Non-Bayesian Social Learning and Information Dissemination in Complex Networks Ali Jadbabaie

Department of Electrical and Systems Engineering and GRASP Laboratory

Pooya Molavi, Victor Preciado (Penn)

Alireza Tahbaz-Salehi (Columbia GSB), Kamiar R Rad (Columbia Statistics)

Alvaro Sandroni (Northwestern University, Kellogg School)

Individuals form opinions about social, economic, and political issues

- These opinions influence their decisions when faced with choices:
 - Choice of agricultural products.
 - Buy Mac or PC?
 - Smoke or not to smoke?
 - Vote Democrat or Republican?
- What is the role of social networks in forming opinions?

- Individuals form opinions about social, economic, and political issues
- These opinions influence their decisions when faced with choices:
 - Choice of agricultural products.
 - Buy Mac or PC?
 - Smoke or not to smoke?
 - Vote Democrat or Republican?

• What is the role of social networks in forming opinions?

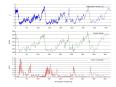
- Individuals form opinions about social, economic, and political issues
- These opinions influence their decisions when faced with choices:
 - Choice of agricultural products.
 - Buy Mac or PC?
 - Smoke or not to smoke?
 - Vote Democrat or Republican?

• What is the role of social networks in forming opinions?

- How do agents form subjective opinions and how these opinions are diffused in social networks? e.g., fashion trends, consumption tastes, ...
- In most cases, there is no underlying "true state".
- In some scenarios there *is* a true state that can be identified through observations, e.g., climate change.
- Is it "man-made" or "the wavy arm thing"?

- Under what assumptions can we be sure that the agents can learn the true state of the world?
- How can this be implemented tractably?
- Rapidly growing interest in the topic in Economics and Game Theory literature: Ellison & Fudenberg '93, '95, Smith & Sorensen '98, Banerjee '98, Acemoglu *et al.* 2008, Bala & Goyal ' 98, 2001, DeMarzo *et al.* 2003, Gale & Kariv '2003, and many others
- Also studied in the context of estimation and detection, Tsitsiklis '85-'95, Borkar & Varaiya '78

- How do agents form subjective opinions and how these opinions are diffused in social networks? e.g., fashion trends, consumption tastes, ...
- In most cases, there is no underlying "true state".
- In some scenarios there *is* a true state that can be identified through observations, e.g., climate change.
- Is it "man-made" or "the wavy arm thing"?



Ali Jadbabaie, Pooya Molavi, Victor Preciado Social Learning and Information Dissemination in Complex Netw

Given outcome of an i.i.d. coin toss process, what can one learn?

НТНННТНТТННТТТТНТ...

- The next toss has roughly 50% chance of being H. \longrightarrow Week merging
- Q: Can two coins by distinguished by observing coin toss outcomes?
 A: Only if P(H|Coin 1) ≠ P(H|Coin 2).
 → Observational distinguishability
- Q: How many observations we need to distinguish them? A: Depends on Kullback-Leibler divergence of conditional distributions.

Given outcome of an i.i.d. coin toss process, what can one learn?

НТНННТНТТННТТТТНТ...

- The next toss has roughly 50% chance of being H. \longrightarrow Week merging
- Q: Can two coins by distinguished by observing coin toss outcomes?
 A: Only if P(H|Coin 1) ≠ P(H|Coin 2).
 → Observational distinguishability
- Q: How many observations we need to distinguish them? A: Depends on Kullback-Leibler divergence of conditional distributions.

Given outcome of an i.i.d. coin toss process, what can one learn?

НТНННТНТТННТТТТНТ...

- The next toss has roughly 50% chance of being H. \longrightarrow Week merging
- Q: Can two coins by distinguished by observing coin toss outcomes?

A: Only if $\mathbb{P}(H|\text{Coin } 1) \neq \mathbb{P}(H|\text{Coin } 2)$.

