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Air transportation

= Drives global travel & commerce

* 6.7B passenger enplanements/year
« 85M flights/year worldwide (2014)

= US delays cost $S30-40B /year
« Waste 740M gallons of jet fuel
 Additional 7.1M metric tons of CO,

= Significant growth expected

systems

* Increased levels of autonomy g — " &
and automation



Practical algorithms for air transportation

" Goals: Efficiency, robustness, safety

" Challenges: Uncertainty, human operators,
competition

= Approach:
« Use real-world data
e Build simple, interpretable models
* Develop and implement scalable algorithms

" Practical algorithms and decision-support

= Cyber + Physical + Human



Today: Two research vignettes

" Understanding the dynamics of delay

« Delay propagation in networks with switching
topologies

= Mitigating the impacts of delay
 Large-scale, stochastic optimization algorithms
for air traffic flow management
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Problem #1:
Delays propagate

VISUALIZATION OF FLIGHT DELAYS
IN THE NAS ON A
BAD WEATHER DAY

ANIMATION CREATED USING

FUTURE ATM CONCEPTS
EVALUATION TOOL
(FACET)

FOR
AVIATION SYSTEMS DIVISION (AF)
NASA AMES RESEARCH CENTER




Networks are ubiquitous, and yet...

= Networks have been used to model a vast range of
systems (e.g., epidemics, rumors, power grids,
communication systems, public transport, road, rail, air)

* Nodal “state” typically assumed to belong to small set of
discrete values (e.g., Susceptible, Infected, Recovered)

» Typically unweighted and undirected networks
« Network stucture is typically assumed to be static

= Air traffic delay networks are different because:
» Delays are better modeled as continuous quantities
* Underlying interactions are weighted and directed
* Networks are time-varying



A network-centric view of air traffic delays

" For example, delay levels on edges between airports

= Weighted, directed, time-varying networks

Adjacency matrix, A:

e — Wij, if (i,j) = éa, 50 )
Y 0, otherwise




A simplistic model of delay dynamics

" Given adjacency matrix, A = [a] ()
d?: (t W 1) = azn in t) +Z znaﬁ'(t)d ut(t) A= 0 | din=55

diut (t T 1) — _aout out (t)+ Z ﬁ %ytai.’f (t) (t) SFO
J

din=5
dout=10

Jout
= “State” of system: X(r) = [ g.m (z(;) ]

" For a fixed network topology, the system evolves as:

i(e+1) = (diag([@™;a™)+diag((B*:B™)A)3()

where A = (}%T 13)
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Effect of network structure on dynamics

* The matrix A (and consequently, 4 ) depends on
network structure

" Let us consider two different networks, A, and A,:
How do we measure if they are similar or different?

« Comparison of state evolution (delay dynamics)
— Effect of A is of the form

Z(t+1) = BAZ(t), where A = ( /EX)T 61 \)

— Principal eigenvector of A forms an invariant subspace
— Therefore, dynamics can be distinguished by spectral radius

of A
« Comparison of network-theoretic properties
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Network centrality metrics:

Hub and Authority scores

= Strong hubs point to strong authorities; strong
authorities are pointed to by strong hubs

" Extension of eigenvector centrality to directed graphs

" Hub and authority scores can be calculated as the
principal eigenvector of (Benzi et al. 2013)

0 A
= (o)

" Discrete modes determined by clustering based on:
* Inbound and outbound delays at each airport
 Hub and authority scores of each airport

« System-wide delay trend (increasing/decreasing) y
[Gopalakrishnan et al. ACC 2016]



Dynamics with switching network topologies

" |dentify set of characteristic
topologies (“discrete
modes of operation”)

" Determine linear
continuous state dynamics

under a fixed topology (
M

= Switched linear system with
random (Markovian)
transitions

" Markov Jump Linear System
(MJLS)

¢

ode switch

System
evolves
under 1
topology

System
evolves
under 2"

topology

System
evolves
under nt
topology
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Discrete modes correspond to different

network structures (and continuous dynamics)

Mode: SFO increasing Mode: SFO decreasing Mode: High NAS increasing Mode: High NAS decreasing
40

Mode: Low NAS increasing

Markov Jump Linear System

i = Prim(t +1) = jim(t) =i (MILS)
Xt+1) = J,-jl“,-)'c’(t),' iftm(t)=iand m(r+1) =

i Continuous state resets

13




Stability of MJLS models

= “Physical interpretation”: Will delays increase or
decrease over time (e.g., over the course of a day)?

= Almost-Sure Stability: A system is said to be almost-
surely stable if the state tends to zero as time tends to
infinity with probability 1, that is,

Pr{lim [|¥(k)|| = 0] = 1,

for any nonnegative initial condition, X(0).

