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What i1s the talk about

A classical problem — the moment problem — with
a decidedly non-classical twist motivated by
engineering applications.

What is new are certain rationality constraints

imposed by applications that alter the mathematical
problem and make it nonlinear.

A global-analysis approach that studies the class of
solutions as a whole.

A powerful paradigm for smoothly parameterizing,
comparing, and shaping solutions to specifications.



The moment problem
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Chebyshev Markov Lyapunov
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Where do we find moment
problems 1n applications?

spectral estimation
speech synthesis

system identification ;|

image processing

optimal control

robust control  |generator|,

A 4

model reduction

model matching problems .
simultaneous stabilization -

optimal power transfer

coupling
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... and why do these problems
require a nonclassical approach?

e Solution must be of bounded complexity (such as
rational of a bounded degree) so that one can realize
it by a finite-dimensional device
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System is finite-dimensional iff w(z) := Y ., wk2z ™" is rational

e (lassical theory does not provide natural para-
meterizations of rational solutions of bounded degree



Prototype problem: Covariance extension

. = E{y(t+ k)y(t)}, k=0,1,2,...,
where y stationary stochastic process

Given cg, ¢, ..., cy,, find an infinite Carathéodory
extension ¢, i1, 42, ... such that Schur

f(z) =300+ cz+ -+ "+ 2" 4

(i) is a Carathéodory function /J;
(ii) is rational of degree at most n fec,

Kalman



Trigonometric moment problem

1
f(z) = 500-I-C1z—l—---+cnz”—|—cn+1z”+1_|_...
o(c”) = 2Re{f(c")} e
_ Z Ckeike >0
k=—o0 B

C_| — Cg

MOMENT PROBLEM: Find ® of degree at most 2n such that

1 [T |
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d(z) = (2) P, () trigonometric polynomials of degree n




Spectral estimation by
covariance extension

y stationary process
w(z) [  With spectral density

P(e’?) = [w(e”)|?

. : u
white noise ——

1 [T . .
G = o~ ez"“‘)CP(@“))d@ = E{y(t + k)y(t)}
mw J_
— lim Z Yt+kYt Where Yo, Y1,Y2,---,YN
observed data
Since .N < 00, we use Hence, we can only estimate
ergodic estimate C0,ClysernsCny N << N
N—k
1 . .
= Z it kYt Remains to determine
T Cn+4+1,Cn+2,Cn+3,- - -




Modeling speech

Excitation signal —

u y
wz) [— Speech
AL# w(z) varies with time

o.0z2 |
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w(z) constant on each (30 ms) subinterval
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A 30 ms frame of speech for

the voiced nasal phoneme [ng] Periodogram (FF'T) of

voiced nasal phoneme |[ng]

Construct a rational filter with a rational w(z)
of low degree, modeling the window of speech

u Y

— w(z) —

Power Specirum Magnitude (dB)
b & L

-

filter determined by
few parameters

FFFFFFFF



Linear Predictive (LPC) Filtering

Co C1 T Cn—1 Pnn Cn
C1 Co e Cn—2 Pn,n—1 Cn—1
Cn—1 Cn—2 e Co Pnl C1

yields Szego polynomial
‘Pn(z)::Zn'+wpnlzn_1_k"'+”Pnn

and modeling filter

nZ"
w(z) = P where Prn = Z CjPnj
©n(2) =0




Linear Predictive (LPC) Filtering

n = 10

Ty

Send coeflicients in
©10(z) and number
of “best” signal

Choose an excitation signal
u from a code book with
1024 = 2'0 entries (10 bits)

However, can we construct
the general solution?