Observational distinguishability

• Q: How many observations we need to distinguish them? A: Depends on Kullback-Leibler divergence of conditional distributions.

Given outcome of an i.i.d. coin toss process, what can one learn?

НТНННТНТТННТТТТНТ...

- The next toss has roughly 50% chance of being H. \longrightarrow Week merging
- Q: Can two coins by distinguished by observing coin toss outcomes?

A: Only if $\mathbb{P}(H|\text{Coin } 1) \neq \mathbb{P}(H|\text{Coin } 2)$.

 \longrightarrow Observational distinguishability

• Q: How many observations we need to distinguish them? A: Depends on Kullback-Leibler divergence of conditional distributions.

$$D_{\mathsf{KL}}(\mathbb{P}_1 \| \mathbb{P}_2) \stackrel{\mathsf{def}}{=} \int \log rac{\mathbb{P}_1(x)}{\mathbb{P}_2(x)} d\mathbb{P}_1(x) \geq 0 \quad \& \quad = 0 \qquad \mathsf{iff} \qquad \mathbb{P}_1 = \mathbb{P}_2 \mathsf{ a.s.}$$

Lemma (Chernoff-Stein)

The probability of error goes to zero exponentially fast.

$$\limsup_{t\to\infty}\frac{1}{t}\log|e|\leq -D_{\mathsf{KL}}(\mathbb{P}(\cdot|\operatorname{Coin} 1)\|\mathbb{P}(\cdot|\operatorname{Coin} 2)).$$

$$\mu_{i,t}(\theta) = \mathbb{P}\left[\theta = \theta^* | \mathcal{F}_{i,t}\right]$$

where

$$\mathcal{F}_{i,t} = \sigma\left(s_1^i, \dots, s_t^i, \{\mu_{j,k} : j \in \mathcal{N}_i, k \le t\}\right)$$

is the information available to agent i up to time t.

Agents need to make rational deductions about everybody's beliefs based on only observing neighbors' beliefs:

- Agents repeatedly communicate with their neighbors in a social network, e.g., colleagues, friends,... In a contact agents average their beliefs.
- Sometimes, some agents make private observations and incorporate the observations in their beliefs in a Bayesian way.
- What is the outcome of this process?

- 1. Incomplete network information
- 2. Incomplete information about other agents' signal structures
- 3. Higher order beliefs matter **Example**
- 4. The source of each piece of information is not immediately clear

Borkar and Varaiya'78

Assumptions:

- At each time period some agents receive signals and incorporate them in their beliefs.
- Then any agent averages her belief with those of her neighbors.
- Observations are i.i.d.

- $\bullet~ \Theta :$ the finite set of possible states of the world
- θ^* : true state of the world
- $\mu_{i,t}^{\theta}$: beliefs of the agents
- *m_{i,t}(s_i)*: agent *i*'s forecast at time *t* that signal *s_i* will be observed next
- S_i: agent i's signal space
- Signals are generated according $\ell(\cdot | \theta^*)$.
- $\ell_i(\cdot \mid \theta^*)$: the *i*th marginal of $\ell(\cdot \mid \theta^*)$
- Θ

 i = {θ : ℓ_i(·|θ) = ℓ_i(·|θ^{*})}: the set of signals that are
 observationally equivalent to θ^{*} from the point of view of i

- $\mathbb{P} = \ell(\cdot | \theta^*)^{\mathbb{N}}$: the product measure
- $(\Omega, \mathcal{F}, \mathbb{P})$: the probability triple
- \mathcal{F}_t : the filtration generated by observations to time t
- $\omega \in \Omega$: the infinite sequence of signals
- Network is represented by a weighted directed graph.
- a_{ij} : the weight *i* assigns to the belief of *j*
- $A = [a_{ij}]$: the weighted graph matrix
- \mathcal{N}_i : neighbors of agent i
- a_{ii}: self reliance of agent i

Agent updates her belief to the convex combination of her Bayesian posterior and her neighbors' beliefs:

$$\mu_{i,t+1}^{\theta} = a_{ii}\mu_{i,t}^{\theta} \frac{\ell_i(\omega_{i,t+1}|\theta)}{m_{i,t}(\omega_{i,t+1})} + \sum_{j \in \mathcal{N}_i} a_{ij}\mu_{j,t}^{\theta},$$

where $\omega_{i,t}$ is observation of agent *i* at time *t*.

