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A Task from your Spouse
Using a fixed number of bits, your spouse reminds you of one of
the following tasks:

• Honey, don’t forget to feed the cat.
• Honey, don’t forget to go to the dry-cleaner.
• Honey, don’t forget to pick-up my parents at the airport.
• Honey, don’t forget the kids’ violin concert.
•
•
•

The combinatorical approach requires

# of bits =
⌈
log2 # of tasks

⌉
.

It guarantees that you’ll know what to do. . .
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The Information-Theoretic Approach

• Model the tasks as elements of X n generated IID P.
• Ignore the atypical sequences.
• Index the typical sequences using ≈ nH(X ) bits.
• Send the index.
• Typical tasks will be communicated error-free.

Any married person knows how ludicrous this is:

What if the task is atypical?

Yes, this is unlikely, but:
• You won’t even know it!
• Are you ok with the consequences?
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Improved Information-Theoretic Approach

• First bit indicates whether task is typical.
• You’ll know when the task is lost in transmission.

What are you going to do about it?

• If I were you, I would perform them all.
• Yes, I know there are exponentially many of them.
• Are you beginning to worry about the
expected number of tasks?

You could perform a subset of the tasks.
• You’ll get extra points for effort.
• But what if the required task is not in the subset?
• Are you ok with the consequences?
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Our Problem

• A source generates Xn in X n IID P.
• The sequence is described using nR bits.
• Based on the description, a list is generated that is
guaranteed to contain Xn.

• For which rates R can we find descriptions and corresponding
lists with expected listsize arbitrarily close to 1?

More generally, we’ll look at the ρ-th moment of the listsize.



What if you are not in a Relationship?

Should you tune out?



Rényi Entropy

Hα(X ) =
α

1− α log
[∑

x∈X
P(x)α

]1/α

Alfréd Rényi
(1921–1970)



A Homework Problem

Show that
1. limα→1 Hα(X ) = H(X ).
2. limα→0 Hα(X ) = log|suppP|.
3. limα→∞Hα(X ) = − logmaxx∈X P(x).



Do not Tune Out

• Our problem gives an operational meaning to

H 1
1+ρ
, ρ > 0 (i.e., 0 < α < 1).

• It reveals many of its properties.
• And it motivates the conditional Rényi entropy.



Lossless List Source Codes

• Rate-R blocklength-n source code with list decoder:

fn : X n → {1, . . . , 2nR}, λn : {1, . . . , 2nR} → 2X n

• The code is lossless if

xn ∈ λn(fn(xn)), ∀xn ∈ X n

• ρ-th listsize moment (ρ > 0):

E[|λn(fn(Xn))|ρ] =
∑

xn∈X n
Pn(xn)|λn(fn(xn))|ρ



The Main Result on Lossless List Source Codes

Theorem
1. If R > H 1

1+ρ
(X ), then there exists (fn, λn)n≥1 such that

lim
n→∞

E[|λn(fn(Xn))|ρ] = 1.

2. If R < H 1
1+ρ

(X ), then

lim
n→∞

E[|λn(fn(Xn))|ρ] =∞.



Some Properties of H 1
1+ρ

(X )

1. Nondecreasing in ρ

(Monotonicity of ρ 7→ aρ when a ≥ 1.)
2. H(X ) ≤ H 1

1+ρ
(X ) ≤ log |X |

(R < H(X ) =⇒ listsize ≥ 2 w.p. tending to one.
And R = log |X | can guarantee listsize = 1.)

3. limρ→0 H 1
1+ρ

(X ) = H(X )

(R > H(X ) =⇒ prob(listsize ≥ 2) decays exponentially. For
small ρ beats |λn(fn(Xn))|ρ, which cannot exceed enρ log |X |.)

4. limρ→∞H 1
1+ρ

(X ) = log |supp(P)|

(R < log|supp(P)| =⇒ ∃x0 ∈ supp(P)n for which
|ϕn(fn(x0))| ≥ en(log|supp(P)|−R). Since Pn(x0) ≥ pn

min, where
pmin = min{P(x) : x ∈ supp(P)}∑

x
Pn(x)|ϕn(fn(x))|ρ ≥ enρ(log|supp(P)|−R− 1

ρ
log 1

pmin
)
.

