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The Answer!

Hitherto algebraic path problems have focused on global
optimality: finding best paths over all possible paths.
Another notion is local optimality : each node gets the best paths
it can obtain given what is available from its neighbors (routing in
equilibrium).
The two notions coincide in the classical theory.

We have learned that in some cases ...
Algebraic path problems admit unique local optima that are
distinct from global optima.
Local optima represent a more meaningful solution.
We can find local optima in polynomial time.
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Shortest paths example, sp = (N∞, min, +)
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The adjacency matrix

A =



1 2 3 4 5

1 ∞ 2 1 6 ∞
2 2 ∞ 5 ∞ 4
3 1 5 ∞ 4 3
4 6 ∞ 4 ∞ ∞
5 ∞ 4 3 ∞ ∞
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Shortest paths example, continued
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Bold arrows indicate the
shortest-path tree rooted at 1.

The routing matrix

A∗ =



1 2 3 4 5

1 0 2 1 5 4
2 2 0 3 7 4
3 1 3 0 4 3
4 5 7 4 0 7
5 4 4 3 7 0


Matrix A∗ solves this global
optimality problem:

A∗(i , j) = min
p∈P(i, j)

w(p),

where P(i , j) is the set of all paths
from i to j .
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Widest paths example, (N∞, max, min)
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Bold arrows indicate the
widest-path tree rooted at 1.

The routing matrix

A∗ =



1 2 3 4 5

1 ∞ 4 4 6 4
2 4 ∞ 5 4 4
3 4 5 ∞ 4 4
4 6 4 4 ∞ 4
5 4 4 4 4 ∞


Matrix A∗ solves this global
optimality problem:

A∗(i , j) = max
p∈P(i, j)

w(p),

where w(p) is now the minimal
edge weight in p.
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Fun example, (2{a, b, c}, ∪, ∩)
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We want a Matrix A∗ to solve this
global optimality problem:

A∗(i , j) =
⋃

p∈P(i, j)

w(p),

where w(p) is now the intersection
of all edge weights in p.

For x ∈ {a, b, c}, interpret x ∈ A∗(i , j) to mean that there is at least
one path from i to j with x in every arc weight along the path.
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Fun example, (2{a, b, c}, ∪, ∩)

The matrix A∗

1 2 3 4 5

1 {a b c} {a b c} {a b c} {a b} {b c}
2 {a b c} {a b c} {a b c} {a b} {b c}
3 {a b c} {a b c} {a b c} {a b} {b c}
4 {a b} {a b} {a b} {a b c} {b}
5 {b c} {b c} {b c} {b} {a b c}
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Semirings

A few examples

name S ⊕, ⊗ 0 1 possible routing use

sp N∞ min + ∞ 0 minimum-weight routing
bw N∞ max min 0 ∞ greatest-capacity routing
rel [0, 1] max × 0 1 most-reliable routing
use {0, 1} max min 0 1 usable-path routing

2W ∪ ∩ {} W shared link attributes?
2W ∩ ∪ W {} shared path attributes?

Path problems focus on global optimality

A∗(i , j) =
⊕

p∈P(i, j)

w(p)
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Recommended Reading
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What algebraic properties are needed for efficient
computation of global optimality?

Distributivity

L.D : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c),
R.D : (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c).

What is this in sp = (N∞, min, +)?

L.DIST : a + (b min c) = (a + b) min (a + c),
R.DIST : (a min b) + c = (a + c) min (b + c).

But some realistic metrics are not distributive! What can we do?
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Left-Local Optimality

Say that L is a left locally-optimal solution when

L = (A⊗ L)⊕ I.

That is, for i 6= j we have

L(i , j) =
⊕
q∈V

A(i , q)⊗ L(q, j)

L(i , j) is the best possible value given the values L(q, j), for all
out-neighbors q of source i .
Rows L(i , _) represents out-trees from i (think Bellman-Ford).
Columns L(_, i) represents in-trees to i .
Works well with hop-by-hop forwarding from i .
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Right-Local Optimality

Say that R is a right locally-optimal solution when

R = (R⊗ A)⊕ I.

That is, for i 6= j we have

R(i , j) =
⊕
q∈V

R(i , q)⊗ A(q, j)

R(i , j) is the best possible value given the values R(q, j), for all
in-neighbors q of destination j .
Rows L(i , _) represents out-trees from i (think Dijkstra).
Columns L(_, i) represents in-trees to i .
Does not work well with hop-by-hop forwarding from i .
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With and Without Distributivity

With
For semirings, the three optimality problems are essentially the same
— locally optimal solutions are globally optimal solutions.

A∗ = L = R

Without
Suppose that we drop distributivity and A∗, L, R exist. It may be the
case they they are all distinct.

Health warning : matrix multiplication over structures lacking
distributivity is not associative!
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Example
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(bandwidth, distance) with lexicographic order (bandwidth first).
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Global optima

A∗ =



1 2 3 4 5

1 (∞,0) (5,1) (0,∞) (0,∞) (0,∞)
2 (0,∞) (∞,0) (0,∞) (0,∞) (0,∞)
3 (5,2) (5,3) (∞, 0) (5,1) (5,2)
4 (10,6) (5,2) (5,2) (∞,0) (10,1)
5 (10,5) (5,4) (5,1) (5,2) (∞,0)

,
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Left local optima

L =



1 2 3 4 5

1 (∞,0) (5,1) (0,∞) (0,∞) (0,∞)
2 (0,∞) (∞,0) (0,∞) (0,∞) (0,∞)
3 (5,7) (5,3) (∞,0) (5,1) (5,2)
4 (10,6) (5,2) (5,2) (∞,0) (10,1)
5 (10,5) (5,4) (5,1) (5,2) (∞,0)

