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Motivation

Individuals form opinions about social, economic, and political
issues

These opinions influence their decisions when faced with
choices:

Choice of agricultural products.
Buy Mac or PC?
Smoke or not to smoke?
Vote Democrat or Republican?

What is the role of social networks in forming opinions?
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Näıve Opinion Dynamics Models

How do agents form subjective opinions and how these
opinions are diffused in social networks? e.g., fashion trends,
consumption tastes, ...

In most cases, there is no underlying “true state”.

In some scenarios there is a true state that can be identified
through observations, e.g., climate change.

Is it “man-made“ or “the wavy arm thing”?
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Problem Description

Under what assumptions can we be sure that the agents can

learn the true state of the world?

How can this be implemented tractably?

Rapidly growing interest in the topic in Economics and Game

Theory literature: Ellison & Fudenberg ’93, ’95, Smith &

Sorensen ’98, Banerjee ’98, Acemoglu et al. 2008, Bala &

Goyal ’ 98, 2001, DeMarzo et al. 2003, Gale & Kariv ’2003,

and many others

Also studied in the context of estimation and detection,

Tsitsiklis ’85-’95, Borkar & Varaiya ’78
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Bayesian Learning (Blackwell and Dubins ’62)

Given outcome of an i.i.d. coin toss process, what can one learn?

H T H H H T H T T H H T T T T H T ...

The next toss has roughly 50% chance of being H.
−→ Week merging

Q: Can two coins by distinguished by observing coin toss
outcomes?
A: Only if P(H|Coin 1) �= P(H|Coin 2).

−→ Observational distinguishability

Q: How many observations we need to distinguish them?
A: Depends on Kullback-Leibler divergence of conditional
distributions.
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Rate of Bayesian Learning

DKL(P1�P2)
def
=

�
log

P1(x)

P2(x)
dP1(x) ≥ 0 & =0 iff P1 = P2 a.s.

Lemma (Chernoff-Stein)

The probability of error goes to zero exponentially fast.

lim sup
t→∞

1

t
log|e| ≤ −DKL(P(·|Coin 1)�P(·|Coin 2)).
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Problem Description

Agents repeatedly communicate with their neighbors in a
social network, e.g., colleagues, friends,... In a contact agents
average their beliefs.

Sometimes, some agents make private observations and
incorporate the observations in their beliefs in a Bayesian way.

What is the outcome of this process?
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Borkar and Varaiya’78 



The Model

Assumptions:

At each time period some agents receive signals and

incorporate them in their beliefs.

Then any agent averages her belief with those of her

neighbors.

Observations are i.i.d.
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Notation

Θ: the finite set of possible states of the world

θ∗: true state of the world

µθ
i ,t : beliefs of the agents

mi ,t(si ): agent i ’s forecast at time t that signal si will be
observed next

Si : agent i ’s signal space

Signals are generated according �(·| θ∗).
�i (·| θ∗): the ith marginal of �(·| θ∗)
Θ̄i = {θ : �i (·|θ) = �i (·|θ∗)}: the set of signals that are
observationally equivalent to θ∗ from the point of view of i
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Notation, cont’d

P = �(·| θ∗)N: the product measure

(Ω,F ,P): the probability triple

Ft : the filtration generated by observations to time t

ω ∈ Ω: the infinite sequence of signals

Network is represented by a weighted directed graph.

aij : the weight i assigns to the belief of j

A = [aij ]: the weighted graph matrix

Ni : neighbors of agent i

aii : self reliance of agent i
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Model, cont’d

Agent updates her belief to the convex combination of her
Bayesian posterior and her neighbors’ beliefs:

µθ
i ,t+1 = aiiµ

θ
i ,t
�i (ωi ,t+1| θ)
mi ,t(ωi ,t+1)

+
�

j∈Ni

aijµ
θ
j ,t ,

where ωi ,t is observation of agent i at time t.

mi ,t(·) is the one step forecast of agent i defined as:

mi ,t(si ) =
�

θ∈Θ
�i (si | θ)µθ

i ,t .
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Weak Social Learning

Theorem (Jadbabaie, Sandroni, Tahbaz Salehi 2010)

Assume:

(a) The social network is strongly connected.

(b) There exists an agent with positive prior belief on the true

parameter θ∗.