Model, cont'd

 $m_{i,t}(\cdot)$ is the one step forecast of agent *i* defined as:

$$m_{i,t}(s_i) = \sum_{\theta \in \Theta} \ell_i(s_i | \theta) \mu_{i,t}^{\theta}.$$

Theorem (Jadbabaie, Sandroni, Tahbaz Salehi 2010)

Assume:

- (a) The social network is strongly connected.
- (b) There exists an agent with positive prior belief on the true parameter θ^* .

Then agents with positive self-reliance will eventually forecast immediate future correctly.

Sketch of proof

- $v^T \mu_t(\theta^*)$ is a bounded submartingale that converges.
- $v^T \log \mu_t(\theta^*)$ is a bounded submartingale that converges.
- The submartingale increments go to zero \mathbb{P} -almost surely.

Theorem

Assume:

- (a) The social network is strongly connected.
- (b) All agents have strictly positive self-reliances.
- (c) There exists an agent with positive prior belief on the true parameter θ^* .
- (d) There is no θ that is observationally equivalent to θ^* from the point of view of all agents.

Then all the agents learn the true state of the world with \mathbb{P} -probability one.

• Look at the k step forecast of the agent:

$$m_{i,t}(s_{i,1},s_{i,2},\ldots,s_{i,k})=\sum_{\theta\in\Theta}\mu_{i,t}^{\theta}\ell_i(s_{i,1},s_{i,2},\ldots,s_{i,k}|\theta),$$

where

$$\ell_i(s_{i,1}, s_{i,2}, \ldots, s_{i,k} | \theta) = \ell_i(s_{i,1} | \theta) \ell_i(s_{i,2} | \theta) \ldots \ell_i(s_{i,k} | \theta).$$

 Asymptotically P-almost surely the k step forecast decomposes into products of k one step forecasts, i.e.

$$m_{i,t}(s_{i,1}, s_{i,2}, \ldots, s_{i,k}) \stackrel{a.a.s.}{=} m_{i,t}(s_{i,1})m_{i,t+1}(s_{i,2}) \ldots m_{i,t+k}(s_{i,k})$$
$$\stackrel{a.a.s.}{=} \ell_i(s_{i,1}, s_{i,2}, \ldots, s_{i,k} | \theta^*).$$

Lemma

Asymptotically \mathbb{P} -almost surely, the dynamic of opinions follow consensus update in expectation, i.e.

$$\mathbb{E}(\mu_{t+1}(\theta)|\mathcal{F}_t) \stackrel{a.a.s.}{=} A\mu_t(\theta).$$

Lemma

Asymptotically \mathbb{P} -almost surely, the k step forecast decomposes as

$$m_{i,t}(\omega_{i,t+1},s_{i,2},\ldots,s_{i,k}) \stackrel{a.a.s.}{=} m_{i,t}(\omega_{i,t+1})m_{i,t}(s_{i,2},\ldots,s_{i,k}).$$

Proof: Induction on k.

Claim

The result is also true for arbitrary $s_{i,1} \in S_i$. This is intuitive because of independence.

Lemma

If the true state is distinguishable, there exists a finite number \hat{k}_i and signals $\hat{s}_{i,1}, \hat{s}_{i,2}, \ldots, \hat{s}_{i,\hat{k}_i}$ such that

$$\frac{\ell_i(\hat{s}_{i,1}, \hat{s}_{i,2}, \dots, \hat{s}_{i,\hat{k}_i} | \theta)}{\ell_i(\hat{s}_{i,1}, \hat{s}_{i,2}, \dots, \hat{s}_{i,\hat{k}_i} | \theta^*)} \le \delta_i < 1 \qquad \forall \theta \notin \bar{\Theta}_i$$

for some $\delta_i \geq 0$.

