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§0 – Outlook

§0 – Outlook
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§1 – Setting & Objectives

§1 – Setting & Objectives

• System Description

• Problem Description

• Synthesis Objectives
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System Description – Min–Max Linear–PCP Case

• Linear discrete time system x+ = Ax+Bu+ w,

• Variables x ∈ R
n, u ∈ R

m, w ∈ R
n and (A,B) ∈ R

n×n × R
n×m,

• Constraints x ∈ X, u ∈ U and w ∈ W,

• Sets X ∈ PolyPC(Rn), U ∈ PolyPC(Rm) and W ∈ PolyC(Rn),

• Matrix pair (A,B) stabilizable,

• Information is variable x so feedback rules u(x) : X → U.
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Brief Problem Description – Illustration
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Brief Problem Description

• Given an integer N ∈ N+ and x ∈ X, select (if possible):

� State Tube XN := {Xk}k∈N[0:N]
,

� Control Tube UN−1 := {Uk}k∈N[0:N−1]
, and

� Control Policy ΠN−1 := {πk (·)}k∈N[0:N−1]
such that

x ∈ X0, ∀k ∈ NN−1,

Xk ⊆ X,

Uk ⊆ U,

∀y ∈ Xk, Ay +Bπk(y)⊕W ⊆ Xk+1,

∀y ∈ Xk, πk(y) ∈ Uk,

XN ⊆ Xf ⊆ X,

which optimize VN (XN ,UN−1) :=
∑

k∈NN−1
L(Xk, Uk) + VF (XN ).
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Synthesis Objectives & Key Ingredients

• Equally Important Objectives

� Robust Constraint Satisfaction,

� Robust Stability (Boundedness and Attractiveness),

� Computational Practicability,

� Optimized (Meaningful) Performance.

• Key Ingredients

� Fully Parameterized Tubes,

� Induced, More General, Non–Linear Control Policy,

� Repetitive Online Implementation.
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§2 – Earlier Robust MPC Methods

§2 – Earlier Robust Model Predictive Control Methods

• Open–Loop Min–Max MPC ×, ×, ×,

• Feedback Min–Max MPC X, X, ×,

• Dynamic Programming Based Robust MPC X, ×, ×,

• Tube MPC X, ×, X,

• Disturbance Affine Feedback RMPC X, X, X.
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Feedback Min–Max OC and MPC – Preview
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Feedback Min–Max OC – Basic Idea

• The set wNd
of extreme disturbance sequences

w(i,N−1) := {w(i,k)}k∈NN−1
, with w(i,k) ∈ Vertices(W),

• A set uNd
of extreme control sequences

u(i,N−1) := {u(i,k)}k∈NN−1
,

• A set xNd
of extreme state sequences x(i,N) := {x(i,k)}k∈NN

,

• A sensible decision making process for selecting
uNd

:= {u(i,N−1) : i ∈ N[1:Nd]}, and xNd
:= {x(i,N) : i ∈ N[1:Nd]}.

(here Nd := qN , and q := Cardinality(Vertices(W)).)
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Feedback Min–Max OC – Decision Making Process

• Given N ∈ N+ and x ∈ X, select (if possible) sets of extreme:

� State Sequences xNd
= {x(i,N) : i ∈ N[1:Nd]} and

� Control Sequences uNd
= {u(i,N−1) : i ∈ N[1:Nd]} such that

∀i ∈ N[1:Nd]
, ∀k ∈ NN−1,

x(i,k+1) = Ax(i,k) +Bu(i,k) + w(i,k), with x(i,0) = x,

x(i,k) ∈ X, u(i,k) ∈ U, and x(i,N) ∈ Xf ,

∀(i1, i2) ∈ N[1:Nd]
× N[1:Nd]

, ∀k ∈ NN−1,

x(i1,k) = x(i2,k) ⇒ u(i1,k) = u(i2,k)

which minimize

VN (xNd
,uNd

) := max
i

{V(i,N)(xNd
,uNd

) : i ∈ N[1:Nd]
}, where

V(i,N)(xNd
,uNd

) :=
∑

k∈NN−1

ℓ(x(i,k), u(i,k)) + Vf (x(i,N)).
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Feedback Min–Max MPC – Summarized

• Repetitive Online Application of Feedback Min–Max OC,

• Dimension of Decision Variable Proportional to Nd = qN ,

• Number of Constraints Proportional to Nd = qN ,

• Computation Exceedingly Demanding and Impracticable.
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Feedback Min–Max OC and MPC – Summarized
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Feedback Min–Max OC – Important Remarks

• Feedback Min–Max OC Utilizes:

� State Tubes XN := {Xk}k∈NN
, with

Xk := Convh({x(i,k) : i ∈ N[1:Nd]}), and

� Control Tubes UN−1 := {Uk}k∈NN−1
, with

Uk := Convh({u(i,k) : i ∈ N[1:Nd]}).

� Induced Control Policy ΠN−1 := {πk(·, Xk, Uk)}k∈NN−1
, with

πk(·, Xk, Uk) : Xk → Uk.

