What Have We Learned from Reverse-Engineering the Internet's Inter-domain Routing Protocol?

Timothy G. Griffin

Computer Laboratory University of Cambridge, UK timothy.griffin@cl.cam.ac.uk

Advanced Networks Colloquium ECE — University of Maryland 28 October, 2011

The Answer!

- Hitherto algebraic path problems have focused on global optimality: finding best paths over all possible paths.
- Another notion is local optimality : each node gets the best paths it can obtain given what is available from its neighbors (*routing in equilibrium*).
- The two notions coincide in the classical theory.

We have learned that in some cases ...

- Algebraic path problems admit unique local optima that are distinct from global optima.
- Local optima represent a more meaningful solution.
- We can find local optima in polynomial time.

taa (cl.	cam	l.ac.	uk)
.99 1	U 1.	ouin	uo.	uny

A (10) A (10)

Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +)$

The adjacency matrix

Shortest paths example, continued

Bold arrows indicate the shortest-path tree rooted at 1.

The routing matrix

		1	2	3	4	5			
	1	Γ0	2	1	5	4	1		
	2	2	0	3	7	4			
$\mathbf{A}^* =$	3	1	3	0	4	3			
	4	5	7	4	0	7			
	5	4	4	3	7	0			
Aatrix A * solves this global									

optimality problem:

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in P(i, j)} w(\boldsymbol{p}),$$

where P(i, j) is the set of all paths from *i* to *j*.

Widest paths example, $(\mathbb{N}^{\infty}, \max, \min)$

Bold arrows indicate the widest-path tree rooted at 1.

The routing matrix										
	1	2	3	4	5					
1	$\int \infty$	4	4	6	4	٦				
2	4	∞	5	4	4					
$\mathbf{A}^* = 3$	4	5	∞	4	4					
4	6	4	4	∞	4					
5	4	4	4	4	∞					
Matrix A* solves this global										
optimality problem:										

$$\mathbf{A}^*(i, j) = \max_{p \in P(i, j)} w(p),$$

where w(p) is now the minimal edge weight in p.

Fun example, $(2^{\{a, b, c\}}, \cup, \cap)$

We want a Matrix **A*** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcup_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where w(p) is now the intersection of all edge weights in p.

4 D K 4 B K 4 B K 4 B K

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that there is at least one path from *i* to *j* with *x* in every arc weight along the path.

ıg (cl.cam.ac.uk)		28-10-20)11	6 / 30	

Fun example, $(2^{\{a, b, c\}}, \cup, \cap)$

28-10-2011 7/30

- 4 ∃ →

Semirings

A few examples

name	S	\oplus ,	\otimes	ō	1	possible routing use
sp	\mathbb{N}^{∞}	min	+	∞	0	minimum-weight routing
bw	\mathbb{N}^{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2 ^{<i>W</i>}	\cup	\cap	{}	W	shared link attributes?
	2 ^{<i>W</i>}	\cap	U	W	{}	shared path attributes?

Path problems focus on global optimality

$$\mathbf{A}^*(i, j) = \bigoplus_{p \in P(i, j)} w(p)$$

Recommended Reading

MORGAN & CLAYPOOL PUBLISHERS

Path Problems in Networks

John Baras George Theodorakopoulos

tgg (cl.cam.ac.uk)

lessons

28-10-2011 9 / 30

What algebraic properties are needed for efficient computation of global optimality?

Distributivity
L.D :
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c),$$

R.D : $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c).$
What is this in sp = (\mathbb{N}^{∞} , min, +)?
L.DIST : $a + (b \min c) = (a + b) \min (a + c),$
R.DIST : $(a \min b) + c = (a + c) \min (b + c).$

But some realistic metrics are not distributive! What can we do?

tgg (cl.can	n.ac.uk)

Left-Local Optimality

Say that L is a left locally-optimal solution when

 $\mathsf{L} = (\mathsf{A} \otimes \mathsf{L}) \oplus \mathsf{I}.$

That is, for $i \neq j$ we have

$$\mathsf{L}(i, j) = \bigoplus_{q \in V} \mathsf{A}(i, q) \otimes \mathsf{L}(q, j)$$

- L(i, j) is the best possible value given the values L(q, j), for all out-neighbors q of source i.
- Rows L(*i*, _) represents out-trees from *i* (think Bellman-Ford).
- Columns L(_, *i*) represents **in-trees** to *i*.
- Works well with hop-by-hop forwarding from *i*.

