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Understanding Large-Scale Networks

» Hard to visualize due to scale

» Unclear what is essential and what is
not for overall performance, reliability
and security

» Much of the existing work on “complex
networks” focuses on local parameters,
degree distribution, clustering
coefficients, etc.

- Need more fundamental ways to
“summarize” critical network
information

» A promising direction is to look at key
geometric characteristics: dimension
and curvature

2 Oct. 2011

Rocketfuel dataset 7018
10152 nodes, 28638 links, diameter 12
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Dimension -- Degrees of Freedom




Dimension

Dimension of a Lattice & Average Shortest Path Lengths

« How fast does a “ball” grow in a lattice?

Circumference of 1-hop 2-hops 3-hops 4-hops
Configuration away away away away
(dimension D, degree d)
Square (D=2,d=4) 4=4*1" 8=4*21 12=4*3" 16=4*4"
Hexagon (D=2,d=3) 3=3*11 6=3*21 9=3*31 12=3*4"
Triangle (D=2,d=6) 6=6*1" 12=6*21 18=6*3" 24=6*4"
General (D,d) d*1(@-1) d*2(®@-1) d*3@-1) d*4(®-1)

In a Euclidean grid in dimension D: (a) Volume within h
hops scales like h® & (b) average length of a shortest

path <h> = (D/D+1)(DN/d)"® = O(N"/?)
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Dimension

Dimension of a Network & Its Average Shortest Path Length

Measure the number of neighbors of a node X h hops
away. How does this number scale with h? If roughly
like h4 then we say 4 is the dimension of the graph in

the neighborhood of X.

Node 1-hop 2-hops 3-hops 4-hops
away away away away
J (NSF) 3 6
E (NSF) 2 5 2
B (NSF) 5 4
A (lattice) 3 3 2
B (lattice) 3 3 2

v (r) ~rP => log(v(r)) ~ D*log(r)
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@ Start node
1 hop away
® 2 hops away
® 3 hops away
4 hops away

Dsmall-graph =1.7
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Dimension

Data Source - Rocketfuel (Washington U, NSF 2002-05)

Look at scaling of the average
shortest path length <h>

In 2-dim grid, <h> ~/N (or ~N?/P'in
D-dimensional grid)

«Look at “Rocketfuel” data,
[Washington University researchers’

detailed connectivity data from
various ISPs 2002-2003]

« <h> does not scale like /N or N1/D
but are more like log(N) -- “Small
World” like

=> RF networks do not appear to
be grid-like (or flat) nor do they
exhibit characteristics of finite
dimensions

6 Oct. 2011
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Network Network Size Average
ID Name #node - Shortest
#links Path Length
1221 Telstra 2998 - 7612 5.53
(Australia)
1239 Sprintlink 8341 - 28050 5.18
(US)
1755 EBONE (US) 605 - 2070 6.0
2914 Verio 3045 - 10726 6.0
(US)
3257 Tiscali (EU) 855 - 2346 5.3
3356 Level 3 3447 - 18780 5.0
(US)
3967 Exodus (US) 895 - 4140 5.9
4755 VSNL (India) 121 - 456 3.2
6461 Abovenet (US) | 2720 - 7648 5.7
7018 AT&T 10152 - 28638 6.9
(US)
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Curvature -- Deviation from the Flat
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Curvature

Basic Geometry: Vertex Curvature of Polyhedra

A vertex has “angle defect” when

<IN
k(vy=2r— Y a,>0
ve face f

-- positive curvature or “spherical”

<

A vertex has “angle excess” when

k(vy=2r— Y a,<0
ve face f
--negative curvature or “hyperbolic”

-By Descartes’ theorem for polyhedra

D k() =2my(P)

veP

7

9

where y(P) is the Euler characteristic of the polyhedron (typically equal to
V-E+F=2)
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Curvature
Combinatorial Vertex Curvature for Planar Graphs

One could imitate the previous definition to define a
combinatorial angular defect/excess at vertices of a
planar graph (net of 2x). E.g.,