Then agents with positive self-reliance will eventually forecast

immediate future correctly.

Sketch of proof

v
Tµt(θ∗) is a bounded submartingale that converges.

v
T logµt(θ∗) is a bounded submartingale that converges.

The submartingale increments go to zero P-almost surely.
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Previous Result

Theorem

Assume:

(a) The social network is strongly connected.

(b) All agents have strictly positive self-reliances.

(c) There exists an agent with positive prior belief on the true

parameter θ∗.

(d) There is no θ that is observationally equivalent to θ∗ from the

point of view of all agents.

Then all the agents learn the true state of the world with

P-probability one.
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Sketch of Proof (1)

Look at the k step forecast of the agent:

mi ,t(si ,1, si ,2, . . . , si ,k) =
�

θ∈Θ
µθ
i ,t�i (si ,1, si ,2, . . . , si ,k | θ),

where
�i (si ,1, si ,2, . . . , si ,k | θ) = �i (si ,1| θ)�i (si ,2| θ) . . . �i (si ,k | θ).
Asymptotically P-almost surely the k step forecast
decomposes into products of k one step forecasts, i.e.

mi ,t(si ,1, si ,2, . . . , si ,k)
a.a.s.
= mi ,t(si ,1)mi ,t+1(si ,2) . . .mi ,t+k(si ,k)

a.a.s.
= �i (si ,1, si ,2, . . . , si ,k | θ∗).
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Sketch of Proof (2)

Lemma

Asymptotically P-almost surely, the dynamic of opinions follow

consensus update in expectation, i.e.

E(µt+1(θ)|Ft)
a.a.s.
= Aµt(θ).

Lemma

Asymptotically P-almost surely, the k step forecast decomposes as

mi ,t(ωi ,t+1, si ,2, . . . , si ,k)
a.a.s.
= mi ,t(ωi ,t+1)mi ,t(si ,2, . . . , si ,k).

Proof: Induction on k .
Claim

The result is also true for arbitrary si ,1 ∈ Si . This is intuitive because
of independence.
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Sketch of Proof (3)

Lemma

If the true state is distinguishable, there exists a finite number k̂i

and signals ŝi ,1, ŝi ,2, . . . , ŝi ,k̂i such that

�i (ŝi ,1, ŝi ,2, . . . , ŝi ,k̂i | θ)
�i (ŝi ,1, ŝi ,2, . . . , ŝi ,k̂i | θ

∗)
≤ δi < 1 ∀θ /∈ Θ̄i ,

for some δi ≥ 0.

Claim

The signal sequence in which si appears with frequency �i (si |θ∗) has
this property.

Proof: Maximize over all the probability measures over Si .
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Sketch of Proof (4)

mi ,t(si ,1, · · · , si ,k) → �i (si ,1, · · · , si ,k | θ∗) with P-probability
one for any sequence of finite length.

Use the seqeunce in the previous Lemma.

Therefore,

�

θ

µθ
i ,t

�i (ŝi ,1, . . . , ŝi ,k̂i | θ)
�i (ŝi ,1, . . . , ŝi ,k̂i | θ

∗)
− 1 −→ 0

�

θ/∈Θ̄i

µθ
i ,t

�i (ŝi ,1, . . . , ŝi ,k̂i | θ)
�i (ŝi ,1, . . . , ŝi ,k̂i | θ

∗)
+

�

θ∈Θ̄i

µθ
i ,t − 1 −→ 0.

And,
(1− δi )

�

θ/∈Θ̄i

µθ
i ,t −→ 0.
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New Result

Theorem

Assume:

(a) The social network is strongly connected.

(b) There exists an agent with positive prior belief on the true

parameter θ∗.

(c) For any θ �= θ∗, there exist an agent with positive self-reliance

who can distinguish θ from θ∗.

Then all the agents learn the true state of the world with

P-probability one.
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Rate of Learning

Theorem

With the same assumptions convergence of µ̄t(θ) to zero is

exponential, i.e., for all � > 0 and in a set of P-probability one,

λ�
1 + � ≤ lim sup

t→∞

1

t
log �µ̄t� ≤ λ1 + �,

where λ1 < 0 is the top Lyapunov exponent of the linearized

system and λ�
1 < 0

µ̄i ,t(θ) is the restriction of µθ
i ,t to Θ \ Θ̄, where

Θ̄ = Θ̄1 ∩ · · · ∩ Θ̄n.
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Proof Outline

Look at µ̄t as the trajectory of a Random Dynamical System

(RDS):
µ̄t+1 = ϕt(ω; µ̄t).

