Source Coding with Lists and Rényi Entropy or
 The Honey-Do Problem

Amos Lapidoth

ETH Zurich

October 8, 2013

Joint work with Christoph Bunte.

A Task from your Spouse

Using a fixed number of bits, your spouse reminds you of one of the following tasks:

- Honey, don't forget to feed the cat.
- Honey, don't forget to go to the dry-cleaner.
- Honey, don't forget to pick-up my parents at the airport.
- Honey, don't forget the kids' violin concert.

A Task from your Spouse

Using a fixed number of bits, your spouse reminds you of one of the following tasks:

- Honey, don't forget to feed the cat.
- Honey, don't forget to go to the dry-cleaner.
- Honey, don't forget to pick-up my parents at the airport.
- Honey, don't forget the kids' violin concert.

The combinatorical approach requires

$$
\# \text { of bits }=\left\lceil\log _{2} \# \text { of tasks }\right\rceil
$$

It guarantees that you'll know what to do...

The Information-Theoretic Approach

- Model the tasks as elements of \mathcal{X}^{n} generated IID P.
- Ignore the atypical sequences.
- Index the typical sequences using $\approx n H(X)$ bits.
- Send the index.
- Typical tasks will be communicated error-free.

The Information-Theoretic Approach

- Model the tasks as elements of \mathcal{X}^{n} generated IID P.
- Ignore the atypical sequences.
- Index the typical sequences using $\approx n H(X)$ bits.
- Send the index.
- Typical tasks will be communicated error-free.

Any married person knows how ludicrous this is:
What if the task is atypical?
Yes, this is unlikely, but:

- You won't even know it!
- Are you ok with the consequences?

Improved Information-Theoretic Approach

- First bit indicates whether task is typical.
- You'll know when the task is lost in transmission.

Improved Information-Theoretic Approach

- First bit indicates whether task is typical.
- You'll know when the task is lost in transmission.

What are you going to do about it?

Improved Information-Theoretic Approach

- First bit indicates whether task is typical.
- You'll know when the task is lost in transmission.

> What are you going to do about it?

- If I were you, I would perform them all.
- Yes, I know there are exponentially many of them.
- Are you beginning to worry about the expected number of tasks?

Improved Information-Theoretic Approach

- First bit indicates whether task is typical.
- You'll know when the task is lost in transmission.

What are you going to do about it?

- If I were you, I would perform them all.
- Yes, I know there are exponentially many of them.
- Are you beginning to worry about the expected number of tasks?

You could perform a subset of the tasks.

- You'll get extra points for effort.
- But what if the required task is not in the subset?
- Are you ok with the consequences?

Our Problem

- A source generates X^{n} in \mathcal{X}^{n} IID P.
- The sequence is described using $n R$ bits.
- Based on the description, a list is generated that is guaranteed to contain X^{n}.
- For which rates R can we find descriptions and corresponding lists with expected listsize arbitrarily close to 1 ?

More generally, we'll look at the ρ-th moment of the listsize.

What if you are not in a Relationship?

Should you tune out?

Rényi Entropy

$$
H_{\alpha}(X)=\frac{\alpha}{1-\alpha} \log \left[\sum_{x \in \mathcal{X}} P(x)^{\alpha}\right]^{1 / \alpha}
$$

Alfréd Rényi
(1921-1970)

A Homework Problem

Show that

1. $\lim _{\alpha \rightarrow 1} H_{\alpha}(X)=H(X)$.
2. $\lim _{\alpha \rightarrow 0} H_{\alpha}(X)=\log |\operatorname{supp} P|$.
3. $\lim _{\alpha \rightarrow \infty} H_{\alpha}(X)=-\log \max _{x \in \mathcal{X}} P(x)$.

Do not Tune Out

- Our problem gives an operational meaning to

$$
\left.H_{\frac{1}{1+\rho}}, \quad \rho>0 \quad \text { (i.e., } 0<\alpha<1\right) .
$$

- It reveals many of its properties.
- And it motivates the conditional Rényi entropy.