1,2 r 1.3 T T T

k(W) =2 —(=*Z21+ =+ —*Z21+ =+ =+
2 4 3 25 3 3 3

In effect, assume each face is a regular n-gon, compute /(G)=2 if the exterior is
the facial angles, add up and subtract from 2z counted

. .y =1 otherwise
[Higuchi’01]

k(v) = 27[—2% 2”(1}_ 2) _ 2n(1—@+2%)

vef

Gauss-Bonnet theorem (extension of Descartes’) then
states

Z k(v) =27y (G)=27n(2-0) The “exterior” face

veG

9 Oct. 2011
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Curvature
Non-Planar Graphs Always Minimally Embed on Surfaces

What can be said about non-planar graphs? Use the fact that all finite graphs are
locally planar.

[Ringel-Youngs ’'68] (“All graphs with N>3 nodes are locally 2-dimensional.”) For
N>3, any G=(N,L) can be embedded in T¢, a torus with g holes, where

g<[(N=3)(N-4)/12]
The minimal ¢ is called the genus of the graph G.

Ks
S
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Curvature
Non-Planar Graphs: Combinatorial Curvature

But there is more that we need:

[Edmonds-Heffter? see Mohar-Thomassen and others]. The above embedding
can always be done “strongly”, i.e., where the resulting embedding on T¢ has
faces that are 2-cells (equivalent to disks).

Now with well-defined faces, the previous
definition of vertex curvature can be reused:

EPSENACINE <0 S
k(v)=2x(1 > +;f)

Gauss-Bonnet then states: ﬁé}é;ﬁj}{;ﬁ /3 o \C E / b
D k(v)=27x(G)=27(2-2g)

veG B, C, D and E are vertices
of the one octagonal face.

A
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Curvature
Summary (So Far)

[Exercise] What is the genus of K,? Identify all faces of the strong minimal embedding of K,on T'.

Compute the curvature at each vertex. Verify that y(K,)=2-2g.

The Euler Characteristic of a graph is an intrinsic invariant that
determines its total (combinatorial) curvature*. We say a graph is

“flat” when y(G)=0

“spherical” when % (G)>0

“hyperbolic” when % (G)<0

Note. It is not easy to compute y(G) for large scale networks!

* There is also a similar concept of “discrete curvature” for graphs that uses actual edge lengths and

angles. It results in the same y(G).

12 Oct. 2011
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Dimension and Curvature

So far:

Managed to define (relatively) satisfactory notions of
dimension and curvature for networks but

= dimension does not appear to be finite

= curvature does not appear to be computable!

Need something better to work with!

Possible alternative: Consider metric structure of networks

13 Oct. 2011
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Other Locally 2-Dimensional Models:
The Poincaré Disk H?

Consider the unit disk {x € R*;

x‘ < 1} with length metric given by

. e
S 2
-

the hyperbolic metric.

A few geodesics

Advantages

«In the small scale it is 2-dimensional, but has much slower scaling of
geodesics (shortest paths) than /N

«Has meaningful small-scale and large-scale curvatures

Relationship to graphs? The Poincaré disk comes with numerous natural
“scaffoldings” or “tilings”.

14 Oct. 2011
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Scaffoldings of H?: Hyperbolic Regular Graphs

Consider X, _ tilings (isometries) of H?, that at each vertex consist of
g regular p-gons for integers p & g with (p-2)(g-2)>4 (flat with
equality)

Examples:

Xs
Note. Since networks of interest to us are typically finite, we’ll

consider truncations of X, ., the part within a (large enough)
radius r from the center. Call this TX, .

15 Oct. 2011
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Some Key Properties of X,

1. Negative local curvature. The local
combinatorial curvature at each node of
X, o is negative

PR U A SO Y el Ot [C B I
2 p 2p

1 1 1
orx, =2mg(—+———)<0

P q 2
2 . Exponential growth. Number of nodes
within a ball of radius r is proportional to A"
for some A= A4(p,q) > 1 (e.g., for X;,, A= 4,
the golden ratio) or equivalently

2’. Logarithmic scaling of geodesics. For ( a
finite truncation of) X, . with N nodes, the
average geodesic (shortest path length)
scales like O(log(N))

16 Oct. 2011
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Curvature in the Large: Geodesic Metric Spaces

«Computation of total curvature of non-flat networks with A
varying nodal degrees via 2...o%. does not appear to be
possible/easy nor does it provide information about the large-

scale properties of networks

A more direct definition of (negative) curvature in the large g
is the thin-triangle condition for a geodesic metric space (or a
CAT(-x) space):

[M. Gromov’s Thin Triangle Condition for a hyperbolic
geodesic metric space] There is a (minimal) value 6>0 such
that for any three nodes of the graph connected to each other

by geodesics, each geodesic is within the 5-neighborhood of the
union of the other two.