Right-Local Optimality

Say that **R** is a right locally-optimal solution when

 $\mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}.$

That is, for $i \neq j$ we have

$$\mathbf{R}(i, j) = \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j)$$

- **R**(*i*, *j*) is the best possible value given the values **R**(*q*, *j*), for all in-neighbors *q* of destination *j*.
- Rows L(*i*, _) represents **out-trees** <u>from</u> *i* (think Dijkstra).
- Columns L(_, *i*) represents **in-trees** to *i*.
- Does not work well with hop-by-hop forwarding from *i*.

不同 トイモトイモ

With and Without Distributivity

With

For semirings, the three optimality problems are essentially the same — locally optimal solutions are globally optimal solutions.

 $\mathbf{A}^* = \mathbf{L} = \mathbf{R}$

Without

Suppose that we drop distributivity and A^* , L, R exist. It may be the case they they are all distinct.

Health warning : matrix multiplication over structures lacking distributivity is not associative!

taa (c	.cam.ac.uk)
.99 1		.oum.uo.ury

Example

(bandwidth, distance) with lexicographic order (bandwidth first).

		• •	ð	- E -)	•	≣ ▶	2	~~~~
tgg (cl.cam.ac.uk)					28-1	0-201 ⁻		14 / 30

Global optima

$$\mathbf{A}^* = \begin{smallmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & (\infty,0) & (5,1) & (0,\infty) & (0,\infty) & (0,\infty) \\ 0,\infty) & (\infty,0) & (0,\infty) & (0,\infty) & (0,\infty) \\ (5,2) & (5,3) & (\infty,0) & (5,1) & (5,2) \\ (10,6) & (5,2) & (5,2) & (\infty,0) & (10,1) \\ 5 & (10,5) & (5,4) & (5,1) & (5,2) & (\infty,0) \\ \end{smallmatrix} \right],$$

★ ≣ ▶ ≣ ৩৭৫
28-10-2011 15/30

ヘロト 人間 とくほとくほう

Left local optima

$$\begin{split} \textbf{L} &= \begin{smallmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & & & (\infty,0) & (5,1) & (0,\infty) & (0,\infty) & (0,\infty) \\ 2 & & & (0,\infty) & (\infty,0) & (0,\infty) & (0,\infty) & (0,\infty) \\ 3 & & & (\textbf{5},\textbf{7}) & (5,3) & (\infty,0) & (5,1) & (5,2) \\ 4 & & & (10,6) & (5,2) & (5,2) & (\infty,0) & (10,1) \\ 5 & & & (10,5) & (5,4) & (5,1) & (5,2) & (\infty,0) \\ \end{smallmatrix} \right], \end{split}$$

Entries marked in **bold** indicate those values which are not globally optimal.

• • • • • • • • • • • •

Right local optima

tgg (cl.cam.ac.uk)

 ▶ < ≣</th>
 > < <</th>
 > < </th>
 <</th>
 <

イロト イヨト イヨト イヨト

Left-locally optimal paths to node 2

taa	cl cam ac liki	
luu i	GLGannag.uk/	
-33 -		

э

• • • • • • • • • • • •

Right-locally optimal paths to node 2

э

Inter-domain routing in the Internet

The Border Gateway Protocol (BGP)

- In the distributed Bellman-Ford family.
- Hard-state (not refresh based).
- Complex policy and metrics.
- Primary requirement: connectivity should not violate the economic relationships between autonomous networks.
- At a very high-level, the metric combines economics and traffic engineering.
- This is implemented using a lexicographic product, where economics is most significant.

Simplified model (Gao and Rexford)

- **customer route** : from somebody paying you for transit services.
- provider route : from somebody you are paying for transit services.
- peer route : from a competitor.
 - If you are at top of food chain you are forced to do this.
 - Smaller networks do this to reduce their provider charges.
- customer < peer < provider</p>

Route visibility restriction

The primary source for violations of distributivity.

tgg (cl.cam.ac.uk)	28-10-2011	22 / 30

э

Bellman-Ford can compute left-local solutions

$$\begin{array}{rcl} \mathbf{A}^{[0]} &=& \mathbf{I} \\ \mathbf{A}^{[k+1]} &=& (\mathbf{A}\otimes\mathbf{A}^k)\oplus\mathbf{I}, \end{array}$$

- Bellman-ford algorithm must be modified to ensure only loop-free paths are inspected.
- $(S, \oplus, \overline{0})$ is a commutative, idempotent, and selective monoid,
- $(S, \otimes, \overline{1})$ is a monoid,
- $\overline{0}$ is the annihilator for \otimes ,
- $\overline{1}$ is the annihilator for \oplus ,
- Left strictly inflationarity, L.S.INF : $\forall a, b : a \neq \overline{0} \implies a < a \otimes b$
- Here $a \leq b \equiv a = a \oplus b$.