• Feedback Min–Max OC Indicates Weakness of Open Loop
Min–Max OC:

� Additional Constraints ∀i ∈ N[1:Nd], ∀k ∈ NN−1, u(i,k) = uk.
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Disturbance Affine Feedback ROC and RMPC – Preview
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Disturbance Affine Feedback (DAF) ROC – Basic Idea

• Control Parameterization u0 = v0, uk = vk +
∑k−1

j=0 M(k,j)wj , with

M(k,j) ∈ R
m×n,

• State Parameterization x = x0 = z0, xk = zk +
∑k−1

j=0 T(k,j)wj ,

with T(k,j) ∈ R
n×n,

• A set MN−1 of control matrices
{M(k,j) : j ∈ Nk−1, k ∈ N[1:N−1]},

• A nominal control sequence vN−1 := {vk}k∈NN−1
,

• A set TN of state matrices {T(k,j) : j ∈ Nk−1, k ∈ N[1:N ]},

• A nominal state sequence zN := {zk}k∈NN
,

• A sensible decision making process for selecting MN−1, vN−1,
TN , and zN .
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DAF ROC – Decision Making Process

• Given N ∈ N+ and x ∈ X, select (if possible) sets of:

� State and Control Matrices TN and MN−1 and

� Nominal State and Control Sequences zN and vN−1 such that

∀k ∈ NN−1, zk+1 = Azk +Bvk, with z0 = x ∈ X, v0 = u0 ∈ U,

∀k ∈ N[1:N−1],

zk ⊕

k−1⊕

j=0

T(k,j)W ⊆ X, vk ⊕

k−1⊕

j=0

M(k,j)W ⊆ U, and, zN ⊕

N−1⊕

j=0

T(N,j)W ⊆ Xf ,

∀j ∈ Nk−1,

T(k+1,j) = AT(k,j) +BM(k,j) with T(k+1,k) = I.

which minimize a sensible cost

VN (xN ,uN−1,TN ,MN−1) :=
∑

k∈NN−1

ℓ(zk, vk, Tk,Mk) + Vf (zN , TN ).
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Disturbance Affine Feedback RMPC – Summarized

• Repetitive Online Application of Disturbance Affine Feedback
ROC,

• Dimension of Decision Variable Proportional to hN2,

• Number of Constraints Proportional to hN2,

• Computation Practicable.
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DAF ROC and RMPC – Summarized
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Disturbance Affine Feedback ROC – Important Remarks

• Disturbance Affine Feedback ROC Utilizes:

� State Tubes XN := {Xk}k∈NN
, with Xk := zk ⊕

⊕k−1
j=0 T(k,j)W,

and

� Control Tubes UN−1 := {Uk}k∈NN−1
, with

Uk := vk ⊕
⊕k−1

j=0 M(k,j)W.

� Disturbance Affine Control Policy
ΠN−1 := {πk(·, Xk, Uk)}k∈NN−1

.

• Disturbance Affine Feedback ROC Indicates Weakness of Open
Loop Min–Max OC:

� Additional Constraints M(k,j) = 0 and T(k,j) = Ak−1 (Problems
for Unstable A ).
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§3 – Fully Parameterized Tube OC & MPC

§3 – Fully Parameterized Tube Optimal & Model Predictive Control

• Prediction Structure

• Constraint Handling

• Sensible Cost

• FPT Optimal & Model Predictive Control

• System Theoretic Properties
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FPT Prediction Structure – Question 1

• What if:

� x(j,0) = x ∈ R
n was known,

� w–player acted only once at j ∈ NN−1, and

� j ∈ NN−1 (at which wj ∈ W would happen) was also known?
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Question 1 – Illustration
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FPT Prediction Structure – Answer to Question 1

• Question was: What if:

� x(j,0) = x ∈ R
n was known,

� w–player acted only once at j ∈ NN−1, and

� j ∈ NN−1 (at which wj ∈ W would happen) was also known?

• An answer could be:

∀k ∈ NN−1, x(j,k+1) = Ax(j,k) +Bu(j,k) + δ(j,k)wk with

δ(j,j) = 1 for j = k and δ(j,k) = 0 otherwise.

� Use a Simple Sequence u(j,N−1) (·) := {u(j,k) (·)}k∈NN−1
!

� {u(j,k) (·)}k∈Nj
function of x(j,0),

� {u(j,k) (·)}k∈N[j+1:N−1]
function of x(j,j+1)!
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FPT Prediction Structure – Question 2

• What if:

� x(j,0) = x ∈ R
n was known,

� w–player acted only once at j ∈ NN−1,

� j ∈ NN−1 (at which wj ∈ W would happen) was known, and,

� W = Convh({w̃i : i ∈ N[1:q]}) and points w̃i ∈ R
n, i ∈ N[1:q]

were known?
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Question 2 – Illustration
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FPT Prediction Structure – Answer to Question 2

• Question was: What if:

� x(j,0) = x ∈ R
n was known,

� w–player acted only once at j ∈ NN−1,

� j ∈ NN−1 (at which wj ∈ W would happen) was known, and,

� W = Convh({w̃i : i ∈ N[1:q]}) and points w̃i ∈ R
n, i ∈ N[1:q]

were known?

• An answer could be:

∀i ∈ N[1:q], ∀k ∈ NN−1, x(i,j,k+1) = Ax(i,j,k) +Bu(i,j,k) + δ(j,k)w̃i with

δ(j,j) = 1 for j = k and δ(j,k) = 0 otherwise.

� Use q Control Sequences
u(i,j,N−1) := {u(i,j,k)}k∈NN−1

, i ∈ N[1:q]!

