left(\sigma_{a b}\right) \equiv \sum_{\vec{\sigma} \backslash \sigma_{a b}} \mathcal{P}(\vec{\sigma})$
- Partition Function: Z

Complexity \& Algorithms

- How many operations are required to evaluate a graphical model of size N ?
- What is the exact algorithm with the least number of operations?
- If one is ready to trade optimality for efficiency, what is the best (or just good) approximate algorithm he/she can find for a given (small) number of operations?
- Given an approximate algorithm, how to decide if the algorithm is good or bad? What is the measure of success?
- How one can systematically improve an approximate algorithm?
- Linear (or Algebraic) in N is EASY, Exponential is DIFFICULT

Easy \& Difficult Boolean Problems

- Any graphical problems on a tree (Bethe-Peierls, Dynamical Programming, BP, TAP and other names)
- Ground State of a Rand. Field Ferrom. Ising model on any graph
- Partition function of a planar Ising model
- Finding if 2-SAT is satisfiable
- Decoding over Binary Erasure Channel = XOR-SAT
- Some network flow problems (max-flow, min-cut, shortest path, etc)
- Minimal Perfect Matching Problem
- Some special cases of Integer Programming (TUM)

Typical graphical problem, with loops and factor functions of a general position, is DIFFICULT

BP is Exact on a Tree
 Bethe '35, Peierls '36

$$
\begin{aligned}
& Z_{51}\left(\sigma_{51}\right)=f_{1}\left(\sigma_{51}\right), \quad Z_{52}\left(\sigma_{52}\right)=f_{2}\left(\sigma_{52}\right) \\
& Z_{63}\left(\sigma_{63}\right)=f_{3}\left(\sigma_{63}\right), \quad Z_{64}\left(\sigma_{64}\right)=f_{4}\left(\sigma_{64}\right) \\
& Z_{65}\left(\sigma_{56}\right)=\sum_{\vec{\sigma}_{5} \backslash \sigma_{56}} f_{5}\left(\vec{\sigma}_{5}\right) Z_{51}\left(\sigma_{51}\right) Z_{52}\left(\sigma_{52}\right) \\
& Z=\sum_{\vec{\sigma}_{6}} f_{6}\left(\vec{\sigma}_{6}\right) Z_{63}\left(\sigma_{63}\right) Z_{64}\left(\sigma_{64}\right) Z_{65}\left(\sigma_{65}\right)
\end{aligned}
$$

$$
Z_{b a}\left(\sigma_{a b}\right)=\sum_{\vec{\sigma}_{a} \backslash \sigma_{a b}} f_{a}\left(\vec{\sigma}_{a}\right) Z_{a c}\left(\sigma_{a c}\right) Z_{a d}\left(\sigma_{a d}\right) \Rightarrow Z_{a b}\left(\sigma_{a b}\right)=A_{a b} \exp \left(\eta_{a b} \sigma_{a b}\right)
$$

Belief Propagation Equations

$$
\sum_{\vec{\sigma}_{a}} f_{a}\left(\vec{\sigma}_{a}\right) \exp \left(\sum_{c \in a} \eta_{a c} \sigma_{a c}\right)\left(\sigma_{a b}-\tanh \left(\eta_{a b}+\eta_{b a}\right)\right)=0
$$

- akin R. Gallager approach to error-correction (1961+)
- akin Thouless-Anderson-Palmer (1977) Eqs. - spin-glass +
- akin J. Pearl approach in machine learning (1981+)
- ... was discovered and re-discovered in many other sub-fields of Physics/CS/OR

Belief Propagation (BP) and Message Passing

- Apply what is exact on a tree (the equation) to other problems on graphs with loops [heuristics ... but a good one]
- To solve the system of N equations is EASIER then to count (or to choose one of) 2^{N} states.