Lossless List Source Codes

- Rate- R blocklength- n source code with list decoder:

$$
f_{n}: \mathcal{X}^{n} \rightarrow\left\{1, \ldots, 2^{n R}\right\}, \quad \lambda_{n}:\left\{1, \ldots, 2^{n R}\right\} \rightarrow 2^{\mathcal{X}^{n}}
$$

- The code is lossless if

$$
x^{n} \in \lambda_{n}\left(f_{n}\left(x^{n}\right)\right), \quad \forall x^{n} \in \mathcal{X}^{n}
$$

- ρ-th listsize moment $(\rho>0)$:

$$
\mathrm{E}\left[\left|\lambda_{n}\left(f_{n}\left(X^{n}\right)\right)\right|^{\rho}\right]=\sum_{x^{n} \in \mathcal{X}^{n}} P^{n}\left(x^{n}\right)\left|\lambda_{n}\left(f_{n}\left(x^{n}\right)\right)\right|^{\rho}
$$

The Main Result on Lossless List Source Codes

Theorem

1. If $R>H_{\frac{1}{1+\rho}}(X)$, then there exists $\left(f_{n}, \lambda_{n}\right)_{n \geq 1}$ such that

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[\left|\lambda_{n}\left(f_{n}\left(X^{n}\right)\right)\right|^{\rho}\right]=1
$$

2. If $R<H_{\frac{1}{1+\rho}}(X)$, then

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|\lambda_{n}\left(f_{n}\left(X^{n}\right)\right)\right|^{\rho}\right]=\infty
$$

Some Properties of $H_{\frac{1}{1+\rho}}(X)$

1. Nondecreasing in ρ

Some Properties of $H_{\frac{1}{1+\rho}}(X)$

1. Nondecreasing in ρ
(Monotonicity of $\rho \mapsto a^{\rho}$ when $a \geq 1$.)

Some Properties of $H_{\frac{1}{1+\rho}}(X)$

1. Nondecreasing in ρ

$$
\text { 2. } H(X) \leq H_{\frac{1}{1+\rho}}(X) \leq \log |\mathcal{X}|
$$

Some Properties of $H_{\frac{1}{1+\rho}}(X)$

1. Nondecreasing in ρ
2. $H(X) \leq H_{\frac{1}{1+\rho}}(X) \leq \log |\mathcal{X}|$ $(R<H(X) \Longrightarrow$ listsize ≥ 2 w.p. tending to one. And $R=\log |\mathcal{X}|$ can guarantee listsize $=1$.)

Some Properties of $H_{\frac{1}{1+\rho}}(X)$

1. Nondecreasing in ρ
2. $H(X) \leq H_{\frac{1}{1+\rho}}(X) \leq \log |\mathcal{X}|$
3. $\lim _{\rho \rightarrow 0} H_{\frac{1}{1+\rho}}(X)=H(X)$

Some Properties of $H_{\frac{1}{1+\rho}}(X)$

1. Nondecreasing in ρ
2. $H(X) \leq H_{\frac{1}{1+\rho}}(X) \leq \log |\mathcal{X}|$
3. $\lim _{\rho \rightarrow 0} H_{\frac{1}{1+\rho}}(X)=H(X)$ $(R>H(X) \Longrightarrow \operatorname{prob}($ listsize $\geq 2)$ decays exponentially. For small ρ beats $\left|\lambda_{n}\left(f_{n}\left(X^{n}\right)\right)\right|^{\rho}$, which cannot exceed $e^{n \rho \log |\mathcal{X}|}$.)

Some Properties of $H_{\frac{1}{1+\rho}}(X)$

1. Nondecreasing in ρ
2. $H(X) \leq H_{\frac{1}{1+\rho}}(X) \leq \log |\mathcal{X}|$
3. $\lim _{\rho \rightarrow 0} H_{\frac{1}{1+\rho}}(X)=H(X)$
4. $\lim _{\rho \rightarrow \infty} H_{\frac{1}{1+\rho}}(X)=\log |\operatorname{supp}(P)|$