� Each {u(i,j,k)}k∈Nj
function of x(j,0)!
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FPT Prediction Structure – Question 3

• Can we Make Use of q Control Sequences
u(i,j,N−1) := {u(i,j,k)}k∈NN−1

, i ∈ N[1:q]?
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FPT Prediction Structure – Answer to Question 3

• Question was: Can we Make Use of q Control Sequences
u(i,j,N−1) := {u(i,j,k)}k∈NN−1

, i ∈ N[1:q]?

• An answer could be: YES

∀k ∈ Nj ,

x(1,j,k) = x(2,j,k) = . . . = x(q,j,k) = x(j,k) and

u(1,j,k) = u(2,j,k) = . . . = u(q,j,k) = u(j,k).

� Ensure Causality,

� Employ Linearity and Convexity!
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FPT Prediction Structure – Question 4

• How to Make Use of q Control Sequences
u(i,j,N−1) := {u(i,j,k)}k∈NN−1

, i ∈ N[1:q]?
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Questions 3 and 4 – Illustration
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FPT Prediction Structure – Answer to Question 4

• Question was: How to Make Use of q Control Sequences
u(i,j,N−1) := {u(i,j,k)}k∈NN−1

, i ∈ N[1:q]?

• An answer could be: Easy because

x(i,j,k+1) = Ax(i,j,k) +Bu(i,j,k) + δ(j,k)w̃i ⇒

λix(i,j,k+1) = Aλix(i,j,k) +Bλiu(i,j,k) + δ(j,k)λiw̃i ⇒

q∑

i=1

λix(i,j,k+1) = A

q∑

i=1

λix(i,j,k) +B

q∑

i=1

λiu(i,j,k) + δ(j,k)

q∑

i=1

λiw̃i

∀λ ∈ Λ := {λ ∈ R
q
+ :

q∑

i=1

λi = 1}

x(j,k+1)(λ) = Ax(j,k)(λ) +Bu(j,k)(λ) + δ(j,k)wk(λ) with

x(j,k)(λ) =

q∑

i=1

λix(i,j,k), u(j,k)(λ) =

q∑

i=1

λiu(i,j,k) and wk(λ) =

q∑

i=1

λiw̃i
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FPT Prediction Structure – Question 5

• What if:

� x ∈ R
n was known,

� w–player acted at all k ∈ NN−1 with wk ∈ W, and

� W = Convh({w̃i : i ∈ N[1:q]}) and points w̃i ∈ R
n, i ∈ N[1:q]

were known?
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Question 5 – Illustration
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FPT Prediction Structure – Answer to Question 5

• Question was: What if:

� x ∈ R
n was known, and

� w–player acted at all k ∈ NN−1 with wk ∈ W, and

� W = Convh({w̃i : i ∈ N[1:q]}) and points w̃i ∈ R
n, i ∈ N[1:q]

were known?

• An answer could be:

∀k ∈ NN−1, xk+1 = Axk +Buk + wk with

xk =

N∑

j=0

x(j,k), uk =

N∑

j=0

u(j,k).

� Decomposition into N + 1 State and Control Sequences
{x(j,k)}k∈NN

and {u(j,k)}k∈NN−1
with j ∈ NN

� Utilization of Answers to Previous Questions!
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FPT – Illustration
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FPT – Partial State and Control Tubes
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FPT Prediction Structure – Partial Tubes

X(0,N) x(0,0) x(0,1) x(0,2) . . . x(0,N−1) x(0,N)

U(0,N−1) u(0,0) u(0,1) u(0,2) . . . u(0,N−1)

X(1,N) x(1,0) X(1,1) X(1,2) . . . X(1,N−1) X(1,N)

U(1,N−1) u(1,0) U(1,1) U(1,2) . . . U(1,N−1)

X(2,N) x(2,0) x(2,1) X(2,2) . . . X(2,N−1) X(2,N)

U(2,N−1) u(2,0) u(2,1) U(2,2) . . . U(2,N−1)

...
...

...
...

...

X(N−1,N) x(N−1,0) x(N−1,1) x(N−1,2) . . . X(N−1,N−1) X(N−1,N)

U(N−1,N−1) u(N−1,0) u(N−1,1) u(N−1,2) . . . U(N−1,N−1)

X(N,N) x(N,0) x(N,1) x(N,2) . . . x(N,N−1) X(N,N)

U(N,N−1) u(N,0) u(N,1) u(N,2) . . . u(N,N−1)

• X(j,k) := Convh({x(i,j,k) : i ∈ N[1:q]}),

• U(j,k) := Convh({u(i,j,k) : i ∈ N[1:q]}), and

• {X(j,k)}k∈NN
and {U(j,k)}k∈NN−1

Deterministic!
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FPT Prediction Structure – Partial Tubes & Policy

• Partial State Tubes X(j,N),

• Partial Control Tubes U(j,N−1),

• Pairs X(j,N) and U(j,N−1) Counteract to Disturbances wj−1 with
j ∈ N[1:N ] ,

• Pair X(0,N) and U(0,N−1) Represents Nominal State and Control
Sequences (x(0,k+1) = Ax(0,k) +Bu(0,k)).