,
Entries marked in bold indicate those values which are not globally
optimal.
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Right local optima

R =



1 2 3 4 5

1 (∞,0) (5,1) (0,∞) (0,∞) (0,∞)
2 (0,∞) (∞,0) (0,∞) (0,∞) (0,∞)
3 (5,2) (5,3) (∞, 0) (5, 1) (5,2)
4 (10,6) (5,6) (5,2) (∞,0) (10,1)
5 (10,5) (5,5) (5,1) (5,2) (∞,0)

,
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Left-locally optimal paths to node 2
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Right-locally optimal paths to node 2
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5→ 2

1,3,4→ 2

5→ 23→ 2

4→ 2

4→ 23→ 2
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Inter-domain routing in the Internet

The Border Gateway Protocol (BGP)
In the distributed Bellman-Ford family.
Hard-state (not refresh based).
Complex policy and metrics.
Primary requirement: connectivity should not violate the economic
relationships between autonomous networks.
At a very high-level, the metric combines economics and traffic
engineering.
This is implemented using a lexicographic product, where
economics is most significant.
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Simplified model (Gao and Rexford)

customer route : from somebody paying you for transit services.
provider route : from somebody you are paying for transit
services.
peer route : from a competitor.

I If you are at top of food chain you are forced to do this.
I Smaller networks do this to reduce their provider charges.

customer < peer < provider
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Route visibility restriction
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The primary source for violations of distributivity.
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Bellman-Ford can compute left-local solutions

A[0] = I
A[k+1] = (A⊗ Ak )⊕ I,

Bellman-ford algorithm must be modified to ensure only loop-free
paths are inspected.
(S, ⊕, 0) is a commutative, idempotent, and selective monoid,
(S, ⊗, 1) is a monoid,
0 is the annihilator for ⊗,
1 is the annihilator for ⊕,
Left strictly inflationarity, L.S.INF : ∀a,b : a 6= 0 =⇒ a < a⊗ b
Here a ≤ b ≡ a = a⊕ b.

Convergence to a unique left-local solution is guaranteed. Currently no
bound is known on the number of iterations required.
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Of course BGP does not satisfy these conditions!

As a result ...
Protocol will diverge when no solution exists.
Protocol may diverge even when a solution exists.
BGP Wedgies, RFC 4264.

I Multiple stable states may exist.
I No guarantee that each state implements intended policy.
I Manual intervention required when system gets stuck in unintended

local optima.
I Debugging nearly impossible when policy is not shared between

networks.
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Recent observation : Dijkstra’s algorithm can work for
right-local optima.

Input : adjacency matrix A and source vertex i ∈ V ,
Output : the i-th row of R, R(i , _).

begin
S ← {i}
R(i , i)← 1
for each q ∈ V − {i} : R(i , q)← A(i , q)
while S 6= V

begin
find q ∈ V − S such that R(i , q) is ≤L

⊕ -minimal
S ← S ∪ {q}
for each j ∈ V − S

R(i , j)← R(i , j)⊕ (R(i , q)⊗ A(q, j))
end

end
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Assumptions on (S, ⊕, ⊗, 0, 1) that guarantee
existence of right-local optima

(S, ⊕, 0) is a commutative, idempotent, and selective monoid,
(S, ⊗, 1) is a monoid,
0 is the annihilator for ⊗,
1 is the annihilator for ⊕,
Right inflationarity, R.INF : ∀a,b : a ≤ a⊗ b

Here a ≤ b ≡ a = a⊕ b.
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Using a Link-State approach with hop-by-hop
forwarding ...

Need left-local optima!

L = (A⊗ L)⊕ I ⇐⇒ LT = (LT ⊗̂T AT )⊕ I

where ⊗T is matrix multiplication defined with as

a⊗T b = b ⊗ a

and we assume left-inflationarity holds, L.INF : ∀a,b : a ≤ b ⊗ a.

Each node would have to solve the entire “all pairs” problem.
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Functions on arcs

(S, ⊕, F ⊆ S → S, 0)

(S, ⊕, 0) is a commutative, idempotent, and selective monoid,
∀f ∈ F : f (0) = 0
For local-optima need INF : ∀a, f : a ≤ f (a)
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Simplest model for interdomain routing
0 is for downstream routes (towards paying customers),
1 is for peer routes (towards competitor’s customers),
2 is for upstream routes (towards charging providers)

0 1 2 0 1 2
a 0 1 2 m 2 1 2
b 0 1 ∞ n 2 1 ∞
c 0 2 2 o 2 2 2
d 0 2 ∞ p 2 2 ∞
e 0 ∞ 2 q 2 ∞ 2
f 0 ∞ ∞ r 2 ∞ ∞
g 1 1 2 s ∞ 1 2
h 1 1 ∞ t ∞ 1 ∞
i 1 2 2 u ∞ 2 2
j 1 2 ∞ v ∞ 2 ∞
k 1 ∞ 2 w ∞ ∞ 2
l 1 ∞ ∞ x ∞ ∞ ∞
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Conclusion

Take away message
If your algebraic model is not distributive, then ask yourself if a left- or
right-local solution is reasonable. If so, use Dijkstra’s algorithm (with
care).

A few open problems
How many Bellman iterations are needed to find L?
Is there an equational axiomatization of local optimality? (For
classical theory we have Kleene Algebras).
Analytic model of dynamics of hard-state distributed Bellman-Ford.
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