Some Properties of $H_{\frac{1}{1+\rho}}(X)$

1. Nondecreasing in ρ
2. $H(X) \leq H_{\frac{1}{1+\rho}}(X) \leq \log |\mathcal{X}|$
3. $\lim _{\rho \rightarrow 0} H_{\frac{1}{1+\rho}}(X)=H(X)$
4. $\lim _{\rho \rightarrow \infty} H_{\frac{1}{1+\rho}}(X)=\log |\operatorname{supp}(P)|$ $\left(R<\log |\operatorname{supp}(P)| \Longrightarrow \exists \mathbf{x}_{0} \in \operatorname{supp}(P)^{n}\right.$ for which $\left|\varphi_{n}\left(f_{n}\left(\mathbf{x}_{0}\right)\right)\right| \geq e^{n(\log |\operatorname{supp}(P)|-R)}$. Since $P^{n}\left(\mathbf{x}_{0}\right) \geq p_{\text {min }}^{n}$, where $p_{\text {min }}=\min \{P(x): x \in \operatorname{supp}(P)\}$

$$
\sum_{\mathbf{x}} P^{n}(\mathbf{x})\left|\varphi_{n}\left(f_{n}(\mathbf{x})\right)\right|^{\rho} \geq e^{n \rho\left(\log |\operatorname{supp}(P)|-R-\frac{1}{\rho} \log \frac{1}{\rho_{\text {min }}}\right)}
$$

Hence R is not achievable if ρ is large.)

Some Properties of $H_{\frac{1}{1+\rho}}(X)$

1. Nondecreasing in ρ
2. $H(X) \leq H_{\frac{1}{1+\rho}}(X) \leq \log |\mathcal{X}|$
3. $\lim _{\rho \rightarrow 0} H_{\frac{1}{1+\rho}}(X)=H(X)$
4. $\lim _{\rho \rightarrow \infty} H_{\frac{1}{1+\rho}}(X)=\log |\operatorname{supp}(P)|$

Sketch of Direct Part

1. Partition each type-class T_{Q} into $2^{n R}$ lists of \approx lengths

$$
\left\lceil 2^{-n R}\left|T_{Q}\right|\right\rceil \approx 2^{n(H(Q)-R)} .
$$

2. Describe the type of x^{n} using $o(n)$ bits.
3. Describe the list containing x^{n} using $n R$ bits.
4. $\operatorname{Pr}\left(X^{n} \in T_{Q}\right) \approx 2^{-n D(Q \| P)}$ and small number of types, so

$$
\begin{aligned}
& \sum_{Q} \operatorname{Pr}\left(X^{n} \in T_{Q}\right)\left[2^{n(H(Q)-R)}\right\rceil^{\rho} \\
& \quad \leq 1+2^{-n \rho\left(R-\max _{Q}\left\{H(Q)-\rho^{-1} D(Q \| P)\right\}-\delta_{n}\right)}
\end{aligned}
$$

where $\delta_{n} \rightarrow 0$.
5. By Arıkan'96,

$$
\max _{Q}\left\{H(Q)-\rho^{-1} D(Q \| P)\right\}=H_{\frac{1}{1+\rho}}(X) .
$$

The Key to the Converse

Lemma

If

1. P is a PMF on a finite nonempty set \mathcal{X},
2. $\mathcal{L}_{1}, \ldots, \mathcal{L}_{M}$ is a partition of \mathcal{X},
3. $L(x) \triangleq\left|\mathcal{L}_{j}\right|$ if $x \in \mathcal{L}_{j}$.

Then

$$
\sum_{x \in \mathcal{X}} P(x) L^{\rho}(x) \geq M^{-\rho}\left[\sum_{x \in \mathcal{X}} P(x)^{\frac{1}{1+\rho}}\right]^{1+\rho}
$$

A Simple Identity for the Proof of the Lemma

$$
\sum_{x \in \mathcal{X}} \frac{1}{L(x)}=M
$$

A Simple Identity for the Proof of the Lemma

$$
\sum_{x \in \mathcal{X}} \frac{1}{L(x)}=M .
$$

Proof:

$$
\begin{aligned}
\sum_{x \in \mathcal{X}} \frac{1}{L(x)} & =\sum_{j=1}^{M} \sum_{x \in \mathcal{L}_{j}} \frac{1}{L(x)} \\
& =\sum_{j=1}^{M} \sum_{x \in \mathcal{L}_{j}} \frac{1}{\left|\mathcal{L}_{j}\right|} \\
& =\sum_{j=1}^{M} 1 \\
& =M
\end{aligned}
$$