• Partial Policy Π(j,N−1) via {u(j,k) (·)}k∈NN−1

wj−1 ∈ W ⇒ wj−1 =

q∑

i=1

λi(wj−1)w̃i for some λ(wj−1) ∈ Λ

x(j,k+1)(w(j−1)) = Ax(j,k)(w(j−1)) + Bu(j,k)(w(j−1)) + δ(j−1,k)w(j−1) with

x(j,k)(w(j−1)) =

q∑

i=1

λi(wj−1)x(i,j,k) ∈ X(j,k), x(j,k) (·) PWA and continuous

u(j,k)(w(j−1)) =

q∑

i=1

λi(wj−1)u(i,j,k) ∈ U(j,k), u(j,k) (·) PWA and continuous
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FPT – Overall State and Control Tubes
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FPT Prediction Structure – Overall Tubes

X(0,N) x(0,0) x(0,1) . . . x(0,N−1) x(0,N)

U(0,N−1) u(0,0) u(0,1) . . . u(0,N−1)

X(1,N) x(1,0) X(1,1) . . . X(1,N−1) X(1,N)

U(1,N−1) u(1,0) U(1,1) . . . U(1,N−1)

...
...

...
...

X(N−1,N) x(N−1,0) x(N−1,1) . . . X(N−1,N−1) X(N−1,N)

U(N−1,N−1) u(N−1,0) u(N−1,1) . . . U(N−1,N−1)

X(N,N) x(N,0) x(N,1) . . . x(N,N−1) X(N,N)

U(N,N−1) u(N,0) u(N,1) . . . u(N,N−1)

XN X0 =
⊕N

j=0 X(j,0) X1 =
⊕N

j=0 X(j,1) . . . XN−1 =
⊕N

j=0 X(j,N−1) XN =
⊕N

j=0 X(j,N)

UN−1 U0 =
⊕N

j=0 U(j,0) U1 =
⊕N

j=0 U(j,1) . . . UN−1 =
⊕N

j=0 U(j,N−1)

• Xk =
⊕N

j=0 X(j,k),

• Uk =
⊕N

j=0 U(j,k), and

• {Xk}k∈NN
and {Uk}k∈NN−1

Deterministic!
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FPT Prediction Structure – Overall Tubes & Policy

• Overall State Tube XN ,

• Overall Control Tube UN−1,

• Pairs XN and UN−1 Counteract to Disturbance Sequences
wN−1 = {wj−1}j∈N[1:N]

,

• Control Policy ΠN−1 via Partial Policies Π(j,N−1)

∀wN−1 ∈ W
N
,

xk(wN ) = x(0,k) +
N∑

j=1

x(j,k)(w(j−1)) & uk(wN ) = u(0,k) +
N∑

j=1

u(j,k)(w(j−1)) ⇒

xk+1(wN ) = Axk(wN ) + Buk(wN ) + wk = x(0,k+1) +

N∑

j=1

x(j,k+1)(w(j−1)) with

xk(wN ) ∈ Xk, xk (·) PWA and continuous

uk(wN ) ∈ Uk, uk (·) PWA and continuous
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FPT Constraint Handling – Two Key Questions

• What is support(Xk, F ) for a given F ∈ R
n?

• Can we find support(Xk, F ) without computing explicitly

Xk =
⊕N

j=0 X(j,k) and X(j,k) := Convh({x(i,j,k) : i ∈ N[1:q]})?
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Support Function – Illustration
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FPT Constraint Handling – Support Function Trick

support(Xk, F ) =

= support(
N⊕

j=0

X(j,k), F )

=

N∑

j=0

support(X(j,k), F )

=

N∑

j=0

f(j,k) where

f(0,k) = FT x(0,k) and f(j,k) = max
i

{FT x(i,j,k) : i ∈ N[1:q]}
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FPT Constraint Handling – Support Function Trick

support(Xk, F ) ≤ 1 ⇔

∃{f(j,k) ∈ R : j ∈ NN} such that

N∑

j=0

f(j,k) ≤ 1 with

FT x(0,k) ≤ f(0,k), and

∀j ∈ NN and ∀i ∈ N[1:q], FT x(i,j,k) ≤ f(j,k).

• State Constraints ∀k ∈ NN−1, Xk ⊆ X,

• Control Constraints ∀k ∈ NN−1, Uk ⊆ U, and

• Terminal Constraints XN ⊆ Xf , reduce to a tractable set of
linear/affine inequalities!
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Local Behavior – Illustration
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FPT Sensible Cost – Terminal Constraint Set

• Local Linear Dynamics x+ = (A+BK)x+ w,

• Constraints x ∈ XK := {x ∈ X : Kx ∈ U},

• Terminal Constraint Set
Xf ∈ PolyPC(Rn) : (A+BK)Xf ⊕W ⊆ Xf ⊆ XK ,
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FPT Sensible Cost – Local Behavior

E(0,N) e(0,0) (A+BK)e(0,0) (A+BK)2e(0,0) . . . (A+BK)N−1e(0,0) (A+BK)Ne(0,0)
KE(0,N−1) Ke(0,0) K(A+BK)e(0,0) K(A+BK)2e(0,0) . . . K(A+BK)N−1e(0,0)

E(1,N) 0 W (A+BK)W . . . (A+BK)N−2
W (A+BK)N−1

W

KE(1,N−1) 0 KW K(A+BK)W . . . K(A+BK)N−2
W

E(2,N) 0 0 W . . . (A+BK)N−2
W (A+BK)N−2

W

KE(2,N−1) 0 0 KW . . . K(A+BK)N−2
W

...
...