Hence R is not achievable if ρ is large.)
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Sketch of Direct Part
1. Partition each type-class TQ into 2nR lists of ≈ lengths⌈

2−nR |TQ|
⌉
≈ 2n(H(Q)−R).

2. Describe the type of xn using o(n) bits.
3. Describe the list containing xn using nR bits.
4. Pr(Xn ∈ TQ) ≈ 2−nD(Q||P) and small number of types, so∑

Q
Pr(Xn ∈ TQ)

⌈
2n(H(Q)−R)⌉ρ

≤ 1+ 2−nρ(R−maxQ{H(Q)−ρ−1D(Q||P)}−δn)

where δn → 0.
5. By Arıkan’96,

max
Q

{
H(Q)− ρ−1D(Q||P)

}
= H 1

1+ρ
(X ).



The Key to the Converse

Lemma
If
1. P is a PMF on a finite nonempty set X ,
2. L1, . . . ,LM is a partition of X ,
3. L(x) , |Lj | if x ∈ Lj .

Then ∑
x∈X

P(x)Lρ(x) ≥ M−ρ
[∑

x∈X
P(x)

1
1+ρ

]1+ρ
.



A Simple Identity for the Proof of the Lemma

∑
x∈X

1
L(x) = M.

Proof:

∑
x∈X

1
L(x) =

M∑
j=1

∑
x∈Lj

1
L(x)

=
M∑

j=1

∑
x∈Lj

1
|Lj |

=
M∑

j=1
1

= M.
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Proof of the Lemma

1. Recall Hölder’s Inequality: If p, q > 1 and 1/p+1/q = 1, then

∑
x

a(x)b(x) ≤
[∑

x
a(x)p

] 1
p
[∑

x
b(x)q

] 1
q
, a(·), b(·) ≥ 0.

2. Rearranging gives

∑
x

a(x)p ≥
[∑

x
b(x)q

]− p
q
[∑

x
a(x)b(x)

]p
.

3. Choose p = 1+ ρ, q = (1+ ρ)/ρ, a(x) = P(x)
1

1+ρL(x)
ρ

1+ρ

and b(x) = L(x)−
ρ

1+ρ , and note that

∑
x∈X

1
L(x) = M.



Converse
1. WLOG assume λn(m) =

{
xn ∈ X n : fn(xn) = m

}
.

2. ⇒ The lists λn(1), . . . , λn(2nR) partition X n.
3. λn(fn(xn)) is the list containing xn.
4. By the lemma:

∑
xn∈X n

Pn
X (xn)|λn(fn(xn))|ρ ≥ 2−nρR

[ ∑
xn∈X n

Pn
X (xn)

1
1+ρ

]1+ρ

= 2
nρ
(

H 1
1+ρ

(X)−R
)
.

Recall the lemma:

∑
x∈X

P(x)Lρ(x) ≥ M−ρ
[∑

x∈X
P(x)

1
1+ρ

]1+ρ
.



How to Define Conditional Rényi Entropy?

Should it be defined as∑
y∈Y

PY (y)Hα(X |Y = y) ?

Consider Y as side information to both encoder and decoder,

(Xi ,Yi) ∼ IID PXY .

You and your spouse hopefully have something in common. . .
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Lossless List Source Codes with Side-Information

• (X1,Y1), (X2,Y2), . . . ∼ IID PX ,Y

• Y n is side-information.
• Rate-R blocklength-n source code with list decoder:

fn : X n × Yn → {1, . . . , 2nR}, λn : {1, . . . , 2nR} × Yn → 2X n

• Lossless property:

xn ∈ λn(fn(xn, yn), yn), ∀(xn, yn) ∈ X n × Yn

• ρ-th listsize moment:

E[|λn(fn(Xn,Y n),Y n)|ρ]



Result for Lossless List Source Codes with Side-Information

Theorem
1. If R > H 1

1+ρ
(X |Y ), then there exists (fn, λn)n≥1 such that

lim
n→∞

E[|λn(fn(Xn,Y n),Y n)|ρ] = 1.

2. If R < H 1
1+ρ

(X |Y ), then

lim
n→∞

E[|λn(fn(Xn,Y n),Y n)|ρ] =∞.