Proof of the Lemma

1. Recall Hölder's Inequality: If $p, q>1$ and $1 / p+1 / q=1$, then

$$
\sum_{x} a(x) b(x) \leq\left[\sum_{x} a(x)^{p}\right]^{\frac{1}{p}}\left[\sum_{x} b(x)^{q}\right]^{\frac{1}{q}}, \quad a(\cdot), b(\cdot) \geq 0 .
$$

2. Rearranging gives

$$
\sum_{x} a(x)^{p} \geq\left[\sum_{x} b(x)^{q}\right]^{-\frac{p}{q}}\left[\sum_{x} a(x) b(x)\right]^{p} .
$$

3. Choose $p=1+\rho, q=(1+\rho) / \rho, a(x)=P(x)^{\frac{1}{1+\rho}} L(x)^{\frac{\rho}{1+\rho}}$ and $b(x)=L(x)^{-\frac{\rho}{1+\rho}}$, and note that

$$
\sum_{x \in \mathcal{X}} \frac{1}{L(x)}=M
$$

Converse

1. WLOG assume $\lambda_{n}(m)=\left\{x^{n} \in \mathcal{X}^{n}: f_{n}\left(x^{n}\right)=m\right\}$.
2. \Rightarrow The lists $\lambda_{n}(1), \ldots, \lambda_{n}\left(2^{n R}\right)$ partition \mathcal{X}^{n}.
3. $\lambda_{n}\left(f_{n}\left(x^{n}\right)\right)$ is the list containing x^{n}.
4. By the lemma:

$$
\begin{aligned}
\sum_{x^{n} \in \mathcal{X}^{n}} P_{X}^{n}\left(x^{n}\right)\left|\lambda_{n}\left(f_{n}\left(x^{n}\right)\right)\right|^{\rho} & \geq 2^{-n \rho R}\left[\sum_{x^{n} \in \mathcal{X}^{n}} P_{X}^{n}\left(x^{n}\right)^{\frac{1}{1+\rho}}\right]^{1+\rho} \\
& =2^{n \rho\left(H_{\frac{1}{1+\rho}}(X)-R\right)}
\end{aligned}
$$

Recall the lemma:

$$
\sum_{x \in \mathcal{X}} P(x) L^{\rho}(x) \geq M^{-\rho}\left[\sum_{x \in \mathcal{X}} P(x)^{\frac{1}{1+\rho}}\right]^{1+\rho}
$$

How to Define Conditional Rényi Entropy?

Should it be defined as

$$
\sum_{y \in \mathcal{Y}} P_{Y}(y) H_{\alpha}(X \mid Y=y) \quad ?
$$

How to Define Conditional Rényi Entropy?

Should it be defined as

$$
\sum_{y \in \mathcal{Y}} P_{Y}(y) H_{\alpha}(X \mid Y=y) \quad ?
$$

Consider Y as side information to both encoder and decoder,

$$
\left(X_{i}, Y_{i}\right) \sim \operatorname{IID} P_{X Y}
$$

You and your spouse hopefully have something in common...

Lossless List Source Codes with Side-Information

- $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots \sim \operatorname{IID} P_{X, Y}$
- Y^{n} is side-information.
- Rate- R blocklength- n source code with list decoder:

$$
f_{n}: \mathcal{X}^{n} \times \mathcal{Y}^{n} \rightarrow\left\{1, \ldots, 2^{n R}\right\}, \quad \lambda_{n}:\left\{1, \ldots, 2^{n R}\right\} \times \mathcal{Y}^{n} \rightarrow 2^{\mathcal{X}^{n}}
$$

- Lossless property:

$$
x^{n} \in \lambda_{n}\left(f_{n}\left(x^{n}, y^{n}\right), y^{n}\right), \quad \forall\left(x^{n}, y^{n}\right) \in \mathcal{X}^{n} \times \mathcal{Y}^{n}
$$