...
...

...

E(N−1,N) 0 0 0 . . . W (A+BK)W

KE(N−1,N−1) 0 0 0 . . . KW

E(N,N) 0 0 0 . . . 0 W

KE(N,N−1) 0 0 0 . . . 0

• Key Observation:

• ∀k ∈ NN−1, Ek := (A+BK)ke(0,0)⊕
⊕k−1

j=0 (A+BK)k−1−j
W ⊆ Xf ,

implies:

• Ek+1 = (A+BK)Ek ⊕W ⊆ Xf , and

• KEk ⊆ KXf ⊆ U.
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FPT Sensible Cost – Equivalent Representation I

• {x(0,k)}k∈NN
and {u(0,k)}k∈NN−1

are Deterministic:

• Equivalent Representation x(0,k) = z(0,k) + e(0,k) and
u(0,k) = v(0,k) +Ke(0,k)

• Dynamics z(0,k+1) = Az(0,k) +Bv(0,k) and
e(0,k+1) = (A+BK)e(0,k).
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FPT Sensible Cost – Equivalent Representation II

• {x(i,j,k)}k∈NN
and {u(i,j,k)}k∈NN−1

are Deterministic:

• Equivalent Representation x(i,j,k) = z(i,j,k) + e(i,j,k) and
u(i,j,k) = v(i,j,k) +Ke(i,j,k)

• Dynamics z(i,j,k+1) = Az(i,j,k) +Bv(i,j,k) and
e(i,j,k+1) = (A+BK)e(i,j,k) + δ(j−1,k)w̃i.

• Interesting Facts:

� Sequences {z(i,j,k)}k∈NN−1
and {v(i,j,k)}k∈NN−1

do not carry
uncertainty

� Deterministic Dynamics z(i,j,k+1) = Az(i,j,k) +Bv(i,j,k)
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Equivalent Reparameterization – Illustration
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FPT Sensible Cost – Equivalent Reparameterization II

Z(0,N) z(0,0) z(0,1) z(0,2) . . . z(0,N−1) z(0,N)

V(0,N−1) v(0,0) v(0,1) v(0,2) . . . v(0,N−1)

Z(1,N) z(1,0) z(1,1) Z(1,2) . . . Z(1,N−1) Z(1,N)

V(1,N−1) v(1,0) V(1,1) V(1,2) . . . V(1,N−1)

Z(2,N) z(2,0) z(2,1) z(2,2) . . . Z(2,N−1) Z(2,N)

V(2,N−1) v(2,0) v(2,1) V(2,2) . . . V(2,N−1)

...
...

...
...

...

Z(N−1,N) z(N−1,0) z(N−1,1) z(N−1,2) . . . z(N−1,N−1) Z(N−1,N)

V(N−1,N−1) v(N−1,0) v(N−1,1) v(N−1,2) . . . V(N−1,N−1)

Z(N,N) z(N,0) z(N,1) z(N,2) . . . z(N,N−1) z(N,N)

V(N,N−1) v(N,0) v(N,1) v(N,2) . . . v(N,N−1)

• Z(j,k) := Convh({z(i,j,k) : i ∈ N[1:q]}),

• V(j,k) := Convh({v(i,j,k) : i ∈ N[1:q]}), and

• {Z(j,k)}k∈NN
and {V(j,k)}k∈NN−1

Completely Deterministic!
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FPT Sensible Cost – Sensible Cost Functions

• Decomposition of X − U prediction table into:

� Uncertainty Free Z − V prediction table, and

� Uncertainty Absorbing E −KE prediction table.

• Penalize Distance of Z − V prediction table from its target 0− 0
table!
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FPT Sensible Cost – Generic Cost Functions I

V(0,N) ℓ(z(0,0), v(0,0)) ℓ(z(1,0), v(1,0)) ℓ(z(2,0), v(2,0)) . . . ℓ(z(N−1,0), v(N−1,0)) Vf (z(N,0))

V(1,N) L(Z(1,0), V(1,0)) L(Z(1,1), V(1,1)) L(Z(1,2), V(1,2)) . . . L(Z(1,N−1), V(1,N−1)) VF (Z(1,N))

V(2,N) L(Z(2,0), V(2,0)) L(Z(2,1), V(2,1)) L(Z(2,2), V(2,2)) . . . L(Z(2,N−1), V(2,N−1)) VF (Z(2,N))

...
...

...
...

...

V(N−1,N) L(Z(N−1,0), V(N−1,0)) L(Z(N−1,1), V(N−1,1)) L(Z(N−1,2), V(N−1,2)) . . . L(Z(N−1,N−1), V(N−1,N−1)) VF (Z(N−1,N))

V(N,N) L(Z(N,0), V(N,0)) L(Z(N,1), V(N,1)) L(Z(N,2), V(N,2)) . . . L(Z(N,N−1), V(N,N−1)) VF (Z(N,N))

VN

∑N
j=0 L(Z(j,0), V(j,0))

∑N
j=0 L(Z(j,1), V(j,1))

∑N
j=0 L(Z(j,2), V(j,2)) . . .

