
1

Logical Modeling for
Engineering

Conrad Bock
U.S. National Institute of Standards

and Technology
November 28, 2011

2

Overview


Quantative and logical Modeling



Categories
– As membership conditions
– Terminology and notation
– Kinds of conditions
– Most common condition: Generalization



Categories of categories
– Subject-specific languages



Categories of relations (and processes)


Summary and References

3

Quantitative Modeling


Quantitative modeling
– Numerical formulas (equations)
– Dynamic and stochastic simulations



Used for:
– Calculating or simulating numeric

values and probabilities.
– Deriving new numerical formulas.

4

Logical Modeling


Logical modeling is about
categorizing things and relations
between things ...
– This document is a requirement, this

other one is a design, and the second
satisfies the first.



… and keeping these categorizations
consistent.
– Requirements or designs are changed,

does the satisfies relation still hold?
– If not, what would make it hold again?

5

Categories = Conditions


Things “fall into” categories.


Categories have conditions for what
can and cannot fall into the category.

CategoryThingsThatFloat
{ x : density(x) < density(water) }

Condition for
things falling into
the category.

Individual things
that fall into the
category

Things that don’t

6

Categories Specify Sets


Which things fall into a category can
change over time without changing the
category (condition).
– New things created, some things destroyed,

conditions met or unmet over time.
– Not true for set membership.

ThingsThatFloat
{ x : density(x) < density(water) ^ exists(x) }

Hole in hull

New plastic
bottle

Amphibious
cars hit the
market

7

Categories Imply Existence


Conditions might only be satisfied by
things from the past, future, in
simulation, or not at all.

Perpetual Motion
Machines

Imaginary, or will
never exist

Existed in
the past

Roman Cities Marketable
Solar Cars

Might exist
in the future, or in

simulation

8

Fixed and Changing Conditions


When something does not fall into a
category, but it should, you can:
– Modify the thing
– Modify the category’s conditions

Cars

AsBuiltThings

Conditions for “as-built” categories are modified if
they are not satisfied by something they should be.

Things that do not satisfy the
conditions for a “specification”
category, but should, are modified.

9

Terminology


The term “categories” is just for
explanation in this presentation.


Other terms:
– “Classes” in the Unified Modeling

Language (UML) and Web Ontology
Language (OWL).

– “Blocks” in the Systems Modeling
Language (SysML), an extension of UML.



Things falling into categories:
– UML / SysML: “Instances” (of classes /

blocks)
– OWL: “Objects” and “Data” (interpretations

of classes and datatypes)

10

Graphical Notation
UML & SysML:

ThingsThatFloat

SysML:

«block»
ThingsThatFloat

UML Class
(or SysML Block without

stereotype)

SysML Block
(= UML Class with the Block

stereotype applied)

«block»
ThingsThatFloat

density(self) <
density(water)

constraints
density(self) < density(water)UML / SysML

Constraint

density(self) <
density(water)

SysML compartment
notation for UML /
SysML Constraint

“self” variable
= any one thing
falling into the
category

Note: Naming
conventions are
usually singular,
easily confused with
instances.

11

Diagrams


UML Classes and SysML Blocks
appear in particular kinds of diagrams.

UML Package
Diagrams

SysML Block
Definition Diagrams

package Float

ThingsThatFloat
density(self) <
density(water)

bdd Float

«block»
ThingsThatFloat

constraints
density(self) < density(water)

12

“In” Conditions


Can only determine when something
falls into a category, not out of it.
– Any four-wheeled thing over 750kg that

carries people using its own power over
100kw is a car.

– If something meets the condition it is a car.
– Otherwise, it might be a car or not (maybe

some cars are three-wheeled).


Purely sufficient conditions do not
interact.
– Each condition is sufficient separately.

13

“Out” Conditions


Can only determine when something
falls out of a category, not in it.
– Cars are vehicles.
– If condition is not met (something is not

a vehicle), then it is not a car.
– Otherwise, it might or might not be a car

(some vehicles might not be cars).


Purely necessary conditions do not
interact.
– Each condition negates separately.



Combining necessary and sufficient
can be contradictory.

14

In vs Out in English


In English:
– Sufficient (in) conditions usually have

the category at the end
– Necessary (out) conditions usually have

the category at the beginning


Any four-wheeled thing over 750kg
that carries people with it own power
over 100kw is a car. (sufficient / in)


Cars are vehicles. (necessary / out)


Sometimes sufficient conditions are
incorrectly read as also necessary.

15

In & Out Conditions


Conditions can be both sufficient (in)
and necessary (out).
– Things must meet the condition to be in the

category, otherwise they are out, no in-
between.



Mathematical set descriptors:
– { x : density(x) < density(water) }
– Things less dense than water are in the

category (sufficient / in).
– Things more dense or the same density

are not in the category (necessary / out).

16

The Most Common Condition


Things falling into one category
always fall into another.
– Example: Cars are vehicles.
– Cars satisfy the conditions of Vehicles.
– A necessary condition for Cars, a

sufficient condition for Vehicles.

CarVehicle

17

Terminology and Notation


The previous condition is so
common it is given a name and
notation in most languages.


“Generalization” in UML and SysML.


“Subclass” in OWL.

Vehicles

SysML/UML
Generalization

Cars

18

Multiple Generalization


Useful for reusing and combining categories.

Cars

LowEmissionCars

70%RecyclableCars

StreamlineCars

GoodCars

D
es

ig
n

R
ef

in
em

en
t

Design Aspects or Alternatives

19

Multiple Generalization Gotchas


Subcategories might
not be complete.



Subcategories
might partially
overlap.



Subcategories might
not be an intersection.