- ρ-th listsize moment:

$$
\mathrm{E}\left[\left|\lambda_{n}\left(f_{n}\left(X^{n}, Y^{n}\right), Y^{n}\right)\right|^{\rho}\right]
$$

Result for Lossless List Source Codes with Side-Information

Theorem

1. If $R>H_{\frac{1}{1+\rho}}(X \mid Y)$, then there exists $\left(f_{n}, \lambda_{n}\right)_{n \geq 1}$ such that

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[\left|\lambda_{n}\left(f_{n}\left(X^{n}, Y^{n}\right), Y^{n}\right)\right|^{\rho}\right]=1
$$

2. If $R<H_{\frac{1}{1+\rho}}(X \mid Y)$, then

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[\left|\lambda_{n}\left(f_{n}\left(X^{n}, Y^{n}\right), Y^{n}\right)\right|^{\rho}\right]=\infty
$$

Here $H_{\frac{1}{1+\rho}}(X \mid Y)$ is defined to make this correct. ..

So $H_{\frac{1}{1+\rho}}(X \mid Y)$ is:

$$
H_{\alpha}(X \mid Y)=\frac{\alpha}{1-\alpha} \log \sum_{y \in \mathcal{Y}}\left[\sum_{X \in \mathcal{X}} P_{X, Y}(x, y)^{\alpha}\right]^{1 / \alpha}
$$

Some Properties of $H_{\frac{1}{1+\rho}}(X \mid Y)$

1. Nondecreasing in $\rho>0$
2. $\lim _{\rho \rightarrow 0} H_{\frac{1}{1+\rho}}(X \mid Y)=H(X \mid Y)$
3. $\lim _{\rho \rightarrow \infty} H_{\frac{1}{1+\rho}}(X \mid Y)=\max _{y} \log \left|\operatorname{supp}\left(P_{X \mid Y=y}\right)\right|$
4. $H_{\frac{1}{1+\rho}}(X \mid Y) \leq H_{\frac{1}{1+\rho}}(X)$

Direct Part

1. Fix a side-information sequence y^{n} of type Q.
2. Partition each V-shell of y^{n} into $2^{n R}$ lists of lengths at most

$$
\left\lceil 2^{-n R}\left|T_{V}\left(y^{n}\right)\right|\right\rceil \leq\left\lceil 2^{n(H(V \mid Q)-R)}\right\rceil
$$

3. Describe V and the list containing x^{n} using $n R+o(n)$ bits.
4. The ρ-th moment of the listsize can be upper-bounded by

$$
\begin{aligned}
& \sum_{Q, V} \operatorname{Pr}\left(\left(X^{n}, Y^{n}\right) \in T_{Q \circ V)}\left\lceil 2^{n(H(V \mid Q)-R)}\right\rceil^{\rho}\right. \\
& \quad \leq 1+2^{-n \rho\left(R-\max _{Q, V}\left\{H(V \mid Q)-\rho^{-1} D\left(Q \circ V \| P_{X, Y}\right)\right\}-\delta_{n}\right)}
\end{aligned}
$$

where $\delta_{n} \rightarrow 0$.
5. Complete the proof by showing that

$$
H_{\frac{1}{1+\rho}}(X \mid Y)=\max _{Q, V}\left\{H(V \mid Q)-\rho^{-1} D\left(Q \circ V \| P_{X, Y}\right)\right\}
$$

\square

Conditional Rényi Entropy

$$
H_{\alpha}(X \mid Y)=\frac{\alpha}{1-\alpha} \log \sum_{y \in \mathcal{Y}}\left[\sum_{x \in \mathcal{X}} P_{X, Y}(x, y)^{\alpha}\right]^{1 / \alpha}
$$

Suguru Arimoto

Arimoto's Motivation

- Define "capacity of order α " as

$$
C_{\alpha}=\max _{P_{X}}\left\{H_{\alpha}(X)-H_{\alpha}(X \mid Y)\right\}
$$

- Arimoto showed that

$$
C_{\frac{1}{1+\rho}}=\frac{1}{\rho} \max _{P} E_{0}(\rho, P),
$$

where $E_{0}(\rho, P)$ is Gallager's exponent function:

$$
E_{0}(\rho, P)=-\log \sum_{y}\left[\sum_{x} P(x) W(y \mid x)^{\frac{1}{1+\rho}}\right]^{1+\rho}
$$