Claim

The signal sequence in which s_i appears with frequency $\ell_i(s_i | \theta^*)$ has this property.

Proof: Maximize over all the probability measures over S_i .

- $m_{i,t}(s_{i,1}, \dots, s_{i,k}) \rightarrow \ell_i(s_{i,1}, \dots, s_{i,k} | \theta^*)$ with \mathbb{P} -probability one for any sequence of finite length.
- Use the sequence in the previous Lemma.
- Therefore,

$$\begin{split} &\sum_{\theta} \mu_{i,t}^{\theta} \frac{\ell_i(\hat{s}_{i,1},\ldots,\hat{s}_{i,\hat{k}_i}|\,\theta)}{\ell_i(\hat{s}_{i,1},\ldots,\hat{s}_{i,\hat{k}_i}|\,\theta^*)} - 1 \longrightarrow 0\\ &\sum_{\theta \notin \bar{\Theta}_i} \mu_{i,t}^{\theta} \frac{\ell_i(\hat{s}_{i,1},\ldots,\hat{s}_{i,\hat{k}_i}|\,\theta)}{\ell_i(\hat{s}_{i,1},\ldots,\hat{s}_{i,\hat{k}_i}|\,\theta^*)} + \sum_{\theta \in \bar{\Theta}_i} \mu_{i,t}^{\theta} - 1 \longrightarrow 0. \end{split}$$

And,

$$(1-\delta_i)\sum_{\theta\notinar{\Theta}_i}\mu^ heta_{i,t}\longrightarrow 0.$$

Theorem

Assume:

- (a) The social network is strongly connected.
- (b) There exists an agent with positive prior belief on the true parameter θ^* .
- (c) For any $\theta \neq \theta^*$, there exist an agent with positive self-reliance who can distinguish θ from θ^* .

Then all the agents learn the true state of the world with $\mathbb P\text{-probability one.}$

Theorem

With the same assumptions convergence of $\bar{\mu}_t(\theta)$ to zero is exponential, i.e., for all $\epsilon > 0$ and in a set of \mathbb{P} -probability one,

$$\lambda'_1 + \epsilon \leq \limsup_{t \to \infty} \frac{1}{t} \log \|\bar{\mu}_t\| \leq \lambda_1 + \epsilon,$$

where $\lambda_1 < 0$ is the top Lyapunov exponent of the linearized system and $\lambda_1' < 0$

• $\bar{\mu}_{i,t}(\theta)$ is the restriction of $\mu_{i,t}^{\theta}$ to $\Theta \setminus \bar{\Theta}$, where $\bar{\Theta} = \bar{\Theta}_1 \cap \cdots \cap \bar{\Theta}_n$.

• Look at $\bar{\mu}_t$ as the trajectory of a *Random Dynamical System* (RDS):

$$\bar{\mu}_{t+1} = \varphi_t(\omega; \bar{\mu}_t).$$

• Linearize the dynamics of $\bar{\mu}_{i,t}(\theta)$ at the origin to get $z_{i,t}(\theta)$:

$$\varphi_t(\omega; x) = M_t(\omega) x + F_t(\omega; x),$$

$$z_{t+1} = M_t(\omega) z_t.$$

- A martingale argument shows that z_t → 0 for all initial conditions. Thus, λ₁ < 0.
- Therefore, the nonlinear RDS is exponentially stable in a neighborhood of the origin.

