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Why statistical physicists are 
interested in network problems

• Statistical physics is well-equipped to deal with 
networks that are highly regular (e.g. the lattice 
connections of atoms in a solid) or highly random 
(e.g. the interactions of gas molecules).

• Heterogeneous networks represent a new area in 
which to extend the tools of statistical physics.

• Statistical physicists have a long tradition of 
applying their approaches to many body problems 
in other fields:  animal flocking, market behaviors, 
etc. 



Why	
  analyze	
  the	
  graph	
  structure	
  of	
  
gene	
  annota5ons?

• Determine	
  if	
  there	
  are	
  undocumented,	
  
biologically	
  meaningful	
  rela*onships	
  between	
  
terms.

• Understand	
  large-­‐scale	
  func*onal	
  rela*onships	
  
between	
  genes.



Structure	
  of	
  the	
  Gene	
  Ontology

• The	
   Gene	
   Ontology	
   is	
   a	
   hierarchical	
   classifica*on	
   system	
   for	
   biological	
  
func*ons	
  (terms).

• Hierarchy	
  takes	
  the	
  form	
  of	
  a	
  directed	
  acyclic	
  graph	
  (DAG).

Image from: “Gene Ontology: Tool for the Unification of Biology”

• Genes	
   are	
   assigned	
   to	
   terms.	
   	
   These	
   assignments	
   are	
   transi*ve	
   up	
   the	
  
hierarchy.



The	
  graph	
  structure	
  of	
  gene	
  annota5ons

terms

genes



Bipartite Graph of Gene 
Annotations

Term Network

Gene Network

Crea5ng	
  Term	
  and	
  Gene	
  Networks	
  from	
  the	
  
Bipar5te	
  Graph

terms

genes



• Term networks can be used to group 
biological functions

• Gene networks can be used to understand/
predict interactions

Interpre5ng	
  term	
  and	
  
gene	
  networks



Process for Analyzing the Structure 
of the Term Network



Term and Gene Networks

= T = BB’

= G = B’B

Gene Ontology 
Bipartite Graph Term Network

Gene Network= B
0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 0

0 0 1 1 1 0 1 0

1 1 1 0 0 0 0 0



Is it valid to weight term/gene 
connections by co-annotation?

Degree distribution of GO Terms Degree distribution of annotated genes

1 10 100 1,000100

101

102

103

104

105

Degree of Gene

N
um

be
r o

f G
en

es

1 10 100 1,000 10,000 100,000100

101

102

103

104

105

Degree of Term

N
um

be
r o

f T
er

m
s

 

 

All Annotations
Biological Process
Molecular Function
Cellular Component



= B
0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 0

0 0 1 1 1 0 1 0

1 1 1 0 0 0 0 0

= w
1/2 0 0 0

0 1 0 0

0 0 1/4 0

0 0 0 1/3

Weighting the Term Network

T = wBB’w’



•  Tij takes on a maximal value of 1 when term i and term j share 
each only have the same single gene annotation.

•  Tij takes on a minimal value of 0 when term i and term j share 
no common annotations.

•  Tij gets small when term i and term j are both high degree and 
share few common annotations.

Consequences of weighting T



Community	
  Structure	
  in	
  
the	
  Term	
  Network

• Having constructed the term network, we want 
to identify groups of strongly connected terms.

• To do this, we can use any one of a variety of 
network community finding techniques.



The problem of identifying 
community structure in networks

• The goal:  Given an arbitrary 
network, develop a method to 
divide the network into groups, 
or communities, such that 
within-group edges are relatively 
dense.

• Important caveat:  We do not 
want to specify the number of 
groups a priori.  Rather, we 
would like to find a “natural” 
division of the network into 
communities.

Adolescent friendship 
network, from Jim Moody



Quantifying the 
community structure

• The	
  strength	
  of	
  a	
  given	
  par**on	
  of	
  a	
  network	
  into	
  k	
  
communi*es	
  can	
  be	
  quan*fied	
  by	
  the	
  modularity	
  func*on:

• where	
  ei	
  is	
  the	
  number	
  of	
  edges	
  that	
  connect	
  ver*ces	
  in	
  
community	
  i,	
  di	
  is	
  the	
  number	
  of	
  edge	
  ends	
  that	
  connect	
  to	
  
ver*ces	
  in	
  community	
  i,	
  and	
  m	
  is	
  the	
  total	
  number	
  of	
  edges.

• The	
  modularity	
  measures	
  observed	
  within-­‐community	
  density	
  
vs.	
  expected	
  within	
  community	
  density.
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Newman and Girvan, PRE 2004



Modularity Maximization

• The problem:  find the partition that maximizes the 
modularity function.