Bethe Free Energy formulation of BP [Yedidia, Freeman, Weiss '01]

Minimize the Kubblack-Leibler functional

$$
\mathcal{F}\{b(\boldsymbol{\sigma})\} \equiv \sum_{\boldsymbol{\sigma}} b(\boldsymbol{\sigma}) \ln \frac{b(\boldsymbol{\sigma})}{\mathcal{P}(\boldsymbol{\sigma})} \quad \text { Difficult/Exact }
$$

under the following "almost variational" substitution" for beliefs:

$$
b(\{\sigma\}) \approx \frac{\prod_{i} b_{i}\left(\boldsymbol{\sigma}_{i}\right) \prod_{j} b^{j}\left(\sigma^{j}\right)}{\prod_{(i, j)} b_{i}^{j}\left(\sigma_{i}^{j}\right)}, \quad[\text { tracking }]
$$

- Message Passing is a (graph) Distributed Implementation of BP
- BP reduces to Linear Programming (LP) in the zero-temperature limit

Beyond BP［MC，V．Chernyak＇06－＇09＋＋］

Only mentioning briefly today

Loop Calculus／Series：
$Z=\sum_{\vec{\sigma}_{\sigma}} \prod_{a} f_{a}\left(\vec{\sigma}_{a}\right)=Z_{B P}\left(1+\sum_{C} r(C)\right)$ ，
each $r c$ is expressed solely in terms of BP marginals

昭的
公
－BP is a Gauge／Reparametrization．There are other interesting choices of Gauges．
－Loop Series for Gaussian Integrals，Fermions，etc．
－Planar and Surface Graphical Models which are Easy［alas dimer］．Holographic Algorithms．Matchgates．Quantum Theory of Computations．
－Orbit product for Gaussian GM［J．Johnson，VC，MC＇10－＇11］
－Compact formula and new lower／upper bounds for Permanent［Y．Watanabe， MC＇10］＋Beyond Generalized BP for Permanent［A．Yedidia，MC＇11］

" Counting, Inference and Optimization on Graphs"

Workshop at

the Center for Computational Intractability, Princeton U

- November 2 - 5, 2011
- Organized by:
- Jin-Yi Cai (U. Wisconsin-Madison)
- Michael Chertkov (Los Alamos National Lab)
- G. David Forney, Jr. (MIT)
- Pascal O. Vontobel (HP Labs Palo Alto)
- Martin J. Wainwright (UC Berkeley)
- http://intractability.princeton.edu/

Two Seemingly Unrelated Problems

Error Correction (Physics \Rightarrow Algorithms)
Particle Tracking (Algorithms \Rightarrow Physics)

Error-floor Challenges

- Understanding the Error Floor (Inflection point, Asymptotics), Need an efficient method to analyze error-floor
- ... i.e. an efficient method to analyze rare-events [BP failures] \Rightarrow

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Optimal Fluctuation (Instanton) Approach for Extracting Rare but Dominant Events

(c) Original Artist

Ed was unlucky enough to find
the needle in the haystack!

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Optimal Fluctuation (Instanton) Approach for Extracting Rare but Dominant Events

C) Original Artist

Ed was unlucky enough to find the needle in the haystack!

You were right: There's a needle in this haystack...

Pseudo-codewords and Instantons

Error-floor is caused by Pseudo-codewords:

Wiberg '96; Forney et.al'99; Frey et.al '01; Richardson '03; Vontobel, Koetter '04-'06

Instanton = optimal conf of the noise

$$
B E R=\int d \text { (noise) WEIGHT(noise) }
$$

$$
\text { BER } \sim \text { WEIGHT }\binom{\text { optimal conf }}{\text { of the noise }}
$$ optimal conf Point at the ES of the noise $=$ closest to "0"

Instantons are decoded to Pseudo-Codewords

Instanton-amoeba

= optimization algorithm
Stepanov, et.al '04,'05
Stepanov, Chertkov '06

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Efficient Instanton Search Algorithm

[MC, M. Stepanov '07-'11; MC,MS, S. Chillapagari, B. Vasic '08-'09]

$$
B E R \approx \max _{\text {noise }} \overbrace{\min _{\text {output }} \text { Weight(noise;output) }}^{\text {decoding }}=\text { BP,LP }
$$

