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A Task from your Spouse

Using a fixed number of bits, your spouse reminds you of one of
the following tasks:

e Honey, don't forget to feed the cat.

e Honey, don't forget to go to the dry-cleaner.

e Honey, don't forget to pick-up my parents at the airport.
e Honey, don't forget the kids' violin concert.
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The combinatorical approach requires
# of bits = [log, # of tasks]|.

It guarantees that you'll know what to do. ..



The Information-Theoretic Approach

Model the tasks as elements of X' generated IID P.
Ignore the atypical sequences.

Index the typical sequences using ~ n H(X) bits.
Send the index.

Typical tasks will be communicated error-free.
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Model the tasks as elements of X' generated IID P.

Ignore the atypical sequences.

Index the typical sequences using ~ n H(X) bits.
Send the index.

Typical tasks will be communicated error-free.

Any married person knows how ludicrous this is:
What if the task is atypical?

Yes, this is unlikely, but:
e You won't even know it!

e Are you ok with the consequences?
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First bit indicates whether task is typical.

You'll know when the task is lost in transmission.

What are you going to do about it?

If | were you, | would perform them all.

Yes, | know there are exponentially many of them.
Are you beginning to worry about the

expected number of tasks?

could perform a subset of the tasks.

You'll get extra points for effort.

But what if the required task is not in the subset?

Are you ok with the consequences?



Our Problem

A source generates X" in X" 1ID P.

The sequence is described using nR bits.

Based on the description, a list is generated that is
guaranteed to contain X".

For which rates R can we find descriptions and corresponding
lists with expected listsize arbitrarily close to 17

More generally, we'll look at the p-th moment of the listsize.



What if you are not in a Relationship?

Should you tune out?



Rényi Entropy

Ha(X) =

] fa log {Z P(X)O‘} v

xXeX

Alfréd Rényi
(1921-1970)



A Homework Problem

Show that
1. limg—1 Ho(X) = H(X).
2. lima—0 Ha(X) = log|suppP]|.
3. lima—00 Ha(X) = — log maxyex P(x).



Do not Tune Out

e Our problem gives an operational meaning to

Hi, p>0 (e, 0 <a<1).

1+p

e |t reveals many of its properties.

e And it motivates the conditional Rényi entropy.



Lossless List Source Codes

e Rate-R blocklength-n source code with list decoder:
for X7 — {1,...,2°R}, X, {1,... 2Ry oY
e The code is lossless if
x" e Ap(fo(x")), Wx"e X"
e p-th listsize moment (p > 0):

EA(fa(X" DT = > P (x")An(fa(x"))I”

xnexn



The Main Result on Lossless List Source Codes

Theorem

1. If R > H_1 (X), then there exists (fy, An)n>1 such that

1+p

Jim E[An(f(X")P] = 1.

2. If R < H (X), then

1+p

Jim E[A(H(X))]] = oc.
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1+p
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(Monotonicity of p — a” when a > 1.)
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Some Properties of H_1 (X)

14+p
1. Nondecreasing in p

2. H(X) < Ha (X) < log|X]
+5
(R < H(X) = listsize > 2 w.p. tending to one.
And R = log |X| can guarantee listsize = 1.)
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1+p
. Nondecreasing in p

CH(X) < H1(X) < log ||
+p

. |imp%0 H%(X) = H(X)

+p
(R > H(X) = prob(listsize > 2) decays exponentially. For
small p beats |\,(f,(X"))|?, which cannot exceed e '0g1¥])
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Some Properties of H_1 (X)

I+p
. Nondecreasing in p

CH(X) < H1(X) < log ||
+p

. ||m[H0H 1 (X):H(X)

T+p

Climpsee H . (X) = log [supp(P)|

(R< Iog]supp( )] = 3xo € supp(P)" for which
lon(fa(x0))| > e(loglsupp(P)I=R) " Since P(xq) > pi., where
Pmin = min{P(x) : x € supp(P)}

Z Pn ’Son n )’p > np(log|supp(P)\—R—% log ﬁ)

Hence R is not achievable if p is large.)
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Sketch of Direct Part

. Partition each type-class T into 2"R Jists of ~ lengths
2R | Tg|] ~ 27H@R),

. Describe the type of x" using o(n) bits.