- Gallager's random coding bound thus becomes

$$
P_{e} \leq \exp \left(-n \rho\left(C_{\frac{1}{1+\rho}}-R\right)\right), \quad 0 \leq \rho \leq 1
$$

List Source Coding with a Fidelity Criterion

1. Rate- R blocklength- n source code with list decoder:

$$
f_{n}: \mathcal{X}^{n} \rightarrow\left\{1, \ldots, 2^{n R}\right\}, \quad \lambda_{n}:\left\{1, \ldots, 2^{n R}\right\} \rightarrow 2^{\hat{\mathcal{X}}^{n}}
$$

2. Fidelity criterion:

$$
d\left(f_{n}, \lambda_{n}\right) \triangleq \max _{x^{n} \in \mathcal{X}^{n}} \min _{\hat{x}^{n} \in \lambda_{n}\left(f_{n}\left(x^{n}\right)\right)} d\left(x^{n}, \hat{x}^{n}\right) \leq D
$$

3. ρ-th listsize moment:

$$
\mathrm{E}\left[\left|\lambda_{n}\left(f_{n}\left(X^{n}\right)\right)\right|^{\rho}\right]
$$

A Rate-Distortion Theorem for List Source Codes

Theorem

1. If $R>R_{\rho}(D)$, then there exists $\left(f_{n}, \lambda_{n}\right)_{n \geq 1}$ such that

$$
\sup _{n} d\left(f_{n}, \lambda_{n}\right) \leq D \quad \& \quad \lim _{n \rightarrow \infty} E\left[\left|\lambda_{n}\left(f_{n}\left(X^{n}\right)\right)\right|^{\rho}\right]=1
$$

2. If $R<R_{\rho}(D)$ and $\lim \sup _{n \rightarrow \infty} d\left(f_{n}, \lambda_{n}\right) \leq D$, then

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[\left|\lambda_{n}\left(f_{n}\left(X^{n}\right)\right)\right|^{\rho}\right]=\infty
$$

But what is $R_{\rho}(D)$?

A Rényi Rate-Distortion Function

$$
R_{\rho}(D) \triangleq \max _{Q}\left\{R(Q, D)-\rho^{-1} D(Q \| P)\right\},
$$

where $R(Q, D)$ is the rate-distortion function of the source Q.

Direct Part

1. Type Covering Lemma: If $n \geq n_{0}(\delta)$, then for every type Q we can find $B_{Q} \subset \hat{\mathcal{X}}^{n}$ such that

$$
\left|B_{Q}\right| \leq 2^{n(R(Q, D)+\delta)} \quad \text { and } \quad \max _{x^{n} \in T_{Q}} \min _{\hat{x}^{n} \in B_{Q}} d\left(x^{n}, \hat{x}^{n}\right) \leq D .
$$

2. Partition each B_{Q} into $2^{n R}$ lists of lengths at most

$$
\left\lceil 2^{n(R(Q, D)-R+\delta)}\right\rceil .
$$

3. Use $n R+o(n)$ bits to describe the type Q of x^{n} and a list in the partition of B_{Q} that contains some \hat{x}^{n} with $d\left(x^{n}, \hat{x}^{n}\right) \leq D$.
4. The ρ-th moment of the listsize can be upper-bounded by

$$
\begin{aligned}
& \sum_{Q} \operatorname{Pr}\left(X^{n} \in T_{Q}\right)\left\lceil 2^{n(R(Q, D)-R+\delta)}\right\rceil^{\rho} \\
& \leq 1+2^{-n \rho\left(R-\max _{Q}\left\{R(Q, D)-\rho^{-1} D(Q \| P)\right\}-\delta-\delta_{n}\right)}
\end{aligned}
$$

