

Logical Modeling for Engineering

Conrad Bock
U.S. National Institute of Standards
and Technology
November 28, 2011

Overview

- Quantative and logical Modeling
- Categories
 - As membership conditions
 - Terminology and notation
 - Kinds of conditions
 - Most common condition: Generalization
- Categories of categories
 - Subject-specific languages
- Categories of relations (and processes)
- Summary and References

Quantitative Modeling

- Quantitative modeling
 - Numerical formulas (equations)
 - Dynamic and stochastic simulations
- Used for:
 - Calculating or simulating numeric values and probabilities.
 - Deriving new numerical formulas.

Logical Modeling

- Logical modeling is about categorizing things and relations between things ...
 - This document is a requirement, this other one is a design, and the second satisfies the first.
- ... and keeping these categorizations consistent.
 - Requirements or designs are changed, does the satisfies relation still hold?
 - If not, what would make it hold again?

Categories = Conditions

- Things "fall into" categories.
- Categories have conditions for what can and cannot fall into the category.

Categories Specify Sets

- Which things fall into a category can change over time without changing the category (condition).
 - New things created, some things destroyed, conditions met or unmet over time.
 - Not true for set membership.

ThingsThatFloat

Categories Imply Existence

 Conditions might only be satisfied by things from the past, future, in simulation, or not at all.

Roman Cities

Existed in the past

Marketable Solar Cars

Might exist / in the future, or in simulation

Perpetual Motion Machines

Imaginary, or will never exist

Fixed and Changing Conditions

- When something does not fall into a category, but it should, you can:
 - Modify the thing
 - Modify the category's conditions

Conditions for "as-built" categories are modified if they are not satisfied by something they should be.

Terminology

- The term "categories" is just for explanation in this presentation.
- Other terms:
 - "Classes" in the Unified Modeling Language (UML) and Web Ontology Language (OWL).
 - -("Blocks") in the Systems Modeling Language (SysML), an extension of UML.
- Things falling into categories:
 - UML / SysML: "Instances" (of classes / blocks)
 - OWL: "Objects" and "Data" (interpretations of classes and datatypes)

Graphical Notation

UML & SysML:

SysML Block

(= UML Class with the Block

stereotype applied)

density(self) < density(water) ThingsThatFloat UML / SysML **UML Class** (or SysML Block without Constraint stereotype) density(self) < «block» density(water) ThingsThatFloat

SysML:

«block» ThingsThatFloat

constraints
density(self) < density(water)</pre>

SysML compartment notation for UML / SysML Constraint

"self" variable
= any one thing
falling into the
category

Note: Naming conventions are usually singular, easily confused with instances.

Diagrams

 UML Classes and SysML Blocks appear in particular kinds of diagrams.

UML Package Diagrams

SysML Block Definition Diagrams

"In" Conditions

- Can only determine when something falls into a category, not out of it.
 - Any four-wheeled thing over 750kg that carries people using its own power over 100kw is a car.
 - If something meets the condition it is a car.
 - Otherwise, it might be a car or not (maybe) some cars are three-wheeled).
- Purely sufficient conditions do not interact.
 - Each condition is sufficient separately. 12

"Out" Conditions

- Can only determine when something falls out of a category, not in it.
 - Cars are vehicles.
 - If condition is not met (something is not a vehicle), then it is not a car.
 - Otherwise, it might or might not be a car (some vehicles might not be cars).
- Purely necessary conditions do not interact.
 - Each condition negates separately.
- Combining necessary and sufficient can be contradictory.

In vs Out in English

In English:

- Sufficient (in) conditions usually have the category at the end
- Necessary (out) conditions usually have the category at the beginning
- Any four-wheeled thing over 750kg that carries people with it own power over 100kw is a <u>car</u>. (sufficient / in)
- Cars are vehicles. (necessary / out)
- Sometimes sufficient conditions are incorrectly read as also necessary.

In & Out Conditions

- Conditions can be both sufficient (in) and necessary (out).
 - Things must meet the condition to be in the category, otherwise they are out, no inbetween.

Mathematical set descriptors:

- { x : density(x) < density(water) }</pre>
- Things less dense than water are in the category (sufficient / in).
- Things more dense or the same density are not in the category (necessary / out).