Linearize the dynamics of µ̄i ,t(θ) at the origin to get zi ,t(θ):

ϕt(ω; x) = Mt(ω)x + Ft(ω; x),

zt+1 = Mt(ω)zt .

A martingale argument shows that zt → 0 for all initial
conditions. Thus, λ1 < 0.

Therefore, the nonlinear RDS is exponentially stable in a
neighborhood of the origin.
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Bounds on the Rate of Learning

Theorem

(a)

λ�
1 ≥ −max

θ/∈Θ̄

�

i∈N
viaiiDKL(�i (·| θ∗)��i (·| θ)).

(b) For small distinguishability of the true state,

λ1 ≤ −min
θ/∈Θ̄

�

i∈N
viaiiDKL(�i (·| θ∗)��i (·| θ)),

where vi is the eigenvector centrality of agent i .

Upper bound is found using an upper bound by Gharavi and
Anantharam (2005) on the top Lyapunov exponent (TLE).
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Observations About the Rate

The bounds can be made arbitrarily tight when there are only
two states.

The rate is always smaller than that of an “ideal” observer
with access to all observations.

Learning is faster when central (influential) agents receive
better signals.

While in some large societies rate goes to zero, in others it is
bounded below.
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Upper Bound on TLE (Gharavi, Anantharam ’05)

M
k : the kth possible realization of Mt(ω)

pk : the probability of Mk being realized

H(p): the entropy of p

S = {1, . . . , |S |}: an enumeration of possible signal profiles

M: set of probability distributions over (N × S)× (N × S)
H(η): entropy of η ∈ M
F (η): defined for η ∈ M as

F (η) =
�

i ,j∈N
k,l∈S

ηk,li ,j logM
k
j ,i .
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Upper Bound on TLE (Gharavi, Anantharam ’05),

cont’d

An upper bound for the top Lyapunov exponent of a
Markovian product of nonnegative matrices using Markovian
type counting arguments.

The bound is expressed as the maximum of a nonlinear
concave function over a finite-dimensional convex polytope of
probability distributions.

λ̂1 = max
η∈M

H(η) + F (η)− H(p)

subject to ηk,l∗,∗ = pkpl

ηk,∗i ,∗ = η∗,k∗,i

ηk,li ,j = 0 if M
k
j ,i = 0.
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Clustered Networks

The social networks are clustered, for instance:
Climate scientists do not talk to regular people as frequently
as they talk to each other.

The extreme case is when network is not strongly connected.

Ali Jadbabaie, Pooya Molavi, Victor Preciado Social Learning and Information Dissemination in Complex Networks



Clustered Networks

The social networks are clustered, for instance:
Climate scientists do not talk to regular people as frequently
as they talk to each other.

The extreme case is when network is not strongly connected.

Ali Jadbabaie, Pooya Molavi, Victor Preciado Social Learning and Information Dissemination in Complex Networks



Clustered Networks

The social networks are clustered, for instance:
Climate scientists do not talk to regular people as frequently
as they talk to each other.

The extreme case is when network is not strongly connected.

Ali Jadbabaie, Pooya Molavi, Victor Preciado Social Learning and Information Dissemination in Complex Networks



Learning in Non-Strongly-Connected Networks

Social network can be partitioned into minimal closed groups
and agents that belong to no closed minimal group.

The evolution of beliefs in each “island” is independent of the
rest of network.

Each minimal closed group is strongly connected.

Beliefs of agents not belonging to groups will be a convex
combination of beliefs of agents in minimal closed groups.
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Learning in Non-Strongly-Connected Networks, cont’d

Assume that agents prior beliefs are stochastic.

Theorem

For almost all prior beliefs and P-almost all observation sequences:

(a) In each island and for any θ �= θ∗, there exist an agent i with aii > 0
who can distinguish θ from θ∗.

�

(b) All agents will asymptotically learn the true state.

If (b) fails, agents in that island learn with probability zero.

Agents in different islands will learn with different rates.
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