
Using	  the	  Network	  Structure	  of	  
Annota5on	  Data	  to	  Gain	  Insights	  into	  

Gene	  Interac5ons	  and	  the	  
Organiza5on	  of	  Biological	  Func5on

in	  collabora*on	  with:

Kimberly	  Glass,	  

Ed	  O9,

Wolfgang	  Losert

Michelle	  Girvan



Why statistical physicists are 
interested in network problems

• Statistical physics is well-equipped to deal with 
networks that are highly regular (e.g. the lattice 
connections of atoms in a solid) or highly random 
(e.g. the interactions of gas molecules).

• Heterogeneous networks represent a new area in 
which to extend the tools of statistical physics.

• Statistical physicists have a long tradition of 
applying their approaches to many body problems 
in other fields:  animal flocking, market behaviors, 
etc. 



Why	  analyze	  the	  graph	  structure	  of	  
gene	  annota5ons?

• Determine	  if	  there	  are	  undocumented,	  
biologically	  meaningful	  rela*onships	  between	  
terms.

• Understand	  large-‐scale	  func*onal	  rela*onships	  
between	  genes.



Structure	  of	  the	  Gene	  Ontology

• The	   Gene	   Ontology	   is	   a	   hierarchical	   classifica*on	   system	   for	   biological	  
func*ons	  (terms).

• Hierarchy	  takes	  the	  form	  of	  a	  directed	  acyclic	  graph	  (DAG).

Image from: “Gene Ontology: Tool for the Unification of Biology”

• Genes	   are	   assigned	   to	   terms.	   	   These	   assignments	   are	   transi*ve	   up	   the	  
hierarchy.



The	  graph	  structure	  of	  gene	  annota5ons
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Bipartite Graph of Gene 
Annotations

Term Network
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Crea5ng	  Term	  and	  Gene	  Networks	  from	  the	  
Bipar5te	  Graph
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• Term networks can be used to group 
biological functions

• Gene networks can be used to understand/
predict interactions

Interpre5ng	  term	  and	  
gene	  networks



Process for Analyzing the Structure 
of the Term Network



Term and Gene Networks

= T = BB’

= G = B’B

Gene Ontology 
Bipartite Graph Term Network

Gene Network= B
0 0 0 0 0 1 0 1
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0 0 1 1 1 0 1 0

1 1 1 0 0 0 0 0



Is it valid to weight term/gene 
connections by co-annotation?

Degree distribution of GO Terms Degree distribution of annotated genes
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= B
0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 0

0 0 1 1 1 0 1 0

1 1 1 0 0 0 0 0

= w
1/2 0 0 0

0 1 0 0

0 0 1/4 0

0 0 0 1/3

Weighting the Term Network

T = wBB’w’



•  Tij takes on a maximal value of 1 when term i and term j share 
each only have the same single gene annotation.

•  Tij takes on a minimal value of 0 when term i and term j share 
no common annotations.

•  Tij gets small when term i and term j are both high degree and 
share few common annotations.

Consequences of weighting T



Community	  Structure	  in	  
the	  Term	  Network

• Having constructed the term network, we want 
to identify groups of strongly connected terms.

• To do this, we can use any one of a variety of 
network community finding techniques.



The problem of identifying 
community structure in networks

• The goal:  Given an arbitrary 
network, develop a method to 
divide the network into groups, 
or communities, such that 
within-group edges are relatively 
dense.

• Important caveat:  We do not 
want to specify the number of 
groups a priori.  Rather, we 
would like to find a “natural” 
division of the network into 
communities.

Adolescent friendship 
network, from Jim Moody



Quantifying the 
community structure

• The	  strength	  of	  a	  given	  par**on	  of	  a	  network	  into	  k	  
communi*es	  can	  be	  quan*fied	  by	  the	  modularity	  func*on:

• where	  ei	  is	  the	  number	  of	  edges	  that	  connect	  ver*ces	  in	  
community	  i,	  di	  is	  the	  number	  of	  edge	  ends	  that	  connect	  to	  
ver*ces	  in	  community	  i,	  and	  m	  is	  the	  total	  number	  of	  edges.

• The	  modularity	  measures	  observed	  within-‐community	  density	  
vs.	  expected	  within	  community	  density.
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Newman and Girvan, PRE 2004



Modularity Maximization

• The problem:  find the partition that maximizes the 
modularity function.