The Most Common Condition

- Things falling into one category always fall into another.
 - Example: Cars are vehicles.
 - Cars satisfy the conditions of Vehicles.
 - A necessary condition for Cars, a sufficient condition for Vehicles.

Terminology and Notation

- The previous condition is so common it is given a name and notation in most languages.
- "Generalization" in UML and SysML.
- "Subclass" in OWL.

Multiple Generalization

Useful for reusing and combining categories.

Multiple Generalization Gotchas

 Subcategories might not be complete.

 Subcategories might partially overlap.

 Subcategories might not be an intersection.

Categories in Product Lifecycles

- In the ideal world:
 - Cars as built and maintained are also cars as designed.
 - Cars as designed are also cars meeting requirements.

Analysis / Reasoning

In the real world sometimes:

Cars are not built or maintained to designs.
 Cars As Required

Cars as

Maintained

Cars as Designed

Cars as

Built`

 Analyzers and reasoners help detect the possibility of these cases earlier.

Categories of Categories

Distinguish categories according to purpose.

Categories Categories of Categories Requirement Design **Categories Categories** Design Requirement Cars As Cars As Required **Designed Categories Categories Planes As** Trucks As (conditions (conditions are **Planes As** Trucks As **Designed** Required Required **Designed** are designs) requirements)

Subject-Specific Languages

 Use terminology of subject matter experts, rather than logic / ontology.

Terminology

- The terms "categories of categories" and "subject-specific languages" are just for explanation in this presentation.
- Other terms:
 - "Metaclasses" in UML/SysML (part of "metamodeling").
 - "Domain-specific languages" (common in UML community).
 - Not mentioned much in the OWL community, but it is partially supported with "punning".

Relations

- Relations between actual things or categories:
 - Cars have engines.
 - Designs meet requirements.

Terminology

- The term "relations" is just for explanation in this presentation.
- Other terms:
 - "Properties" in UML, SysML, and OWL.
 "Associations" in UML
- Things falling into relation categories:
 - UML / SysML: "Links" (of associations). No term for properties, but properties have "values".
 - OWL: Elements of set cartesian (cross) products ("pairs", "tuples").

Graphical Notation

UML & SysML:

SysML applies the «block» stereotype to UML Classes.

Generalization of Relations

- Links falling into one relation category always fall into another.
 - Example: Car-engine links are physical containment links.

Terminology and Notation

- The term "generalization of relations" is just for explanation in this presentation.
- Other terms:

Property Subsetting

"Property Subsetting" or "Association Generalization" in UML and SysML

Physical

Things

 "Subproperties" in OWL. **Association** Class / Block physicallyContains **PhysicalThings** physicallyContains: PhysicalThings hasEngine physicallyContains Cars hasEngine : Engines { subsets physicallyContains } hasEngine Cars Engines

Subject-Specific Languages

 Use terminology of subject matter experts, rather than logic / ontology.

Other Logical Constructs

UML/SysML	OWL
Property / Association Multiplicity	Property Cardinality
Property Redefinition	Property Restriction
UML Composite Structure, SysML Internal Block Diagram	Role Composition
SysML Association Participant Properties and Internal Block Connector Properties	

Logical Process Modeling

Categorizing occurrences.

Summary

- Logical modeling is about categories.
- Categories = conditions specifying sets.
 - Independent of things falling into them.
 - In/out (sufficient/necessary) conditions.
 - Common condition: Generalization.
- Relation as categories of links.
- Categories of categories to define subject-specific languages.
- Various terminologies and notations.
- Applicable to product and process modeling.

References

- UML: http://omg.org/spec/UML
- SysML: http://omg.org/spec/SysML
 - 1.3: http://doc.omg.org/ptc/2011-08-09
- OWL: http://w3.org/TR/owl2-overview
- "Ontological Product Modeling for Collaborative Design," Bock, Zha, Suh, Lee, Advanced Engineering Informatics, 24:4, pp510-524, 2010, http://nist.gov/manuscript-publication-search.cfm?pub_id=822748.
- "Ontological Behavior Modeling," Bock, Odell, Journal of Object Technology, 10:3, pp1-36, 2011, http://www.jot.fm/contents/issue_2011_01/article3.html.
- Other material: conrad dot bock at nist dot gov.