Convergence to a unique left-local solution is guaranteed. Currently no bound is known on the number of iterations required.

Of course BGP does not satisfy these conditions!

As a result ...

- Protocol will diverge when no solution exists.
- Protocol may diverge even when a solution exists.
- BGP Wedgies, RFC 4264.
 - Multiple stable states may exist.
 - No guarantee that each state implements intended policy.
 - Manual intervention required when system gets stuck in unintended local optima.
 - Debugging nearly impossible when policy is not shared between networks.

Recent observation : Dijkstra's algorithm can work for right-local optima.

- **Input** : adjacency matrix **A** and source vertex $i \in V$,
- **Output** : the *i*-th row of **R**, $\mathbf{R}(i, _)$.

```
begin
    S \leftarrow \{i\}
    \mathbf{R}(i, i) \leftarrow \overline{1}
    for each q \in V - \{i\} : \mathbf{R}(i, q) \leftarrow \mathbf{A}(i, q)
    while S \neq V
        begin
             find q \in V - S such that \mathbf{R}(i, q) is \leq_{\oplus}^{L} -minimal
             S \leftarrow S \cup \{q\}
             for each i \in V - S
                 \mathbf{R}(i, j) \leftarrow \mathbf{R}(i, j) \oplus (\mathbf{R}(i, q) \otimes \mathbf{A}(q, j))
        end
end
```

Assumptions on $(S, \oplus, \otimes, \overline{0}, \overline{1})$ that guarantee existence of right-local optima

- $(S, \oplus, \overline{0})$ is a commutative, idempotent, and selective monoid,
- $(S, \otimes, \overline{1})$ is a monoid,
- $\overline{0}$ is the annihilator for \otimes ,
- $\overline{1}$ is the annihilator for \oplus ,
- Right inflationarity, R.INF : $\forall a, b : a \le a \otimes b$

Here $a \leq b \equiv a = a \oplus b$.

Using a Link-State approach with hop-by-hop forwarding ...

Need left-local optima!

$$\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I} \qquad \Longleftrightarrow \qquad \mathbf{L}^T = (\mathbf{L}^T \hat{\otimes}^T \mathbf{A}^T) \oplus \mathbf{I}$$

where \otimes^{T} is matrix multiplication defined with as

$$\mathsf{a} \otimes^{\mathsf{T}} \mathsf{b} = \mathsf{b} \otimes \mathsf{a}$$

and we assume left-inflationarity holds, L.INF : $\forall a, b : a \leq b \otimes a$.

Each node would have to solve the entire "all pairs" problem.

taa ('cl	cam ac uk)
.99 1	, Oi	.oum.uo.ury

Functions on arcs

$(S, \oplus, F \subseteq S \rightarrow S, \overline{0})$

(S, ⊕, 0) is a commutative, idempotent, and selective monoid,
∀f ∈ F : f(0) = 0

• For local-optima need INF : $\forall a, f : a \leq f(a)$

Simplest model for interdomain routing

- 0 is for *downstream* routes (towards paying customers),
- 1 is for peer routes (towards competitor's customers),
- 2 is for upstream routes (towards charging providers)

	0	1	2		0	1	2	
а	0	1	2	m	2	1	2	
b	0	1	∞	n	2	1	∞	
С	0	2	2	0	2	2	2	
d	0	2	∞	р	2	2	∞	
е	0	∞	2	q	2	∞	2	
f	0	∞	∞	r	2	∞	∞	
g	1	1	2	S	∞	1	2	
h	1	1	∞	t	∞	1	∞	
i	1	2	2	u	∞	2	2	
j	1	2	∞	v	∞	2	∞	
k	1	∞	2	w	∞	∞	2	
1	1	∞	∞	X	∞	∞	∞	 < 글 > < 글

Conclusion

Take away message

If your algebraic model is not distributive, then ask yourself if a left- or right-local solution is reasonable. If so, use Dijkstra's algorithm (with care).

A few open problems

- How many Bellman iterations are needed to find L?
- Is there an equational axiomatization of local optimality? (For classical theory we have Kleene Algebras).
- Analytic model of dynamics of hard-state distributed Bellman-Ford.

< 回 > < 三 > < 三 >