• NP hard, but many heuristics work well in practice:

‣ Greedy agglomeration

‣ Spectral methods

‣ Simulated annealing

Brandes et al. 2007, Clauset et al. 2004, Newman 2006, Massen and Doye 2006
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Community	  Structure	  in	  the	  
Term	  Network

Each color represents a 
unique community.

Communities of Terms are largely independent
 of the Hierarchical structure.



Community Structure in the
Term Network

Each color represents 
a unique community.



Comparing the biological significance of 
communities and branches
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Community Enrichment in Cancer 
Signatures

Hypergeometric probability returns a p-value for 
the similarity of the cancer signature to the genes 
annotated to terms in the branch of the hierarchy 
and for the similarity of the signature to genes 
annotated to terms in a community.
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Community Enrichment in Cancer 
Signatures

Signatures defined in “Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles” 

Cancer Signatures



Implica5ons	  of	  Func5onal	  
Similarity	  for	  Gene	  Regulatory	  

Interac5ons



Why make a gene network from
 gene annotations?

• Is a cheap, easy way to generate a gene 
network for species for which there is no or 
limited experimental gene networks.

• Can be used to interpret known gene 
regulatory networks.

• Can be used to evaluate and/or improve 
existing network reconstruction algorithms.



Understanding and Improving Gene 
Network Reconstruction using Functional 

Relationships



Weighting the Gene Network
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In the limit of large α, edges in G to take a particular ordering such 
that those genes connected through many low degree terms have the 
highest weight.



•  Gij is largest when gene i and gene j are connected through 
many low degree terms.

•  Gij takes on a minimal value of 0 when gene i and gene j share 
no common annotations.

•  Gij is small when gene i and gene j are only connected through 
a single high degree term.

Consequences of weighting G with large α



• We apply a threshold to the gene-gene network we create from 
annotation data such that every gene pair whose Gij is above 
the threshold is considered connected.

• We compare this network to an experimentally derived 
regulatory network.  

• For each threshold, we calculate the f-score to measure the 
utility of our gene-gene network for capturing true regulatory 
interactions.

Comparing the Gene Network to 
Experimental Data

F = 2 Precision ⋅Recall
Precision + Recall

Precsion= true positives
true positives + false positives

Recall = true positives
true positives +false negatives



Inference power as a function of α



A gene network reconstructed from 
high-throughput data (GR)

Context-Likelihood-of-Relatedness

• Calculates the mutual information between pairs of genes using 
expression data.

• Uses that mutual information profile to calculate a Z-Score for these 
pairs of genes.

• Z-Score value meant to predict true regulatory interactions.  
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reference for CLR algorithm: Faith,  PLoS Biology, 2007.



Comparison to CLR Reconstruction



Improving Network Reconstruction



Comparison with other measures 
of functional similarity 



What does it mean to have 
functional similarity?

Structurally 
important 

edge

Structurally redundant 
edge

To measure how structurally important or redundant an 
edge is in GE, we calculated the new shortest path between 
nodes upon the removal of that edge.



A biological interpretation of 
functional similarity

High weight 
edges are 

structurally 
important



Conclusions

• There is an alternate natural way to group GO terms, unique from the 
hierarchy, which provides an independent framework with which to 
describe and predict the functions of experimentally identified groups 
of genes.

• GO can be used to create a gene-network entirely based on functional 
annotations.  Properties of this network are correlated with known 
regulatory interactions.

• This gene network identifies a different subset of regulatory 
interactions than those predicted by the CLR algorithm and can be 
combined with CLR further to improve predictive power.



• Define the probability, p(t), of observing a term t as the number 
of gene annotations made to that term, divided by the number 
of gene annotations made to the parent node of the branch to 
which the term belongs.

• The semantic similarity between two terms is then defined as

• where T(t1,t2) is the set of parent terms shared by the two 
terms.

• In order to find the semantic similarity between two genes, G1 
and G2, one constructs an nG1xnG2  where nG1 (nG2) is the 
number of terms annotated to G1 (G2), and populates it with 
the semantic similarity values between all the pairs of terms.  
The semantic similarity between the two genes is then 
determined by taking the average of all values in the matrix.

Semantic Similarity

SemSim(t1,t2 ) = − log min
t∈T (t1 ,t2 )

p(t)



Kappa statistics

X =
N11 − N00

NT

κ =
X − X
1− X