Here H 1
1+ρ

(X |Y ) is defined to make this correct. . .



So H 1
1+ρ

(X |Y ) is:

Hα(X |Y ) =
α

1− α log
∑
y∈Y

[∑
x∈X

PX ,Y (x , y)α
]1/α



Some Properties of H 1
1+ρ

(X |Y )

1. Nondecreasing in ρ > 0
2. limρ→0 H 1

1+ρ
(X |Y ) = H(X |Y )

3. limρ→∞H 1
1+ρ

(X |Y ) = maxy log |supp(PX |Y=y )|

4. H 1
1+ρ

(X |Y ) ≤ H 1
1+ρ

(X )



Direct Part
1. Fix a side-information sequence yn of type Q.
2. Partition each V -shell of yn into 2nR lists of lengths at most⌈

2−nR |TV (yn)|
⌉
≤
⌈
2n(H(V |Q)−R)⌉.

3. Describe V and the list containing xn using nR + o(n) bits.
4. The ρ-th moment of the listsize can be upper-bounded by∑

Q,V
Pr
(
(Xn,Y n) ∈ TQ◦V

)⌈
2n(H(V |Q)−R)⌉ρ

≤ 1+ 2−nρ(R−maxQ,V {H(V |Q)−ρ−1D(Q◦V ||PX ,Y )}−δn),

where δn → 0.
5. Complete the proof by showing that

H 1
1+ρ

(X |Y ) = max
Q,V

{
H(V |Q)− ρ−1D(Q ◦ V ||PX ,Y )

}
.



Conditional Rényi Entropy

Hα(X |Y ) =
α

1− α log
∑
y∈Y

[∑
x∈X

PX ,Y (x , y)α
]1/α

Suguru Arimoto



Arimoto’s Motivation
• Define “capacity of order α” as

Cα = max
PX

{
Hα(X )− Hα(X |Y )

}
• Arimoto showed that

C 1
1+ρ

=
1
ρ
max

P
E0(ρ,P),

where E0(ρ,P) is Gallager’s exponent function:

E0(ρ,P) = − log
∑

y

[∑
x

P(x)W (y |x)
1

1+ρ
]1+ρ

,

• Gallager’s random coding bound thus becomes

Pe ≤ exp
(
−nρ

(
C 1

1+ρ
− R

))
, 0 ≤ ρ ≤ 1.



List Source Coding with a Fidelity Criterion

1. Rate-R blocklength-n source code with list decoder:

fn : X n → {1, . . . , 2nR}, λn : {1, . . . , 2nR} → 2X̂ n

2. Fidelity criterion:

d(fn, λn) , max
xn∈X n

min
x̂n∈λn(fn(xn))

d(xn, x̂n) ≤ D

3. ρ-th listsize moment:

E[|λn(fn(Xn))|ρ]



A Rate-Distortion Theorem for List Source Codes

Theorem
1. If R > Rρ(D), then there exists (fn, λn)n≥1 such that

sup
n

d(fn, λn) ≤ D & lim
n→∞

E[|λn(fn(Xn))|ρ] = 1.

2. If R < Rρ(D) and lim supn→∞ d(fn, λn) ≤ D, then

lim
n→∞

E[|λn(fn(Xn))|ρ] =∞.

But what is Rρ(D)?



A Rényi Rate-Distortion Function

Rρ(D) , max
Q

{
R(Q,D)− ρ−1D(Q||P)

}
,

where R(Q,D) is the rate-distortion function of the source Q.



Direct Part
1. Type Covering Lemma: If n ≥ n0(δ), then for every type Q we

can find BQ ⊂ X̂ n such that

|BQ| ≤ 2n(R(Q,D)+δ) and max
xn∈TQ

min
x̂n∈BQ

d(xn, x̂n) ≤ D.

2. Partition each BQ into 2nR lists of lengths at most⌈
2n(R(Q,D)−R+δ)⌉.

3. Use nR + o(n) bits to describe the type Q of xn and a list in
the partition of BQ that contains some x̂n with d(xn, x̂n) ≤ D.

4. The ρ-th moment of the listsize can be upper-bounded by∑
Q

Pr(Xn ∈ TQ)
⌈
2n(R(Q,D)−R+δ)⌉ρ

≤ 1+ 2−nρ(R−maxQ{R(Q,D)−ρ−1D(Q||P)}−δ−δn).