Error Surface

- Developed Efficient [Randomized and Iterative] Alg. for LP-Instanton Search. The output is the spectra of the dangerous pseudo-codewords
- Started to design Better Decoding = Improved LP/BP +
- Started to design new codes

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Other Applications for the Instanton-Search

Compressed Sensing

[Chillapagari,MC,Vasic '10]

Given a measurement matrix and a probabilistic measure for error-configuration/noise: find the most probable error-configuration not-recoverable in I_{1}-optimization

Distance to Failure in Power Grids

[MC,Pen,Stepanov '10]

Given a DC-power flow with graph-local constraints, the problem of minimizing the load-shedding (LP-DC), and a probabilistic measure of load-distribution (centered about a good operational point): find the most probable configuration of loads which requires shedding

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Inference \& Learning by Passing Messages Between Images

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Tracking Particles as a Graphical Model

$$
\begin{aligned}
& \mathcal{P}(\{\sigma\} \mid \boldsymbol{\theta})=Z(\boldsymbol{\theta})^{-1} C(\{\sigma\}) \prod_{(i, j)}\left[P_{i}^{j}\left(\mathbf{x}_{i}, \mathbf{y}^{j} \mid \boldsymbol{\theta}\right)\right]^{\sigma_{i}^{j}} \\
& C(\{\sigma\}) \equiv \prod_{j} \delta\left(\sum_{i} \sigma_{i}^{j}, 1\right) \prod_{i} \delta\left(\sum_{j} \sigma_{i}^{j}, 1\right)
\end{aligned}
$$

Surprising Exactness of BP for ML-assignement

- Exact Polynomial Algorithms (auction, Hungarian) are available for the problem
- Generally BP is exact only on a graph without loops [tree]
- In this [Perfect Matching on Bipartite Graph] case it is still exact in spite of many loops!! [Bayati, Shah, Sharma '08], also Linear Programming/TUM interpretation [MC '08]

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Can you guess who went where?

- N particles are placed uniformly at random in a d-dimensional box of size $N^{1 / d}$
- Choose $\boldsymbol{\theta}=(\kappa, \mathbf{s})$ in such a way that after rescaling, $\hat{s}^{*}=\hat{s} N^{1 / d}$, $\kappa^{*}=\kappa$, all the rescaled parameters are $O(1)$.
- Produce a stochastic map for the N particles from the original image to respective positions in the consecutive image.
- $N=400$ particles. 2D.
- $\hat{s}=\left(\begin{array}{cc}a & b-c \\ b+c & a\end{array}\right)$
- Actual values: $\kappa=1.05, a^{*}=0.28, b^{*}=0.54, c^{*}=0.24$
- Output of OUR LEARNING algorithm: [accounts for multiple matchings !!] $\kappa_{B P}=1, a_{B P}=0.32, b_{B P}=0.55, c_{B P}=0.19$ [within the "finite size" error]

Combined Message Passing with Parameters' Update

Fixed Point Equations for Messages

- BP equations: $\bar{h}^{i \rightarrow j}=-\frac{1}{\beta} \ln \sum_{k \neq j} P_{i}^{k} e^{\beta \underline{h}^{k \rightarrow i}} ; \underline{h}^{j \rightarrow i}=-\frac{1}{\beta} \ln \sum_{k \neq i} P_{k}^{j} e^{\beta \bar{h}^{k \rightarrow j}}$
- BP estimation for $Z_{B P}(\boldsymbol{\theta})=\boldsymbol{Z}(\boldsymbol{\theta} \mid \mathbf{h}$ solves BP eqs. at $\beta=1)$
- MPA estimation for $Z_{\text {MPA }}(\boldsymbol{\theta})=\boldsymbol{Z}(\boldsymbol{\theta} \mid \mathbf{h}$ solves BP eqs. at $\beta=\infty)$

$$
Z(\boldsymbol{\theta} \mid \mathbf{h} ; \beta)=\sum_{(j)} \ln \left(1+P_{i}^{j} e^{\beta \bar{h}^{i} \rightarrow j_{+\beta} \underline{j} \rightarrow i}\right)-\sum_{i} \ln \left(\sum_{j} P_{i}^{j} e^{\beta \underline{h^{i} \rightarrow i}}\right)-\sum_{j} \ln \left(\sum_{i} P_{i}^{j} e^{\beta \bar{h}^{i \rightarrow j}}\right)
$$