Example. For H?, 6= n(/2 +1). [Sketch. Largest inscribed circle must be in ‘
largest area triangle, Area,(ABC) = n-(a+p+y), maximized to = when a, 3, x=0 or
when A, B, & C are on the boundary.] B C

17 Oct. 2011
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What Can We Say About Communication Networks?
Extracted topologies from RF of 10 global IP networks

Communication networks
are (geodesic) metric
spaces via reasonable
link metrics (e.g., the
hop metric)

Is there evidence for
negative curvature in
real networks?

We consider 10 Rocketfuel
networks and some
prototypically flat or
curved famous synthetic
networks to test this
hypothesis

18 Oct. 2011
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Network 1D Network Name Number of nodes | Number of links | Diameter
1221 Telstra (Aust.) 2008 3806 12
1239 Sprintlink (US) 8341 14025 13
1755 EBONE (US) 605 1035 13
2914 Verio (US) 3045 12291 13
3257 Tiscali (EU) 855 1173 14
3356 Level 3 (US) 3447 9390 11
3967 Exodus (US) 805 2070 13
4755 VSNL (India) 121 228 6
6461 Abovenet (US) 2720 3824 12
7018 AT&T (US) 10152 14319 12
Hyperholie 3-7 grid X4 7, synthetic 4264 7511 14
Barabasi-Albert (B-A), synthetic 10000 19997 9
Watts-Strogatz | (W-S), synthetic(p=0.2) 80x80 13289 20
Triangular lattice synthetic 469 1260 24
Square lattice synthetic 80x80 12640 158
Erdos-Renyi (E-R), synthetic 7992 20132 30

In RF data, a node is a unique IP address and
a link is a (logical) connection between a pair
of IP addresses enabled by routers, physical

All Rights Reserved © Alcatel-Lucent 2010, #####
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Rocketfuel IP Networks

1221 {Telstra . 1239/Sprintlink

N\

74+ 1755/Ebone 2914/

i g

Verio
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Some “Famous” Synthetic Networks: E-R, W-S, B-A

v

W-S: Grid with small (1-5%)
additional random links

B-A: Start with some nodes
and add nodes sequentially
and at each iteration join
new node to existing node i
with probability
= d(i)/zd(i
G(N,p) random graph Tlr:en I(D()kf ,,( &-3

p<1/N, GC~ O(In(N))
p=d/N, GC~O(N) for d>1
p~In(N)/N, G(N,p) a.s. connected

20 Oct. 2011
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Experiments and Methodology

We ran experiments on all Rocketfuel networks plus a few
prototypical flat/curved networks to test our key hypothesis:

1. Dimension. “Growth test” - Polynomial or exponential?

Consider the volume V(r) as a function of radius r for arbitrary
centers

[In flat graphs volume growth is typically polynomial in radius r]

2. Curvature. “Triangle test” - Are triangles are universally
o-thin

Randomly selected 32M, 16M, 1.6M triangles for networks with
more than 1K nodes and exhaustively for the remainder

C

(smallest side, radius of

For each triangle noted shortest side L and computed the 6 B” inscribed circle)=(AB, 8)

Counted number of such triangles, indexed by dand L

[In flat graphs 6 grows without bound as the size of the smallest
side increases]

We conduct “growth” and “triangle” tests

21 Oct. 2011
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1. Growth Charts

12000 . , e
1239
=
10000 - / o1 _—
Recall that: gﬁg
Euclidean growth 8000 - / 7018 e
V(r) = rP '
< 6000 -

then dimension is >
“D”

Exponential

growth V(r) = 6"

then dimension is
“infinity”