Converse
1. WLOG assume λn(m) ∩ λn(m′) = ∅ if m 6= m′.
2. For each x̂n ∈

⋃2nR
m=1 λn(m) let m(x̂n) be the unique index s.t.

x̂n ∈ λn(m(x̂n)).
3. Define gn : X n → X̂ n such that

gn(xn) ∈ λn(fn(xn)) and d(xn, gn(xn)) ≤ D, ∀x .

4. Observe that∑
xn

Pn
X (xn)|λn(fn(xn))|ρ =

∑
x̂n

Pn
X
(
g−1

n ({x̂n})
)
|λn(m(x̂n))|ρ

=
∑
x̂n

P̃n(x̂n)|λn(m(x̂n))|ρ,

where
P̃n(x̂n) = Pn

X
(
g−1

n ({x̂n})
)
.



Converse contd.

5. Applying the lemma yields

∑
x̂n

P̃n(x̂n)|λn(m(x̂n))|ρ ≥ 2−nρR 2
ρH 1

1+ρ
(P̃n)

6. It now suffices to show that

H 1
1+ρ

(P̃n) ≥ nRρ(D).

7. The PMF P̃n can be written as

P̃n = Pn
XW̃n,

where
W̃n(x̂n|xn) = 1

{
x̂n = gn(xn)

}
.



Converse contd.

8. Let Q? achieve Rρ(D), i.e.,

Rρ(D) = R(Q?,D)− ρ−1D(Q?||PX ).

9. For every PMF Q on X̂ n

H 1
1+ρ

(P̃n) ≥ H(Q)− ρ−1D(Q||P̃n).

10. Choosing Q = Qn
?W̃n gives

H 1
1+ρ

(P̃n) ≥ H(Qn
?W̃n)− ρ−1D(Qn

?W̃n||Pn
XW̃n)

≥ H(Qn
?W̃n)− ρ−1D(Qn

? ||Pn
X ) (Data processing)

= H(Qn
?W̃n)− nρ−1D(Q?||PX ).



Converse contd.

11. Let X̃n be IID ∼ Q? and let X̂n = gn(X̃n). Then

H(Qn
?W̃n) = H(X̂n)

= I(X̃n; X̂n).

12. By construction of gn(·)

E[d(X̃n, X̂n)] ≤ D.

13. From the converse to the Rate-Distortion Theorem it follows

I(X̃n; X̂n) ≥ nR(Q?,D).



Example: Binary Source with Hamming Distortion

• X = X̂ = {0, 1}
• Pr(Xi = 1) = p
• d(x , x̂) = 1{x 6= x̂}
• R(D) = |h(p)− h(D)|+

• Rρ(D) = |H 1
1+ρ

(p)− h(D)|+

where |ξ|+ = max{0, ξ} and h(p) = p log 1
p + (1− p) log 1

1−p .



Example: Binary Source with Hamming Distortion contd.
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Rρ(D) plotted for binary source (p = 1/4) and Hamming distortion



This function Is also not New!

Rρ(D) , max
Q

{
R(Q,D)− ρ−1D(Q||P)

}
,

where R(Q,D) is the rate-distortion function of the source Q.

Erdal Arıkan Neri Merhav



Arıkan & Merhav’s Motivation

• Let Gn = {x̂n
1 , x̂n

2 , . . .} be an ordering of X̂ n.
• Define

Gn(xn) = min
{
j : d(xn, x̂n

j ) ≤ D
}
.

• If X1,X2, . . . are IID ∼ P, then

lim
n→∞

1
n min
Gn

log E[Gn(X1, . . . ,Xn)
ρ]1/ρ = Rρ(D).



To Recap

Replacing “messages” with “tasks” leads to new operational
characterizations of

H 1
1+ρ

(X ) =
1
ρ
log
[∑

x
P(x)

1
1+ρ
]1+ρ

H 1
1+ρ

(X |Y ) =
1
ρ
log
∑

y

[∑
x

PX ,Y (x , y)
1

1+ρ
]1+ρ

Rρ(D) = max
Q

{
R(Q,D)− ρ−1D(Q||P)

}
for all ρ > 0.

Thank You!
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