Streamline
Cars

LowEmission
Cars

70%Recyclable
Cars

Good Cars

Cars

20

Categories in Product Lifecycles


In the ideal world:
– Cars as built and maintained are also

cars as designed.
– Cars as designed are also cars meeting

requirements.
Cars As

Required

Cars As
Designed

Cars As
Built

Cars As
Maintained

Conditions are
requirements

Conditions are
designs

Conditions reflect
what is built

Conditions reflect
results of
maintenance

21

Analysis / Reasoning


In the real world sometimes:
– Designs do not meet requirements.
– Cars are not built or maintained to

designs.

Cars as Designed

Cars As Required

Cars as
BuiltCars as

Maintained



Analyzers and
reasoners
help detect
the possibility
of these
cases earlier.

22

Categories of Categories


Distinguish categories according to
purpose.

Categories

Requirement
Categories

Design
Categories

Cars As
Designed

Planes As
DesignedTrucks As

Designed

Cars As
Required

Trucks As
Required

Planes As
Required

Categories of
Categories

Requirement
Categories

(conditions are
requirements)

Design
Categories
(conditions
are designs)

23

Subject-Specific Languages


Use terminology of subject matter
experts, rather than logic / ontology.

Subject specific
terminology

Requirements Designs

Categories

Requirements Designs

Car
Design

Plane
DesignTruck

Design

Car
Requirement

Truck
Requirement

Plane
Requirement

24

Terminology


The terms “categories of categories”
and “subject-specific languages” are
just for explanation in this
presentation.


Other terms:
– “Metaclasses” in UML/SysML (part of

“metamodeling”).
– “Domain-specific languages” (common in

UML community).
– Not mentioned much in the OWL

community, but it is partially supported
with “punning”.

25

Relations


Relations between actual things or
categories:
– Cars have engines.
– Designs meet requirements.

Individual cars Individual engines

Cars Engines

Car-Engine Links

Individual
links

26

Terminology


The term “relations” is just for
explanation in this presentation.


Other terms:
– “Properties” in UML, SysML, and OWL.
– “Associations” in UML



Things falling into relation categories:
– UML / SysML: “Links” (of associations). No

term for properties, but properties have
“values”.

– OWL: Elements of set cartesian (cross)
products (“pairs”, “tuples”).

27

Graphical Notation
UML & SysML:

Cars

Property

hasEngine : Engines

Cars Engines
hasEngine

Association

SysML applies the
«block» stereotype
to UML Classes.

28

Generalization of Relations


Links falling into one relation
category always fall into another.
– Example: Car-engine links are physical

containment links.

Cars Engines

Car-Engine
Links

Physical Containment
Links

Physical Things

29

Terminology and Notation


The term “generalization of relations” is
just for explanation in this presentation.


Other terms:
– “Property Subsetting” or “Association

Generalization” in UML and SysML.
– “Subproperties” in OWL.

Cars

Property Subsetting

hasEngine : Engines { subsets physicallyContains }

Cars Engines
hasEngine

PhysicalThings

physicallyContains : PhysicalThings
Physical
Things

physicallyContains
hasEngine

physicallyContains

Association
Class / Block

30

«satisfy»

Subject-Specific Languages


Use terminology of subject matter
experts, rather than logic / ontology.

Car
Requirement

Car
Design

Car
Requirement

Car
Design

Categories

Relation Categories

Generalization

Satisfy

SysML
terminology
& notation

31

Other Logical Constructs
UML/SysML OWL

Property / Association
Multiplicity Property Cardinality

Property Redefinition Property Restriction
UML Composite
Structure, SysML
Internal Block Diagram

Role Composition

SysML Association
Participant Properties
and Internal Block
Connector Properties

32

ChangeColor #1 ChangeColor #3

Logical Process Modeling


Categorizing occurrences.

Time

Brush Paint

DryPaint

Falls into
both

Dry

Falls only
into #3

Cleanup

Falls only
into #1

DrySpray
Paint Cleanup

Behavior
ChangeColor

Spray Paint

33

Summary


Logical modeling is about categories.


Categories = conditions specifying sets.
– Independent of things falling into them.
– In/out (sufficient/necessary) conditions.
– Common condition: Generalization.



Relation as categories of links.


Categories of categories to define
subject-specific languages.


Various terminologies and notations.


Applicable to product and process
modeling.

34

References


UML: http://omg.org/spec/UML


SysML: http://omg.org/spec/SysML
– 1.3: http://doc.omg.org/ptc/2011-08-09



OWL: http://w3.org/TR/owl2-overview


“Ontological Product Modeling for
Collaborative Design,” Bock, Zha, Suh, Lee,
Advanced Engineering Informatics, 24:4, pp510-524, 2010,
http://nist.gov/manuscript-publication-search.cfm?pub_id=822748.



“Ontological Behavior Modeling,” Bock,
Odell, Journal of Object Technology, 10:3, pp1-36, 2011,
http://www.jot.fm/contents/issue_2011_01/article3.html.



Other material: conrad dot bock at nist dot gov.

	Logical Modeling for Engineering
	Overview
	Quantitative Modeling
	Logical Modeling
	Categories = Conditions
	Categories Specify Sets
	Categories Imply Existence
	Fixed and Changing Conditions
	Terminology
	Graphical Notation
	Diagrams
	“In” Conditions
	“Out” Conditions
	In vs Out in English
	In & Out Conditions
	The Most Common Condition
	Terminology and Notation
	Multiple Generalization
	Multiple Generalization Gotchas
	Categories in Product Lifecycles
	Analysis / Reasoning
	Categories of Categories
	Subject-Specific Languages
	Terminology
	Relations
	Terminology
	Graphical Notation
	Generalization of Relations
	Terminology and Notation
	Subject-Specific Languages
	Other Logical Constructs
	Logical Process Modeling
	Summary
	References