∑N
j=0 L(Z(j,N−1), V(j,N−1))

∑N
j=0 VF (Z(j,N))

• L(Z(j,k), V(j,k)) =
∑q

i=1 ℓ(z(i,j,k), v(i,j,k)),

• VF (Z(j,N)) =
∑q

i=1 Vf (z(i,j,N)),

• ℓ (·, ·) : R
n × R

m → R+ and Vf (·) : R
n → R+ :

� Convex and Sub–Additive,

� Satisfy Condition:
∀z ∈ R

n, Vf ((A+BK)z)− Vf (z) ≤ −ℓ(z,Kz)

� Adequately Lower– and Upper–Bounded
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FPT Sensible Cost – Generic Cost Functions II

V(0,N) ℓ(z(0,0), v(0,0)) ℓ(z(1,0), v(1,0)) ℓ(z(2,0), v(2,0)) . . . ℓ(z(N−1,0), v(N−1,0)) Vf (z(N,0))

V(1,N) L(Z(1,0), V(1,0)) L(Z(1,1), V(1,1)) L(Z(1,2), V(1,2)) . . . L(Z(1,N−1), V(1,N−1)) VF (Z(1,N))

V(2,N) L(Z(2,0), V(2,0)) L(Z(2,1), V(2,1)) L(Z(2,2), V(2,2)) . . . L(Z(2,N−1), V(2,N−1)) VF (Z(2,N))

...
...

...
...

...

V(N−1,N) L(Z(N−1,0), V(N−1,0)) L(Z(N−1,1), V(N−1,1)) L(Z(N−1,2), V(N−1,2)) . . . L(Z(N−1,N−1), V(N−1,N−1)) VF (Z(N−1,N))

V(N,N) L(Z(N,0), V(N,0)) L(Z(N,1), V(N,1)) L(Z(N,2), V(N,2)) . . . L(Z(N,N−1), V(N,N−1)) VF (Z(N,N))

VN

∑N
j=0 L(Z(j,0), V(j,0))

∑N
j=0 L(Z(j,1), V(j,1))

∑N
j=0 L(Z(j,2), V(j,2)) . . .

∑N
j=0 L(Z(j,N−1), V(j,N−1))

∑N
j=0 VF (Z(j,N))

• L(Z(j,k), V(j,k)) = maxi{ℓ(z(i,j,k), v(i,j,k)) : i ∈ N[1:q]},

• VF (Z(j,N)) = maxi{Vf (z(i,j,N)) : i ∈ N[1:q]},

• ℓ (·, ·) : R
n × R

m → R+ and Vf (·) : R
n → R+ :

� Convex,

� Satisfy Condition:
∀z ∈ R

n, Vf ((A+BK)z)− Vf (z) ≤ −ℓ(z,Kz)

� Adequately Lower– and Upper–Bounded
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Sensible Cost – Illustration
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FPT OC – Decision Variables

• Sequences {z(0,k)}k∈NN
and {v(0,k)}k∈NN−1

• Sequences {z(i,j,k)}k∈NN
and {v(i,j,k)}k∈NN−1

• Initial Error State e(0,0) = x−
∑N

j=0 z(j,0) (Can be Eliminated),

• Dimension of Decision Variable dN Proportional to qN2 !
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FPT OC – Decision Making Process

• Given N ∈ N+ and x ∈ X, select (if possible):

� Decision Variable dN such that

∀k ∈ NN−1, z(0,k+1) = Az(0,k) +Bv(0,k),

∀i ∈ N[1:q], ∀j ∈ N[1:N ], ∀k ∈ NN−1, z(i,j,k+1) = Az(i,j,k) +Bv(i,j,k),

with e(0,0) +

N∑

j=0

z(j,0) = x,

∀k ∈ NN−1,

Xk = Zk ⊞ Ek ⊆ X, Uk = Vk ⊞KEk ⊆ U, and XN = ZN ⊞ EN ⊆ Xf , and,

e(0,0) = x−

N∑

j=0

z(j,0) ∈ Xf

which minimize a cost function

VN (dN ) :=
∑

j∈NN

V(j,N)(dN ).
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FPT OC – Topological Properties

• The set of x ∈ X for which FPT OC is feasible, say XN , is a
PC–polytope in R

n.

• Under Convexity of ℓ (·, ·) and Vf (·) :

� V 0
N (·) : XN → R+ is continuous and convex, and

� ∃ d
0
N (·) : XN → R+ which is continuous.

• Under “Linearity” of ℓ (·, ·) and Vf (·) :

� V 0
N (·) : XN → R+ is PWA, convex and continuous, and

� ∃ d
0
N (·) : XN → R+ which is PWA and continuous.
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FPT MPC – Summarized

• Repetitive Online Application of FPT OC,

• Dimension of Decision Variable Proportional to qN2,

• Number of Constraints Proportional to qN2,

• Computation Practicable,

• More General than Disturbance Affine Feedback RMPC (due
PWA structure of employed feedback!).
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FPT MPC – Definition

• FPTMPC
∀x ∈ XN , κ0

N (x) =
∑N

j=0 v
0
(j,0)(x) +K(x−

∑N
j=0 z

0
(j,0)(x)),

• Controlled Uncertain Dynamics
∀x ∈ XN , x+ ∈ F(x), F(x) := Ax+Bκ0

N (x)⊕W,

• Also ∀x ∈ Xf , κ
0
N (x) = Kx and F(x) := (A+BK)x⊕W.
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FPT MPC – System Theoretic Properties

• The set XN ⊆ X is an RPI set, i.e. ∀x ∈ XN , κ0
N (x) ∈ U

F(x) ⊆ XN .