Cellular telephone:

w(z) = V/pn

Zn

n(2)

6 i i . i i . . .
n 0 20 40 60 80 100 120 140 160 180
0(2) = \/pnz / \\ -
©

spectral zeros k / FFT in blue envelope in purple
Is there a solution dy for each Unique? (Georgiou’s conjecture)
choice of spectral zeros? 5 . o
YES (Georgiou 1983) '/:\ elposed
5 kJ YES (Byrnes, Lindquist
Gusev, Matveev 1993)




All the solutions

THEOREM. The solutions of the rational covariance extension
problem are completely parameterized by the zeros of the corres-
ponding shaping filter, i.e., given an arbitrary monic stable
polynomial o(z) there is one and only one stable polynomial a(z)
such that

0(2)

a(z)

is a shaping filter for ¢y, cq, ..., c,. The correspondence is a
diffeomorphism.

w(z) =

 Existence proved by Georgiou 1983; conjectured uniqueness

* The rest proved by Byrnes, Lindquist, Gusev, Matveev 1993

 These first proofs were nonconstructive, but there are now
constructive proofs based on optimization




A w(z) with other
spectral zeros, but
with the same degree

zeros/poles

envelope




6th degree
filter with
appropriate
ZEros

Power Spectrum Magniude (08)
ey B 3 5




Optimization approach
Given o(z) and ¢, minimize

Jo(q) = coqo + c1q1 + -+ +
1 [T | |
~ 5= |l P o Qe as
2 J_ -
over all q such that

Q(ew) :=qo+qrcosf+ .-+ qg,cosntd >0

THEOREM. There is a unique minimum.

Then | f(2) = Z(—z)) where  |a(e)]? = Q(e) ;.)
w(z) = 0(2) a(2)b(z7Y) + a(z"Hb(2) = o(2)o(z71)
a(z)




Nonlinear coordinates

Normalize The space of all rational Carathéodory functions f

so that ¢cg =1 of degree at most n is a 2n-dimensional manifold.

A foliation with one leaf for each Y

choice of o (fast Kalman filtering) A \\\\\

A foliation with one leaf for each [ ] YN

choice of ¢ = (¢1,¢9,...,¢p) \\\\ \\ /} //// “
N\ | [/

THEOREM. The two foliations

intersect transversely so that each .
leaf in one meets each leaf in the mql nJs(q) ‘

other in exactly one point.

. . 2
unique solution ® = ol



A global analysis approach

* Find complete parameterization
smooth

_bijection | Sets of tuning
parameters

Complete class of
solutions satisfying
complexity constraint

 For any choice of tuning parameters, determine the
corresponding solution by convex optimization

* Choose a solution that best satisfies additional design
specifications (without increasing the complexity)



Other applications leading to
moment problem with rationality
constraints

Given cg,cq,...,Cp,

b
t)ydp=cx, k=0,1,...,
find dp such that /a, ak(t)dp = i "




Nevanlinna-Pick interpolation

it
Oék(t)=ez.t+zk, k=0,1,...,n 20,21y--+52n €D
e ok (distinct)
A
Given zg, 21,..., 2, € D (distinct), find a
Carathéodory function f such that
f(zk):ck, k=0,1,...,n
analytic in D
1 Re{f(2)} 2 0n D

/ﬂ ar(ORe{f(e)}dt = cx, k=0,1,....n



Tuning by moving interpolation points

Covariance extension corresponds to N-P interpolation

with all interpolation points at the origin (z = 0)

We moved the spectral
zeros from the origin
closer to the unit circle

N

N

=)

maximum entropy (LPC)

Next we tune by moving
the interpolation points
closer to the unit circle
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A tunable high resolution
spectral estimator (THREE)

Zoom into a selected spectral band > Byrnes-
by moving interpolation points from {3 Georgiou-
the origin closer to the unit circle. 2 L
— G [T X o)
- -
_y_, GZ(Z) X o e 2 9
o f(zk) = wi == (1 — i) E{zj}
observed ;
PRI e T % E{z(t)2(t)} = rluk : uie]
— Rk% | k=0

Two sets of tuning parameters: e filter bank poles
e spectral zeros (P)



Estimation of spectral
lines 1n colored noise

separation between N\j&&

spectral lines = 0.11

five runs superimposed -|

beriodogram (FFT) THREE (default setting)

separation between W % SQJ K

spectral lines = 0.02 -




Robust control




e positive real function

e f analytic for Izl = 1
eRe{f(z)} >0 forlzl=1

/L‘ e Carathéodory function

e f analytic for Izl < 1
eRe{f(z)} >0forlzl< 1

/ < -
P e Schur function
e f analytic for Izl < 1
e [f{z)| < 1forlzl <1




Loop shaping in robust control

u 5 d y © Internal stability requires
1642) S analytic in D¢ := {z | 2| > 1}
K(z) S(zx) = 0 at all unstable poles of G
S(z;) =1 at all zeros of G in D¢
i. S(z) A e Disturbance attenuation requires
S=(1-GK)1 [S]lo0 <
Sensitivity function e We want deg S to be small
f