• NP hard, but many heuristics work well in practice:

‣ Greedy agglomeration

‣ Spectral methods

‣ Simulated annealing

Brandes et al. 2007, Clauset et al. 2004, Newman 2006, Massen and Doye 2006
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Community	
  Structure	
  in	
  the	
  
Term	
  Network

Each color represents a 
unique community.

Communities of Terms are largely independent
 of the Hierarchical structure.



Community Structure in the
Term Network

Each color represents 
a unique community.



Comparing the biological significance of 
communities and branches

Terms Genes 
1 

2 3 

4 

1 

2 

3 

4 

5 

6 

7 

8 

A 

B 

C 

D 

E 

F 

G 

H 

A 

B 
C 

D 

E F 

G 
H 

C 

3 5 
6 7 

8 



Community Enrichment in Cancer 
Signatures

Hypergeometric probability returns a p-value for 
the similarity of the cancer signature to the genes 
annotated to terms in the branch of the hierarchy 
and for the similarity of the signature to genes 
annotated to terms in a community.
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Community Enrichment in Cancer 
Signatures

Signatures defined in “Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles” 

Cancer Signatures



Implica5ons	
  of	
  Func5onal	
  
Similarity	
  for	
  Gene	
  Regulatory	
  

Interac5ons



Why make a gene network from
 gene annotations?

• Is a cheap, easy way to generate a gene 
network for species for which there is no or 
limited experimental gene networks.

• Can be used to interpret known gene 
regulatory networks.

• Can be used to evaluate and/or improve 
existing network reconstruction algorithms.



Understanding and Improving Gene 
Network Reconstruction using Functional 

Relationships



Weighting the Gene Network

= B
0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 0

0 0 1 1 1 0 1 0
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G = B’wB

In the limit of large α, edges in G to take a particular ordering such 
that those genes connected through many low degree terms have the 
highest weight.



•  Gij is largest when gene i and gene j are connected through 
many low degree terms.

•  Gij takes on a minimal value of 0 when gene i and gene j share 
no common annotations.

•  Gij is small when gene i and gene j are only connected through 
a single high degree term.

Consequences of weighting G with large α



• We apply a threshold to the gene-gene network we create from 
annotation data such that every gene pair whose Gij is above 
the threshold is considered connected.

• We compare this network to an experimentally derived 
regulatory network.  

• For each threshold, we calculate the f-score to measure the 
utility of our gene-gene network for capturing true regulatory 
interactions.

Comparing the Gene Network to 
Experimental Data

F = 2 Precision ⋅Recall
Precision + Recall

Precsion= true positives
true positives + false positives

Recall = true positives
true positives +false negatives



Inference power as a function of α



A gene network reconstructed from 
high-throughput data (GR)

Context-Likelihood-of-Relatedness

• Calculates the mutual information between pairs of genes using 
expression data.

• Uses that mutual information profile to calculate a Z-Score for these 
pairs of genes.

• Z-Score value meant to predict true regulatory interactions.  

genes

e
x

p
e

ri
m

e
n

ts

reference for CLR algorithm: Faith,  PLoS Biology, 2007.



Comparison to CLR Reconstruction



Improving Network Reconstruction



Comparison with other measures 
of functional similarity 



What does it mean to have 
functional similarity?

Structurally 
important 

edge

Structurally redundant 
edge

To measure how structurally important or redundant an 
edge is in GE, we calculated the new shortest path between 
nodes upon the removal of that edge.



A biological interpretation of 
functional similarity

High weight 
edges are 

structurally 
important



Conclusions

• There is an alternate natural way to group GO terms, unique from the 
hierarchy, which provides an independent framework with which to 
describe and predict the functions of experimentally identified groups 
of genes.

• GO can be used to create a gene-network entirely based on functional 
annotations.  Properties of this network are correlated with known 
regulatory interactions.

• This gene network identifies a different subset of regulatory 
interactions than those predicted by the CLR algorithm and can be 
combined with CLR further to improve predictive power.



• Define the probability, p(t), of observing a term t as the number 
of gene annotations made to that term, divided by the number 
of gene annotations made to the parent node of the branch to 
which the term belongs.

• The semantic similarity between two terms is then defined as

• where T(t1,t2) is the set of parent terms shared by the two 
terms.

• In order to find the semantic similarity between two genes, G1 
and G2, one constructs an nG1xnG2  where nG1 (nG2) is the 
number of terms annotated to G1 (G2), and populates it with 
the semantic similarity values between all the pairs of terms.  
The semantic similarity between the two genes is then 
determined by taking the average of all values in the matrix.

Semantic Similarity

SemSim(t1,t2 ) = − log min
t∈T (t1 ,t2 )

p(t)



Kappa statistics

X =
N11 − N00

NT

κ =
X − X
1− X