• The set Xf ⊆ XN is robustly exponentially stable set for
x+ ∈ F(x) with the basin of attraction XN , i.e. any {xk}k∈N with
∀k ∈ N, xk−1 ∈ F(xk) converges exponentially fast, in stable
manner, to Xf , and

• The set X∞ :=
⊕∞

k=0(A+BK)kW ⊆ Xf is the minimal robustly
exponentially stable set for x+ ∈ F(x) with the basin of attraction
XN .
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FPT MPC – Invariance and Stability Illustration
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FPT MPC – Invariance and Stability Properties

x(0,0) x(0,1) . . . x(0,N−1) x(0,N)

u(0,0) u(0,1) . . . u(0,N−1)

x(1,0) X(1,1) . . . X(1,N−1) X(1,N)

u(1,0) U(1,1) . . . U(1,N−1)

...
...

...

x(N−1,0) x(N−1,1) . . . X(N−1,N−1) X(N−1,N)

u(N−1,0) u(N−1,1) . . . U(N−1,N−1)

x(N,0) x(N,1) . . . x(N,N−1) X(N,N)

u(N,0) u(N,1) . . . u(N,N−1)

Feasible FPT Prediction Structure at k = 0.
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FPT MPC – Invariance and Stability Illustration
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FPT MPC – Invariance and Stability Properties

x(0,0) x(0,1) . . . x(0,N−1) x(0,N) (A+BK)x(0,N)

u(0,0) u(0,1) . . . u(0,N−1) Kx(0,N)

x(1,0) X(1,1) . . . X(1,N−1) X(1,N) (A+BK)X(1,N)

u(1,0) U(1,1) . . . U(1,N−1) KX(1,N)

...
...

...
...

x(N−1,0) x(N−1,1) . . . X(N−1,N−1) X(N−1,N) (A+BK)X(N−1,N)

u(N−1,0) u(N−1,1) . . . U(N−1,N−1) KX(N−1,N)

x(N,0) x(N,1) . . . x(N,N−1) X(N,N) (A+BK)X(N,N)

u(N,0) u(N,1) . . . u(N,N−1) KX(N,N)

0 0 . . . 0 0 X(N+1,N+1) = W

0 0 . . . 0 0

Extended Feasible FPT Prediction Structure at k = 0.
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FPT MPC – Invariance and Stability Illustration
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FPT MPC – Invariance and Stability Properties

x(0,0) x(0,1) . . . x(0,N−1) x(0,N) (A+BK)x(0,N)

u(0,0) u(0,1) . . . u(0,N−1) Kx(0,N)

x(1,0) x̂(1,1) . . . x̂(1,N−1) x̂(1,N) (A+BK)x̂(1,N)

u(1,0) û(1,1) . . . û(1,N−1) Kx̂(1,N)

...
...

...
...

x(N−1,0) x(N−1,1) . . . X(N−1,N−1) X(N−1,N) (A+BK)X(N−1,N)

u(N−1,0) u(N−1,1) . . . U(N−1,N−1) KX(N−1,N)

x(N,0) x(N,1) . . . x(N,N−1) X(N,N) (A+BK)X(N,N)

u(N,0) u(N,1) . . . u(N,N−1) KX(N,N)

0 0 . . . 0 0 X(N+1,N+1) = W

0 0 . . . 0 0

Collapsed Version of Extended Feasible FPT Prediction Structure at
k = 1.
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FPT MPC – Invariance and Stability Properties

x(0,1) + x̂(1,1) . . . x(0,N−1) + x̂(1,N−1) x(0,N) + x̂(1,N) (A+BK)x(0,N) + (A+BK)x̂(1,N)

u(0,1) + û(1,1) . . . u(0,N−1) + û(1,N−1) Kx(0,N) +Kx̂(1,N)

...
...

...

x(N−1,1) . . . X(N−1,N−1) X(N−1,N) (A+BK)X(N−1,N)

u(N−1,1) . . . U(N−1,N−1) KX(N−1,N)

x(N,1) . . . x(N,N−1) X(N,N) (A+BK)X(N,N)

u(N,1) . . . u(N,N−1) KX(N,N)

0 . . . 0 0 X(N+1,N+1) = W

0 . . . 0 0

Feasible FPT Prediction Structure at k = 1 for "Sub–Additive" Cost.
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FPT MPC – Invariance and Stability Properties

x̂(1,1) . . . x̂(1,N−1) x̂(1,N) (A+BK)x̂(1,N)

û(1,1) . . . û(1,N−1) Kx̂(1,N)

...
...