There is a minimum bound 7, but we
choose 7 > 7opt and define f(z) := %S(z_l)



o | L
Nevanlinna-Pick interpolation
for Schur functions

f(Zk)Z’wk, k)ZO,l,...,'I’L

class of Schur functions 8

The interpolants of degree at most n are parmeterized
by the spectral zeros (o) in a 1 — 1 fashion

1
Example G(z) = po—

S(2) = 0, 5(c0) = 1

Find all § of degree at most n = 1.

> S(z)zz:z, ~l1<a<1

¥ =2.5> Yopt = min ||.S|lco = 2

8 Bode Diagram
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0 |
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Frequency (rad/sec)



Example: Sensitivity shaping

step r u- y
reference _ji R(s) G(s)

v

A

~ —6.4750s% + 4.0302s + 175.7700 Doyle, Francis
 5(5s3 + 3.568252 + 139.50215 + 0.0929) | Tannenbaum

G(s)

Design a strictly proper K so that the closed-loop system is

* internally stable and e settling time at most 8 seconds
e satisfies the specifications: * overshoot at most 10%

. u()] < 0.5




s(s+1.2)

(DFT)
s24+1.2s+1

Try to achieve Sideal =

Internal stability requires |deg S < 4
S(0) = S’(c0) =0  (unstable plant poles)

S(o00) = 5(5.5308) =1 (nonminimum-phase plant zeros)

S"(c0) = 0 (strictly proper controller)

Sensitivity Function
10' :

120

Choose: 100 ] 10° |
80 ]
-1
2 60 1 10 ¢
o]? .y |
1072}
20 ]
3 2 10 1 2 3

2 107°F

— DFT |
— |Ideal

a2 — NPDC
10 L

DFT deg K = 8 107 16'2 16" 10° 10°
NPDC: deg K =4 A. Blomgvist and R. Nagamune




Amplitude

Step Response

— DFT
—— NPDC
_0.2 1 1 1 1
0 2 4 6 8 10
Time (sec)

e settling time at most 8 seconds
e overshoot at most 10%

o Ju(t)] < 0.5

Amplitude

Control Signal

0.6

— DFT
— NPDC
2 2 6 8 10
Time (sec)
DFT: deg C=38

NPDC: deg C =4




Multidimensional moment problems

/ozkd,u:ck, k=1,2,....n
K

e du nonnegative measure on a compact subset K of R¢

® «aq,qs,...q, linearly independent basis functions defined on K

Image compression




Model reduction

Original system:

s° 4+ 3s%* + 653 +9s52 +7s+3 ol

G(s) =

9 4 Tst 4+ 1483 + 2182 + 235+ 7

Antoulas-Sorensen:

Singular Value(dB)
@

— Original system
— reduced model by Antoulas-Sorensen
= system of degree 3 by Analytic Interpolation

Stochastically balanced truncation

s3 + 2.5535% + 2.906s + 1.173 L

(8) = 5 7 6.681s2 = 8.4595 + 3.07

Global-analysis approach:

~1.002s° + 2.845% 4+ 1.9275s 4 0.8978

f(s) s3 + 7.29852 + 6.084s + 2.099

107" 10°
Frequency(rad/sec)

10°



Singular Value(dB)

A large-scale problem:
A CD player

Model reduction: deg G = 120 — deg G = 12

Antoulas-Sorensen solutions:
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Singular Value(dB)
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Conclusions

An enhanced theory for generalized moment problems
that incorporates rationality constraints prescribed
by applications.

* Complete parameterizations of solutions with
smooth tuning strategies.

A global analysis approach that studies the class of
solutions as a whole.

e Convex optimization for determining solutions.