4000

2000

22 Oct. 2011
I. Saniee

Volume (number of points within distance r) as a function of radius r
from a “center” of the graph. Flattening of curves for larger r is due
to boundary effects / finite size of network.
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2. Triangle Test - Rocketfuel 7018 & Triangular Grid

o8 0.5
a 07
0B
05
04
03
02
01

(a) Probability P, (8) for randomly chosen triangles whose shortest side is L to have a given & for the network 7018(AT&T
network) which has 10152 nodes and 14319 bi-directional links and diameter 12. The quantities & and L are
restricted to integers, and the smooth plot is by interpolation.

(b) Similar to (a), for a (flat) triangular lattice with 469 nodes and 1260 links. (The smaller number of nodes is sufficient
for comparing with (a) since the range for L is large due to the absence of the small world effect.)

23 Oct. 2011
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Summary of Triangle Tests for Rocketfuel Networks

5 T T T T L |
1221 @
1239 ..-' .
1755 @ P Bt
4l 2914 e o |
3257 B g FEE B
3356 Rl B -
3967 - © ) -~ B-A 4
6461 - a r.: : W-S (2d) -m
3L 7018 a A Triangular —-m-- -
_ o N = Square W
L o ._,.
2 o .
/o A @
g SO e —®
A& % P i“ 8 o
f"_'f-f- £y
;--#!
05 2 4 6 ] g 10 12 14 16

The average 6 as a function of L, E[5](L), for the 10 IP-layer networks studied here, and for the Barabasi-Albert
model with k = 2 and N = 10000 (11th curve) and the hyperbolic grid X3,7 (12th curve). On the other hand, a
Watts- Strogatz type model on a square lattice with N = 6400, open boundary conditions and 5% extra random
connections (13t curve) and two flat grids (the triangular lattice with diameter 29 and the square lattice with

diameter 154) are also shown.

24 Oct. 2011
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Where to go from here?

« OK, these ten RF datasets and some “well-known” large-scale
networks exhibit

Exponential growth / logarithmic scaling of shortest paths

Negative curvature in the large

So what?

Turns out negatively-curved networks exhibit specific features that
affect their critical properties -- Existence of a “core”:

O(N?) scaling of “load” (1 unit between all node pairs)
Non-random points of critical failures
Non-random points of security

25 Oct. 2011
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The Downside of Hyperbolicity: Quadratic Scaling of Load
(“Betweenness Centrality” and Existence of “Core”)

Rocketfuel @ .
16 L B-A @ o |
Xg‘}r [ ] .’
HYPERBOLIC - ' 5
Triangular m
I W-S m & |
14 P %
E-R m 8 am
ELCLIBEAN: <=
z o l!'.
512+ .. l )
¢«
10 — !’ ‘ == o &
o -;,f"
81 . T
I "/I I I I I
3 4 5 6 i 8 9 10
In(N)

Plot of the maximum load L (N) -- maximal number of geodesics intersecting at a node -- for each network in
the Rocketfuel database as a function of the number of nodes N in the network. Also shown are the maximum
load for the hyperbolic grid X3,7, the Barabasi-Albert model with k = 2, the Watts-Strogatz model and a
triangular lattice, for various N. The dashed lines have slopes of 2.0 and 1.5, corresponding to the hyperbolic
and Euclidean cases respectively.
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Metric Properties of RF and Other networks

» So far we worked with the unit-cost (hop) metric
 Can things change significantly through changes in the metric?

» Yes, and no! Look at toy networks again:

B B B
T, 3 with modified hyperbolic T, 3 with hyperbolic metric T, 3 with Euclidean metric
metric, load ~ O(N?) load ~ O(N?) load ~ O(N2)/logN

» Metrics can change things but evidently not by that much! (Have
some rigorous proofs that show by how much)

27 Oct. 2011
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Downside of Metric Changes:
Long Paths (w.r.t. the hop metric)

Even if we can eliminate O(N?) scaling of load via metric changes, we’re liable
to pay a (big) price:

[Bridson-Haefliger] Let X be a &-hyperbolic geodesic metric space. Let C be
a path in X with end points p and q. Let [p,q] be the geodesic path. Then for

every x on [p,q]
d(x,C)< 0 ||log, [(C) || +1

where [(C) is the length of C.