Learning: $\operatorname{argmin}_{\theta} Z(\theta)$

- Solved using Newton's method in combination with message-passing: after each Newton step, we update the messages
- Even though (theoretically) the convergence is not guaranteed, the scheme always converges
- Complexity [in our implementation] is $O\left(N^{2}\right)$, even though reduction to $O(N)$ is straightforward

Two Seemingly Unrelated Problems
Physics of Algorithms: One Common Approach Some Technical Discussions (Results)

Quality of the Prediction [is good]

$$
\text { 2D. } a^{*}=b^{*}=c^{*}=1, \kappa^{*}=0.5 . ~ N=200 .
$$

- The BP Bethe free energy vs κ and b. Every point is obtained by minimizing wrt a, c
- Perfect maximum at $b=1$ and $\kappa=0.5$ achieved at $a_{B P}=1.148(1)$, $b_{B P}=1.026(1)$, $c_{B P}=0.945(1)$, $\kappa_{B P}=0.509(1)$.
- See PNAS 10.1073/pnas.0910994107, arxiv:0909.4256, MC, L.Kroc, F. Krzakala, L. Zdeborova, M. Vergassola, Inference in particle tracking experiments by passing messages between images, for more examples

We also have a "random distance" model [ala random matching of Mezard, Parisi '86-'01] providing a theory support for using BP in the reconstruction/learning algorithms.

We are working on

- Applying the algorithm to real particle tracking in turbulence experiments
- Extending the approach to learning multi-scale velocity field and possibly from multiple consequential images
- Going beyond BP [improving the quality of tracking, approximating permanents better, e.g. with $\mathrm{BP}+$]
- Multiple Frames [on the fly tracking]
- Other Tracking Problems [especially these where the main challenge/focus is on multiple tracks \rightarrow counting]

Bottom Line [on BP and Beyond]

- Applications of Belief Propagation (and its distributed iterative realization, Message Passing) are diverse and abundant
- $\mathrm{BP} / \mathrm{MP}$ is advantageous, thanks to existence of very reach and powerful techniques [physics, CS, statistics]
- BP/MP has a great theory and application potential for improvements [account for loops]
- BP/MP can be combined with other techniques (e.g. Markov Chain, planar inference, etc) and in this regards it represents the tip of the iceberg called "Physics and/of Algorithms"

References

https://sites.google.com/site/mchertkov/publications/pub-phys-alg

Path Forward [will be happy to discuss off-line]

Applications

- Power Grid: Optimization \& Control Theory for Power Grids
- Soft Matter \& Fluids: Inference \& Learning from Experiment. Tracking. Coarse-grained Modeling.
- Bio-Engineering: Phylogeny, Inference of Bio-networks (learning the graph)
- Infrastructure Modeling: Cascades, Flows over Networks

More of the Theory

- Mesoscopic Non-Equilibrium Statistical Physics: Statistics of Currents. Queuing Networks. Topology of Phase Space. Accelerated MC sampling. Dynamical Inference.
- Classical \& Quantum Models over Planar and Surface Structures. Complexity. Spinors. Quantum Computations.

[^0]: twist [MC, L.Kroc, F. Krzakala, L. Zdeborova, M. Vergassola - PNAS, April 2010]

 - Take fewer snapshots = Let particles overlap
 - Pil extra efforts into Learning/Inference
 - Use our (turbulence/physics community) knowledge of Lagrangian evolution
 - Focus on learning (rather than matching)