3. Describe the list containing x" using nR bits.

. Pr(X" € Tg) ~ 2-"P(QlIP) and small number of types, so

ST Pr(X" € To)[2"H(@=R1P
Q
< 1 4 2~ (R—maxq{H(Q)~p*D(QI|P)}~4n)

where 6, — 0.
. By Arikan'96,

max{H(Q) - ' D(QIIP)} = H_(X). T



The Key to the Converse

Lemma
If

1. P is a PMF on a finite nonempty set X,
2. L1,...,Lp is a partition of X,
3. L(x) £ |L)| ifx € L.

Then
14+p

> P()LP(x) > M~ P[ZPX)1+p

XEX xeX




A Simple Identity for the Proof of the Lemma

1
Z@I’V’

XEX



A Simple Identity for the Proof of the Lemma

Y =M.
xeX L(X)
Proof:
1 ﬁ”: 1
xeX L(X) Jj=1xeL; L(X)
ot
j=1xeL; 1£)]
M
= Z 1
j=1

[
<



Proof of the Lemma

. Recall Holder's Inequality: If p,g > 1and 1/p+1/q =1, then

5 a(x)b(x) < | a(x)| : 60 a0

X X

. Rearranging gives

3 a(x)P = [Z bx)7]

X

P

. Choose p=1+p, g=(1+p)/p. a(x) = P(x)ﬁL(x)m
and b(x) = L(x)_ﬁ, and note that

1
Zm:"/’

XEX



Converse

WLOG assume A\,(m) = {x" € X" : f(x") = m}.
= The lists Ap(1 ), ..y An(27R) partition X"
An(fa(x™)) is the list containing x".

Ll

By the lemma:

1+p
> P AP = 2" npR[Z PU(x )lip]

xnexn xnexn

_ el 0=R)

Recall the lemma:

> PK) >MP[ZPX)1+;9

xXeX xEX

1+p




How to Define Conditional Rényi Entropy?

Should it be defined as
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How to Define Conditional Rényi Entropy?
Should it be defined as

ZPY YHo (XY =y) 7
yey

Consider Y as side information to both encoder and decoder,

(Xi, Y;) ~ 1ID Pxy.

You and your spouse hopefully have something in common. ..



Lossless List Source Codes with Side-Information

(X1, Y1), (X2, Y2),... ~1ID Pxy

Y™ is side-information.

Rate-R blocklength-n source code with list decoder:

for X x V" — {1,...,2"RY A {1, 2"R ) x5 2

Lossless property:

x" e Xn(fa(x",y"),y"), V(x",y") e X" x Y"

p-th listsize moment:

E[[An(fa(X", ¥Y7), YT)I7]



Result for Lossless List Source Codes with Side-Information

Theorem
1. IfR > H e (X|Y) then there exists (f,, A\p)n>1 such that
I|m E[|An(fa(X", Y™), Y™)|P] = 1.
2. IfR < H 1 (X|Y), then

1+p

Jim E[An(f(X7, Y7), YT)7] = o0

Here H L (X|Y) is defined to make this correct. .



So Hu (X|Y) is

IogZ{Z Px.v(x,y) ]1/(1

yeY -xeX

Ho(X|Y) =



A

Some Properties of H 1 (X\Y)

Nondecreasing in p > 0
lim,—0 H%(X|Y) = H(X|Y)
+p
lim, 00 Hﬁ(X|Y) = max, log [supp(Px|y—y)|
Hi (X|Y)<H. (X)
1+p 1+p



Direct Part

. Fix a side-information sequence y" of type Q.
. Partition each V-shell of y" into 2"F lists of lengths at most

[27"R| Ty (y")[] < [2nHVIQ=R),

. Describe V and the list containing x” using nR + o(n) bits.
. The p-th moment of the listsize can be upper-bounded by

Z Pr((X", Y") € Tgoy)[2"H(VIQ)=R)]”
<1+ 2—np(R—maXQ7V{H(V|Q)—ple(QoVHPX,y)}—ﬁn)’

where §, — 0.
. Complete the proof by showing that

H 1 (X|Y —max{H V’Q D(QO VHPX7y)} L]

T+p



Conditional Rényi Entropy

Ho(X|Y) =

IogZ[Z Px.y(x,y) ]l/a

yeEY "xeX

Suguru Arimoto



Arimoto’s Motivation

e Define “capacity of order o” as

C, = rrl'ngax{Ha(X) — Ha(X]Y)}
X
e Arimoto showed that

1+p

1
Ci = ;mFEEX Eo(p, P),

where Ey(p, P) is Gallager's exponent function:

1+p

|ogZ[ZP W(ylx) 1+f’] :
e Gallager's random coding bound thus becomes

P. < exp(—np(Cﬁ — R)), 0<p<l.



List Source Coding with a Fidelity Criterion

1. Rate-R blocklength-n source code with list decoder:
frr X7 {1,...,2""0 x,:{1,..., 2R} o o
2. Fidelity criterion:

d(fn An) 2 e >“<"e>\m(ifn(x”)) 427 < b

3. p-th listsize moment:

E[[An(fa(X"))I"]



A Rate-Distortion Theorem for List Source Codes

Theorem

1. If R > R,(D), then there exists (fn, An)n>1 such that

supd(fm An) < D & lim E[An(fa(X7))I"] = 1.

2. If R < Ry(D) and limsup,_, ., d(f,, \n) < D, then

Tim_ E[A(fa(X")I7] = oc.

But what is R,(D)?



A Rényi Rate-Distortion Function

R,(D) £ max{R(Q. D) - p*D(QIIP)}.

where R(Q, D) is the rate-distortion function of the source Q.



Direct Part

. Type Covering Lemma: If n > ng(d), then for every type Q we
can find Bg C X" such that

|Bo| < 2"R(@D)+3) and  max min d(x",%") < D.
"ETQX"EBQ

. Partition each By into 2" lists of lengths at most

pn(R(Q,D)fRﬂS)].

. Use nR + o(n) bits to describe the type Q of x" and a list in
the partition of Bg that contains some X" with d(x",X") < D.

. The p-th moment of the listsize can be upper-bounded by
Z Pr(Xn e TQ) {2n(R(Q,D)7R+6)WP

Q
<1+ 2_np(R_maXQ{R(QyD)—p’1D(Q\|P)}_5_5n).



Converse

. WLOG assume A\,(m) N A,(m') =0 if m#m'.
. For each X" € Ufnnil An(m) let m(X™) be the unique index s.t.

£" e Ap(m(xM)).
. Define g,: X" — X" such that

gn(x") € An(fa(x")) and  d(x",gn(x")) < D, Vx.

. Observe that

52 POl DI = 32 P a5 (57 An(m( )
=Y B AP

where

Pa(%") = P (g2 1 ({2"}))-



Converse contd.

. Applying the lemma vyields

H P,
ZP MAn(m(E)|P > 2-noR " e

. It now suffices to show that

where



Converse contd.

8. Let Q. achieve R,(D), i.e.,
Ro(D) = R(Qs, D) — P~ D(QulPx).

9. For every PMF Q on xn

*

H
> H( ”VV,,) —p ID(Q"||P%) (Data processing)
H(Q]Wa) — np™*D(Q4]|Px).



Converse contd.

11. Let X" be IID ~ Q, and let X" = g,(X"). Then

H(QIW,) = H(X")
= I(X"; X™).

12. By construction of g,(+)
E[d(X",X")] < D.
13. From the converse to the Rate-Distortion Theorem it follows

I(X"; X™) > nR(Q,, D).



Example: Binary Source with Hamming Distortion

where [¢[+ = max{0,¢} and h(p) = plog L + (1 — p) log 15,



Example: Binary Source with Hamming Distortion contd.

1y ‘

R,(D) plotted for binary source (p = 1/4) and Hamming distortion



This function Is also not New!

Ry(D) £ max{R(Q.D) ~ p*D(Q|IP)}.

where R(Q, D) is the rate-distortion function of the source Q.

Erdal Arkan Neri Merhav



Arikan & Merhav's Motivation

cn o ¢gn

o Let G, = {&7,%5,...} be an ordering of X".

e Define
Gn(x") = min{j : d(x",%") < Dj}.

o If X1, Xo,... are D ~ P, then

1
m = mi p1t/e —
Jim ~ min log E[Gn(X1, ..., Xn)?1"? = R,(D).



To Recap

Replacing “messages” with “tasks” leads to new operational
characterizations of

H . ;Iog[ZP e ]H’J

1+p
1 1+
Ho (XIY) = |OgZ[ZPXYXY1ip] ’
R,(D) = mgx{R (@, D) — p~*D(Q||P)}

for all p > 0.
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Thank Youl