🕺 Bounds on the Rate of Learning

Theorem

(a)

$$\lambda_1' \geq -\max_{ heta \notin ar{\Theta}} \sum_{i \in \mathcal{N}} v_i a_{ii} D_{\mathcal{KL}}(\ell_i(\cdot | \, heta^*) \| \ell_i(\cdot | \, heta)).$$

(b) For small distinguishability of the true state,

$$\lambda_1 \leq -\min_{\theta \notin \bar{\Theta}} \sum_{i \in \mathcal{N}} v_i a_{ii} D_{\mathcal{KL}}(\ell_i(\cdot | \theta^*) \| \ell_i(\cdot | \theta)),$$

where v_i is the eigenvector centrality of agent *i*.

• Upper bound is found using an upper bound by Gharavi and Anantharam (2005) on the top Lyapunov exponent (TLE).

- The bounds can be made arbitrarily tight when there are only two states.
- The rate is always smaller than that of an "ideal" observer with access to all observations.
- Learning is faster when central (influential) agents receive better signals.
- While in some large societies rate goes to zero, in others it is bounded below.

🧟 Upper Bound on TLE (Gharavi, Anantharam '05)

- M^k : the kth possible realization of $M_t(\omega)$
- p_k : the probability of M^k being realized
- H(p): the entropy of p
- $\mathcal{S} = \{1, \dots, |\mathcal{S}|\}$: an enumeration of possible signal profiles
- \mathcal{M} : set of probability distributions over $(\mathcal{N} \times \mathcal{S}) \times (\mathcal{N} \times \mathcal{S})$
- $H(\eta)$: entropy of $\eta \in \mathcal{M}$
- $F(\eta)$: defined for $\eta \in \mathcal{M}$ as

$$F(\eta) = \sum_{\substack{i,j \in \mathcal{N} \\ k, l \in \mathcal{S}}} \eta_{i,j}^{k,l} \log M_{j,i}^k.$$

- An upper bound for the top Lyapunov exponent of a Markovian product of nonnegative matrices using Markovian type counting arguments.
- The bound is expressed as the maximum of a nonlinear concave function over a finite-dimensional convex polytope of probability distributions.

$$\hat{\lambda}_{1} = \max_{\eta \in \mathcal{M}} H(\eta) + F(\eta) - H(p)$$

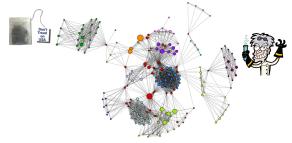
subject to $\eta_{*,*}^{k,l} = p_{k}p_{l}$
 $\eta_{i,*}^{k,*} = \eta_{*,i}^{*,k}$
 $\eta_{i,j}^{k,l} = 0$ if $M_{j,i}^{k} = 0$

• The social networks are clustered, for instance:

Climate scientists do not talk to regular people as frequently as they talk to each other.

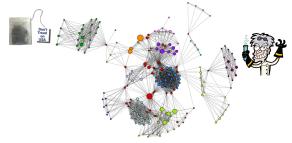
• The extreme case is when network is not strongly connected.

• The social networks are clustered, for instance: Climate scientists do not talk to regular people as frequently as they talk to each other.



• The extreme case is when network is not strongly connected.

• The social networks are clustered, for instance: Climate scientists do not talk to regular people as frequently as they talk to each other.



• The extreme case is when network is not strongly connected.

- Social network can be partitioned into minimal closed groups and agents that belong to no closed minimal group.
- The evolution of beliefs in each "island" is independent of the rest of network.
- Each minimal closed group is strongly connected.
- Beliefs of agents not belonging to groups will be a convex combination of beliefs of agents in minimal closed groups.

• Assume that agents prior beliefs are stochastic.

Theorem

For almost all prior beliefs and \mathbb{P} -almost all observation sequences:

(a) In each island and for any $\theta \neq \theta^*$, there exist an agent i with $a_{ii} > 0$ who can distinguish θ from θ^* .

$\$

(b) All agents will asymptotically learn the true state.

- If (b) fails, agents in that island learn with probability zero.
- Agents in different islands will learn with different rates.