Open Question. Can paths with small deviations from geodesics decrease
“load” by much? [Unlikely in the mathematical sense but perhaps yes in
practice.]

28 Oct. 2011
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Key Claims:
Network Curvature -> Congestion, Reliability and Security

Numerical studies show that congestion is a property of the
large-scale geometry of the networks - large-scale
curvature -- and does not necessarily occur at vertices of
high degree but rather at the points of high cross-section
(the “core”)

At the “core” -- intersection of largest number of shortest

paths - load scales as quadratic as function of network size X,
Shortest path routings Nodal loads
need not be

= (Upside) Are very effective, as diameter is small compared  related to
to N, e.g., TTL of ~20 good enough for all of the Internet! nodal

degrees
= (Downside) Lead to

congestion

non-random failure can be severe

certain nodes are exhibit more significant security-wise

29 INRIA Workshop Oct. 2009
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A Taxonomy for Large-Scale Networks Based on the

Curvature Plot

1221 @ ‘
1239 u
1755 - @ g Rt
3 2 .z
e | R
3356 g om-.
367 o e | BA &
" m W-S (2d) —m
3 7018 -., . | Triangular —-m
- nn Square - m
= /' m E-R-m
w o A
2L o | L]
| A
e o is == e S BRY
1 AR =
e fn e e BiS e
IV::g;AI
0 I I |
0 2 4 6 8 10 12 14 16

Taxonomy of networks
based on large-scale
curvature characteristics of
networks as indicated by
measurements and
curvature plots

Can we formally prove
any of this?
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ryi" Watts—-Strogatz
8

Small World
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Taxonomy Verification. Easy Cases

Erdos—-Renyi
model
Watts-Strogatz
"Hairy" Watts—Strogatz model
model P S
Hyperbollc
"Halry" Euclidea Small World grids

grids ; Networks

Bethe
jattice v

Chains «/

Networks } -
- Euclidean grids
~ "Ha|ry" chains v

Power—law trees g
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Analytical Verification of CP Results

) ».q (resgular Euclidean grid, degrees=q, all faces p-gons, (p-2)(q-2)=4)

1. Local curvature. The local combinatorial curvature
at each interior node of X,  is negative

1_g+1}:2ﬂ{4—(p—2)(q—2)}:O

K, =2m{ 5
p

1’. Large-scale curvature. For E2, §=co . [Radius of
the largest inscribed circle increases without bound

as the perimeter of triangle / size of smallest side
increases. ]

s
odel
Hyperbolic

"Hain
gggggg

| .
"""""""""""""

Ey 4

2. Polynomial growth. Number of nodes within a ball of radius r is proportional

to r2

2’. Scaling of geodesics. For (a finite truncation of) £, , with N nodes, the

average geodesic (shortest path length) scales like O(/N)

32 Oct. 2011
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Analytical Verification of CP Results
2. X, ,(regular grid degrees=q, all faces p-gons, (p-2)(q-2)>4)

1. Local curvature. The local combinatorial curvature SRR i
at each interior node of X, . is negative — T ’ W£ - v
A= (p-2)g -2 e
Kv =2 ﬂ'{l _1 + 1} =2 { (p )(q )} <0 | (//T’// -
2 P 2p ‘\ PLDl;\\b:/ ] ‘////

1 1 1
orx, =2m(—+———-)<0
p q 2

1’. Large-scale curvature. For HZ, 6= In(/2 +1).
[Largest inscribed circle must be in largest area
triangle, Area,(ABC) = n-(a+B+y), maximized to =«
when a, B, x=0 or when A, B, & C are on the
boundary.]

2. Exponential growth. Number of nodes within a ball of radius r is
proportional to A" for some A= A(p,q) > 1 (e.g., for X;,, 1= ¢, the golden
ratio) or equivalently => “D” = oo

2’. Logarithmic scaling of geodesics. For (a finite truncation of) X, . with N
nodes, the average geodesic (shortest path length) scales like O(log(N))

33 Oct. 2011
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Analytical Verification of CP Results
3) E-R random graph (the sparse regime) G(N,p=d/N)

1. Negative local curvature. v | 15
Clearly E[q] = d g % /&/\ |
What are g (typical genus) and p ( typical size of faces) \}j/

of G(N,p=d/N) as N->co?