Converse

1. WLOG assume $\lambda_{n}(m) \cap \lambda_{n}\left(m^{\prime}\right)=\emptyset$ if $m \neq m^{\prime}$.
2. For each $\hat{x}^{n} \in \bigcup_{m=1}^{n^{n R}} \lambda_{n}(m)$ let $m\left(\hat{x}^{n}\right)$ be the unique index s.t. $\hat{x}^{n} \in \lambda_{n}\left(m\left(\hat{x}^{n}\right)\right)$.
3. Define $g_{n}: \mathcal{X}^{n} \rightarrow \hat{\mathcal{X}}^{n}$ such that

$$
g_{n}\left(x^{n}\right) \in \lambda_{n}\left(f_{n}\left(x^{n}\right)\right) \quad \text { and } \quad d\left(x^{n}, g_{n}\left(x^{n}\right)\right) \leq D, \quad \forall x .
$$

4. Observe that

$$
\begin{aligned}
\sum_{x^{n}} P_{X}^{n}\left(x^{n}\right)\left|\lambda_{n}\left(f_{n}\left(x^{n}\right)\right)\right|^{\rho} & =\sum_{\hat{x}^{n}} P_{X}^{n}\left(g_{n}^{-1}\left(\left\{\hat{x}^{n}\right\}\right)\right)\left|\lambda_{n}\left(m\left(\hat{x}^{n}\right)\right)\right|^{\rho} \\
& =\sum_{\hat{x}^{n}} \tilde{P}_{n}\left(\hat{x}^{n}\right)\left|\lambda_{n}\left(m\left(\hat{x}^{n}\right)\right)\right|^{\rho}
\end{aligned}
$$

where

$$
\tilde{P}_{n}\left(\hat{x}^{n}\right)=P_{X}^{n}\left(g_{n}^{-1}\left(\left\{\hat{x}^{n}\right\}\right)\right)
$$

Converse contd.

5. Applying the lemma yields

$$
\sum_{\hat{x}^{n}} \tilde{P}_{n}\left(\hat{x}^{n}\right)\left|\lambda_{n}\left(m\left(\hat{x}^{n}\right)\right)\right|^{\rho} \geq 2^{-n \rho R} 2^{\rho H_{\frac{1}{1+\rho}}\left(\tilde{P}_{n}\right)}
$$

6. It now suffices to show that

$$
H_{\frac{1}{1+\rho}}\left(\tilde{P}_{n}\right) \geq n R_{\rho}(D)
$$

7. The PMF \tilde{P}_{n} can be written as

$$
\tilde{P}_{n}=P_{X}^{n} \widetilde{W}_{n}
$$

where

$$
\widetilde{W}_{n}\left(\hat{x}^{n} \mid x^{n}\right)=1\left\{\hat{x}^{n}=g_{n}\left(x^{n}\right)\right\}
$$

Converse contd.

8. Let Q_{\star} achieve $R_{\rho}(D)$, i.e.,

$$
R_{\rho}(D)=R\left(Q_{\star}, D\right)-\rho^{-1} D\left(Q_{\star} \| P_{X}\right)
$$

9. For every PMF Q on $\hat{\mathcal{X}}^{n}$

$$
H_{\frac{1}{1+\rho}}\left(\tilde{P}_{n}\right) \geq H(Q)-\rho^{-1} D\left(Q \| \tilde{P}_{n}\right)
$$

10. Choosing $Q=Q_{\star}^{n} \widetilde{W}_{n}$ gives

$$
\begin{aligned}
H_{\frac{1}{1+\rho}}\left(\tilde{P}_{n}\right) & \geq H\left(Q_{\star}^{n} \widetilde{W}_{n}\right)-\rho^{-1} D\left(Q_{\star}^{n} \widetilde{W}_{n} \| P_{X}^{n} \widetilde{W}_{n}\right) \\
& \geq H\left(Q_{\star}^{n} \widetilde{W}_{n}\right)-\rho^{-1} D\left(Q_{\star}^{n} \| P_{X}^{n}\right) \quad \text { (Data processing) } \\
& =H\left(Q_{\star}^{n} \widetilde{W}_{n}\right)-n \rho^{-1} D\left(Q_{\star} \| P_{X}\right)
\end{aligned}
$$

Converse contd.

