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Why statistical physicists are
interested in network problems

® Statistical physics is well-equipped to deal with
networks that are highly regular (e.g. the lattice
connections of atoms in a solid) or highly random
(e.g. the interactions of gas molecules).

® Heterogeneous networks represent a new area in
which to extend the tools of statistical physics.

® Statistical physicists have a long tradition of
applying their approaches to many body problems
in other fields: animal flocking, market behaviors,
etc.




Why analyze the graph structure of
gene annotations?

e Determine if there are undocumented,
biologically meaningful relationships between
terms.

e Understand large-scale functional relationships
between genes.




Structure of the Gene Ontology

The Gene Ontology is a hierarchical classification system for biological

functions (terms).

Hierarchy takes the form of a directed acyclic graph (DAG).
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The graph structure of gene annotations
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Creating Term and Gene Networks from the
Bipartite Graph
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Interpreting term and
gene networks

* Term networks can be used to group
biological functions

e Gene networks can be used to understand/
predict interactions




Process for Analyzing the Structure
of the Term Network
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Term and Gene Networks

Gene Ontology
Bipartite Graph
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Number of Terms

Is it valid to weight term/gene
connections by co-annotation?

Degree distribution of GO Terms
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Weighting the Term Network
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Consequences of weighting T

_ #of genes connecting term1and term ]

i

degree of termix degree of term j

» T, takes on a maximal value of | when term i and term j share
each only have the same single gene annotation.

» T, takes on a minimal value of 0 when term i and term j share
no common annotations.

T, gets small when term i and term j are both high degree and
share few common annotations.




Community Structure in il
the Term Network s

* Having constructed the term network, we want
to identify groups of strongly connected terms.

* To do this, we can use any one of a variety of
network community finding techniques.




The problem of identifying
community structure in networks

The goal: Given an arbitrary
network, develop a method to
divide the network into groups,

or communities, such that
within-group edges are relatively
dense. .

Important caveat: Ve do not
want to specify the number of
groups a priori. Rather, we

. Adolescent friendship
would like to find a “natural” network, from Jim Moody

division of the network into

communities.




Quantifying the
community structure

The strength of a given partition of a network into k
communities can be quantified by the modularity function:

Q:i{fn _(201;;1)2}

where e;is the number of edges that connect vertices in
community i, d; is the number of edge ends that connect to
vertices in community i, and m is the total number of edges.

The modularity measures observed within-community density
vs. expected within community density.

Newman and Girvan, PRE 2004




Modularity Maximization

® The problem: find the partition that maximizes the
modularity function.

® NP hard, but many heuristics work well in practice:
»  Greedy agglomeration
»  Spectral methods

»  Simulated annealing

Brandes et al. 2007, Clauset et al. 2004, Newman 2006, Massen and Doye 2006




Community Structure in the
Term Network

Communities of Terms are largely independent
of the Hierarchical structure.

Eacnh color represents a
uniqgue community.




Community Structure in the
Term Network

enzyme binding protein domain specific binding

Each color represents
a unique community.




Comparing the biological sighificance of
communities and branches
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Community Enrichment in Cancer

Signatures
Hypergeometric probability returns a p-value for

the similarity of the cancer signature to the genes
annotated to terms in the branch of the hierarchy
and for the similarity of the signature to genes
annotated to terms in a community.
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Community Enrichment in Cancer
Sighatures

Cancer Sighatures GO Terms Communities
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Signatures defined in “Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles”




Implications of Functional
Similarity for Gene Regulator
Interactions




Why make a gene network from
gene annotations?

* |s a cheap, easy way to generate a gene
network for species for which there is no or
limited experimental gene networks.

e Can be used to interpret known gene
regulatory networks.

e Can be used to evaluate and/or improve
existing network reconstruction algorithms.




Understanding and Improving Gene
Network Reconstruction using Functional

Relationships
Gene-Term Bipartite Graph Projected
from Annotation Files Gene Network (G)
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Weighting the Gene Network
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In the limit of large &, edges in G to take a particular ordering such

that those genes connected through many low degree terms have the
highest weight.




Consequences of weighting G with large
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G is largest when gene i and gene j are connected through
many low degree terms.

« G, takes on a minimal value of 0 when gene i and gene j share
no common annotations.

* G is small when gene i and gene j are only connected through
a single high degree term.




Comparing the Gene Network to
Experimental Data

® We apply a threshold to the gene-gene network we create from
annotation data such that every gene pair whose G;j; is above
the threshold is considered connected.

® We compare this network to an experimentally derived
regulatory network.

® For each threshold, we calculate the f-score to measure the
utility of our gene-gene network for capturing true regulatory
interactions.

Feo Precision - Recall

Precision + Recall
true positives

Precsion= — —
true positives + false positives

true positives
Recall = P

true positives +false negatives




Inference power as a function of
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A gene network reconstructed from
high-throughput data (G;)

genes

ﬁ

experiments

Context-Likelihood-of-Relatedness

* Calculates the mutual information between pairs of genes using
expression data.

* Uses that mutual information profile to calculate a Z-Score for these
pairs of genes. b,
Mi(a,b) = pla,.b))log— (:,5,)
o pa;)p))

* Z-Score value meant to predict true regulatory interactions.

reference for CLR algorithm: Faith, PLoS Biology, 2007.




Comparison to CLR Reconstruction
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Improving Network Reconstruction
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Comparison with other measures

of

Maximum F-Score
o
O
00

O
O
N

o

O
O
&)

©
O
=

functional similarity

§(0) S(A)  SemSim A




What does it mean to have
functional similarity?

Structurally redundant
edge

Structurally
Important >
edge

To measure how structurally important or redundant an
edge is in G, we calculated the new shortest path between

nodes upon the removal of that edge.




Harmonic Mean of New Shortest Path

A biological interpretation of
functional similarity
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Conclusions

* There is an alternate natural way to group GO terms, unique from the
hierarchy, which provides an independent framework with which to
describe and predict the functions of experimentally identified groups
of genes.

* GO can be used to create a gene-network entirely based on functional
annotations. Properties of this network are correlated with known
regulatory interactions.

* This gene network identifies a different subset of regulatory
interactions than those predicted by the CLR algorithm and can be
combined with CLR further to improve predictive power.




Semantic Similarity

Define the probability, p(t), of observing a term t as the number
of gene annotations made to that term, divided by the number
of gene annotations made to the parent node of the branch to
which the term belongs.

The semantic similarity between two terms is then defined as

where T(t|,t2) is the set of parent terms shared by the two

terms.
SemSim(t,,t,)=—log min p(z)

teT(1),t)

In order to find the semantic similarity between two genes, G|
and G2, one constructs an ngixng2 where ngi (ng2) is the
number of terms annotated to G| (G2), and populates it with
the semantic similarity values between all the pairs of terms.
The semantic similarity between the two genes is then
determined by taking the average of all values in the matrix.




Kappa statistics

TERMS ANNOTATED TERMS ANNOTATED
TO GENE ONE (N;)  TO GENE TWO (N,)

NOO

SSALLTERMS (N,)

X = N11_N00