...

x(N−1,1) . . . X(N−1,N−1) X(N−1,N) (A+BK)X(N−1,N)

u(N−1,1) . . . U(N−1,N−1) KX(N−1,N)

x(N,1) . . . x(N,N−1) X(N,N) (A+BK)X(N,N)

u(N,1) . . . u(N,N−1) KX(N,N)

x(0,1) . . . x(0,N−1) x(0,N) (A+BK)x(0,N) ⊕X(N+1,N+1)

u(0,1) . . . u(0,N−1) Kx(0,N)

Feasible FPT Prediction Structure at k = 1 for "Max" Cost.
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§4 – Comparative Remarks & Illustrative Examples

§4 – Comparative Remarks & Illustrative Examples

• Comparative Remarks

• Example 1: Feedback Min–Max MPC vs FPTMPC

• Example 2: Disturbance Affine Feedback RMPC vs FPTMPC

• Example 3: FPTMPC in Action
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Comparative Remarks I

Comparisons of Main Existing RMPC Methods Based on
Computational Practicability:

RMPC vs Facts CER CP PS CO # DV # C

CLMM RMPC 5 uk(xk) Nonlinear YES O(qN ) O(qN )

RTMPC 4 uk(xk) = Kxk + vk(x0) Affine YES O(N) O(N)

TVA RMPC 3 uk(xk) = Kkxk + vk(x0) Affine NO O(qN2) O(qN2)

DA RMPC 2 uk(xk) =
∑k−1

j=0 M(j,k)wj + vk(x0) Affine YES O(qN2) O(qN2)

FPTMPC 1 uk(xk) =
∑N

j=0 u(j,k)(x(j,k)) Nonlinear YES O(qN2) O(qN2)
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Comparative Remarks II

Comparisons of Main Existing RMPC Methods Based on Size of
Domain of Attraction:

RMPC vs Facts SDAR CP PS

RTMPC 5 uk(xk) = Kxk + vk(x0) Affine

TVA RMPC 3− 4 uk(xk) = Kkxk + vk(x0) Affine

DA RMPC 3− 4 uk(xk) =
∑k−1

j=0 M(j,k)wj + vk(x0) Affine

FPTMPC 2 or (1− 2)? uk(xk) =
∑N

j=0 u(j,k)(x(j,k)) Nonlinear

CLMM RMPC 1 or (1− 2)? uk(xk) Nonlinear

Same Holds for Performance when Same Cost Functions are Used.
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Feasibility–Wise Equivalence to DP

Main Existing RMPC Methods and Feasibility–Wise Equivalence to DP:

RMPC vs Facts FWEDPR N ∈ N+ N = 1 N = 2 N > 2

n = m = 1 n ∈ N+, m ∈ N+ n ∈ N+, m ∈ N+ n ∈ N+, m ∈ N+

RTMPC 5 No YES NO NO

TVA RMPC 3− 4 YES YES NO NO

DA RMPC 3− 4 YES YES NO NO

FPTMPC 2 or (1− 2)? YES YES YES ?

CLMM RMPC 1 or (1− 2)? YES YES YES YES

Feasibility–Wise Equivalence to DP of PTMPC and FPTMPC
Discussed in IEEE–TAC and IJRNC Papers.

SVR’s FPTMPC Talk @ ISR, UMD, USA, February 13, 2012 – p. 77



FPT MPC – Illustrative Examples
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FPT MPC – Illustrative Examples
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§5 – Concluding Remarks

• Summary

• Historical Remarks
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Summary

• Well–posed parameterized tube optimal control problems,

� Meaningful solution process & 2–dimensional thinking,

� Repetitive application of parameterized tube optimal control,

� RHC/MPC strategies,

� Suitably tailored use of optimization and control synthesis,

� Strong system–theoretic properties.

• Satisfaction of synthesis objectives:

� Constraint Satisfaction (Invariance),

� Stable process despite constraints and uncertainty (Stability),

� Optimized performance in an adequate sense,

� Computational efficiency.
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Relevant Papers

• Parameterized Robust Control Invariant Sets for Linear Systems:
Theoretical Advances and Computational Remarks, IEEE-TAC
Regular Paper, (Published)
(Raković and Barić),

• Parameterized Tube MPC, IEEE-TAC Regular Paper, (Accepted)
(Raković, Kouvaritakis, Cannon, Panos and Findeisen),

• Fully Parameterized Tube MPC, IFAC 2011, (Published)
(Raković, Kouvaritakis, Cannon, Panos and Findeisen),

• Fully Parameterized Tube MPC, IJRNC D. W. Clarke’s Special
Issue Paper, (Accepted)
(Raković, Kouvaritakis, Cannon and Panos),

• Three More Surprise but Top Secret Papers ;-)
(Raković and co–author/s),
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Historical Remarks

• Dynamic Programming and Controllability Under Constraints and Uncertainty
(Bertsekas, Schweepe, Witsenhausen, Kurzhanski, Krasovski, Pontryagin, La
Salle, Hermes, Artstein, Aubin, Frankowska, Lasserre, Blanchini, Miani, ...),

• “Simplified” Tube Based Control Synthesis Under Constraints and Uncertainty:

� Time–Varying Tube MPC
(Blanchini, Kouvaritakis, Cannon, Lee, Chisci, Zappa, Rositer, ...),

� Rigid Tube MPC
(Mayne, Raković, Seron, Allgöwer, Teel, Astolfi, ...),

� Homothetic Tube MPC
(Raković, Kouvaritakis, and Cannon)

� Parameterized and Fully Parameterized Tube MPC
(Raković, Kouvaritakis, Cannon, and Panos)

• Min–Max Feedback MPC (Bertsekas, Mayne and Scoekert, Kerrigan and
Maciejowski)

• Disturbance Affine Feedback Robust MPC (Ben–Tal, Loefberg, Goulart and
Kerrigan and Maciejowski)
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Question Time

That is all folks!

Thank you for patience! & Any questions?
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