11. Let \tilde{X}^{n} be IID $\sim Q_{\star}$ and let $\hat{X}^{n}=g_{n}\left(\tilde{X}^{n}\right)$. Then

$$
\begin{aligned}
H\left(Q_{\star}^{n} \tilde{W}_{n}\right) & =H\left(\hat{X}^{n}\right) \\
& =I\left(\tilde{X}^{n} ; \hat{X}^{n}\right) .
\end{aligned}
$$

12. By construction of $g_{n}(\cdot)$

$$
\mathrm{E}\left[d\left(\tilde{X}^{n}, \hat{X}^{n}\right)\right] \leq D .
$$

13. From the converse to the Rate-Distortion Theorem it follows

$$
I\left(\tilde{X}^{n} ; \hat{X}^{n}\right) \geq n R\left(Q_{\star}, D\right)
$$

Example: Binary Source with Hamming Distortion

- $\mathcal{X}=\hat{\mathcal{X}}=\{0,1\}$
- $\operatorname{Pr}\left(X_{i}=1\right)=p$
- $d(x, \hat{x})=1\{x \neq \hat{x}\}$
- $R(D)=|h(p)-h(D)|^{+}$
- $R_{\rho}(D)=\left|H_{\frac{1}{1+\rho}}(p)-h(D)\right|^{+}$
where $|\xi|^{+}=\max \{0, \xi\}$ and $h(p)=p \log \frac{1}{p}+(1-p) \log \frac{1}{1-p}$.

Example: Binary Source with Hamming Distortion contd.

$R_{\rho}(D)$ plotted for binary source ($p=1 / 4$) and Hamming distortion

This function Is also not New!

$$
R_{\rho}(D) \triangleq \max _{Q}\left\{R(Q, D)-\rho^{-1} D(Q \| P)\right\}
$$

where $R(Q, D)$ is the rate-distortion function of the source Q.

Erdal Arıkan

Neri Merhav

Arıkan \& Merhav's Motivation

- Let $\mathcal{G}_{n}=\left\{\hat{x}_{1}^{n}, \hat{x}_{2}^{n}, \ldots\right\}$ be an ordering of $\hat{\mathcal{X}}^{n}$.
- Define

$$
G_{n}\left(x^{n}\right)=\min \left\{j: d\left(x^{n}, \hat{x}_{j}^{n}\right) \leq D\right\} .
$$

- If X_{1}, X_{2}, \ldots are IID $\sim P$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \min _{\mathcal{G}_{n}} \log \mathrm{E}\left[G_{n}\left(X_{1}, \ldots, X_{n}\right)^{\rho}\right]^{1 / \rho}=R_{\rho}(D)
$$

To Recap

Replacing "messages" with "tasks" leads to new operational characterizations of

$$
\begin{aligned}
H_{\frac{1}{1+\rho}}(X) & =\frac{1}{\rho} \log \left[\sum_{X} P(x)^{\frac{1}{1+\rho}}\right]^{1+\rho} \\
H_{\frac{1}{1+\rho}}(X \mid Y) & =\frac{1}{\rho} \log \sum_{y}\left[\sum_{x} P_{X, Y}(x, y)^{\frac{1}{1+\rho}}\right]^{1+\rho} \\
R_{\rho}(D) & =\max _{Q}\left\{R(Q, D)-\rho^{-1} D(Q \| P)\right\}
\end{aligned}
$$

for all $\rho>0$.

To Recap

Replacing "messages" with "tasks" leads to new operational characterizations of

$$
\begin{aligned}
H_{\frac{1}{1+\rho}}(X) & =\frac{1}{\rho} \log \left[\sum_{X} P(x)^{\frac{1}{1+\rho}}\right]^{1+\rho} \\
H_{\frac{1}{1+\rho}}(X \mid Y) & =\frac{1}{\rho} \log \sum_{y}\left[\sum_{x} P_{X, Y}(x, y)^{\frac{1}{1+\rho}}\right]^{1+\rho} \\
R_{\rho}(D) & =\max _{Q}\left\{R(Q, D)-\rho^{-1} D(Q \| P)\right\}
\end{aligned}
$$

for all $\rho>0$.

Thank You!