1’. Large-scale curvature. Curvature Plot:

Does § -> oo with L?

2. Exponential growth & Logarithmic scaling of
geodesics. It is well-known that diameter of
G(N,p=d/N) scales with log(N). So E-R trivially is
Small World

34 Oct. 2011
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The Case of G(N,p=d/N) -- 1

Some basic facts about G(N,d/N) with d fixed and > 1.
= Giant component size O(N)
= Average degree is d with Poisson distribution as N -> oo

= Locally tree-like -- thus likely hyperbolic but CP says differently!

-

G(1000; p=2/1000)

35 Oct. 2011
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The Case of G(N,p=d/N) -- 2

Theorem [NST]. Given any 6=0, for large enough n the probability of a 5-wide
triangle in G(n, d/n) has a strictly positive lower bound independent of n.

Sketch of Proof. 1) Estimate prob. of a given 65-long loop with a single
connection to the GC, 2) Derive lower bound on prob. of a 6-long loop, 3)
Show limit as n->co is positive. Let A=66 and pick any A points out of n.

Al

nin—1) (n—A)n—A—1)
(n — A) _pﬁ—l—l(l =y 2 - 2 =i+

1) g = Pr{(n,,n,,...,n,)}

36 Oct. 2011
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The Case of G(N,p=d/N) -- 3

Sketch of Proof. 2) Derive lower bound on prob. of a 65-long loop

2) Pr{(n,n,,...,n,) and some other A-wide loop} < (";*) 2

Thus

Pr {(n,,n,,...,n,) and no other A-wide loop } > q - (") @2

& therefore

Pr{ some 1-connected A-wide loop} > (z) q- (") q) > (R)a-((2)q)?

3) After some asymptotics and algebra, get

“The rest of thé glant
-tomponent of G(n,p).

1> 9 1A A+

n

> (g)@’

which establishes that K

lim_.,. Pr{1-connected A-wide loop} > 0.// e
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Same Result from Finite Size Scaling for G(N,p=d/N) -- 4

The actual density of 5-wide triangles is much higher than the lower bound
just proved. As the curvature plot shows that a significant fraction of
triangles in G(n,p=d/n) are 5-wide.

4 ; . . - - 4 - —
= S <le
35 ¢t ® goona HoEg! - 35¢t _n K
3 s R RHOHORR K K 1 3t '
r‘%'** = L%
2.5 | =i . = 25
— ® L BT < ®
= . g 2
1.5} ® 500 + { & 15¢ e 500
1000 X 1000
T 2000 * - TF x 2000
4000 | 4000 |
0.5} 8000 - 051 © 8000
0 - - - : - 0 : - - - -
0 5 10 15 20 25 30 0 5 10 15 20 25 30

l Scaled |

Finite-size Scaling. Curvature plot for random graphs with p = 2/n and various values of n: Only
the giant component of each graph was retained (and an average over many randomly chosen
triangles in 40 instantiations of the graph was performed). The right panel shows the same curves
as on the left, but shifted down and to the left by amounts proportional to (n(n/8000).
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SOME CHALLENGES: Impact of Curvature on CDNs, Cloud, etc.

« Analysis of larger datasets

Communication data
Biological data
Social network data

« Scaling of al$orithms for detection of hyperbolicity in much larger
graphs (of ~10° nodes)

« How does “negative curvature in the large” affect performance,
reliability and security?

Speed of information/virus spread - spectral properties of large graphs
Impact of correlated failures - Core versus non-core

« How does the O(N?) scaling of load change as a function of alternative
load profiles, e.g., for localization in CDNs?

« How O(N?) affect reliability and security? Does a core add or diminish
robustness / security?

« How to leverage hyperbolicity for data centers / cloud /
virtualization? Are there fundamental designs?

« How to leverage hyperbolicity for caching and CDNs? DHTSs?
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