= Derive conditions for the stability of a discrete-time
Markov Jump Linear System with time-varying transition
matrices and continuous state resets (depends on I'’s,
7;(t) and J3)

14
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Some discrete modes are stable, while others

are not...
= X(t+1) = T,,)X(t) is stable if and only if the spectral
radius of the matrix I' is less than 1
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Decreasing system delay modes Increasing system delay modes
= Stability of component modes is neither necessary nor
sufficient for the stability of a switched system y
[Liberzon and Morse 1999; Gopalakrishnan et al. CDC 2016]



Is the MIJLS stable?

= Consider “average” transition matrix for each hour of day

Med 1.0
NAS Incr.
0.9
ORD Incr.
ATL Incr. .

Low
NAS Incr.
High
NAS Incr.
SFO Incr.

Med
NAS Decr.

ORD Decr.
ATL Decr.

Low
NAS Decr.
High
NAS Decr.
SFO Decr.

SFO High Low ATL ORD Med SFO High Low ATL ORD Med
Decr. NAS NAS Decr. Decr. NAS |ncr. NAS NAS Incr. Incr. NAS
Decr. Decr. Decr. Incr. Incr. Incr.

" The resulting MJLS model is not stable
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Transition matrices exhibit temporal patterns

Med NAS
ORD
ATL

Low NAS -

High NAS

Increasing delays

SFO

Med NAS

ORD
ATL

Low NAS -

High NAS
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SFO

SFO High Low ATL ORD Med sFro High Low ATL ORD Med
NAS NAS NAS NAS NAS NAS

Decreasing delays Increasing delays




Stability of MJLS model

= Consider stability of MJLS model with periodic
time-varying mode transition matrices (determined
by hour of day)

= Resulting MJLS model shown to be stable

= System appears to be stabilized by the temporal
variations in the mode transition matrices
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Total system delay ( x 10* minutes)
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MIJLS model validation

=" Model learned using 2011 data; validation using

2012 data
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Measure of airport resilience:

Delay persistence

d:':n (t + 1) — a:nd::n (t) + Z zn@‘(t)dgut (t)
w j 7
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= Analysis of dwell times in each discrete mode
« How long does a “delay state” tend to persist?

= Factors that trigger mode transitions
« Weather impacts, Traffic Management Initiatives

" Prediction of future delays and delay states

e Current delay state can help predict link delays 6 hrin
advance with 23 min avg. error [Rebollo/Balakrishnan 2014]

= Multi-layer, multi-timescale networks
« Cancellations, operations, capacity impacts [ICRAT 2016]
 Interactions between networks

21



Today: Two research vignettes

" Understanding the dynamics of delay

* Delay propagation in networks with switching
topologies

= Mitigating the impacts of delay
 Large-scale, stochastic optimization algorithms
for air traffic flow management
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Problem #2:
Capacity constraints can cause large delays
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[Movie courtesy Rich DelLaura, MIT Lincoln Lab]




Airport and airspace capacities

120

= Airport arrival/departure rate ™! BOS, good weather
. r
tradeoffs (capacity envelopes)

e Depend on visibility, wind, etc.

80 4

Arrivals per Hour

= Airspace is divided into sectors;
subject to max occupancy limits

0 20 40 60 80 100 120

« Depend on geometry, traffic . Departures per Hour
patterns, air traffic controller .|  BOS, poor weather
workload, weather, etc. ™

| E
0«

0 20 40 60 80 100 120
Departures per Hour 24

[FAA Airport Capacity Benchmark 2004]



Challenges: Flight connectivity + uncertainty

= Only 6% of aircraft =°[ "~
fly just one flight o
per day - o
« Results in delay % E
propagation 5 ol
* Rolling horizon & o |
optimization is % .|
suboptimal - .
= Capacity forecasts
are subject to 0 [

uncertainty 1 2 3 4 5 6 7 8 9 10 11 12
Number of flights flown
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[Balakrishnan and Chandran, 2014]



Problem statement:

Air Traffic Flow Management

= Given set of flights with assigned aircraft, (scenario tree
and) capacity profiles, identify trajectory for each aircraft
to maximize (expected) system-wide profit, and satisfy
operational/capacity constraints (in all scenarios)
» Constraints:
— Airport/airspace sector capacity limits

— Flight connectivity and turn-around times
— Maximum/minimum transit times and speeds

« Control actions:
— Ground/airborne delays

— Rerouting
— Cancellations

[Odoni 1987; Helme 1992; Vranas 1994; Maugis et al. 1995; Bertsimas & Stock Patterson 1998;
Bayen et al. 2006; Bertsimas et al. 2011; Wei et al. 2013; Balakrishnan & Chandran 2014]



Trajectory definition

= Time is discretized (e.g., 5-minute intervals)

= Sequence of node-time combinations representing the
flight path of an aircraft

————————————————

Sector 1 ,' Runway

. /Q;Q@Q cxel

Dest. gate
Hold
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Handling uncertainty: Trajectory trees

= Location of aircraft at each time during a scenario + action to
perform as each new scenario unfolds

i i 'S
: s, 0.3 5
< 0.3 04 S
| ] ; :
o4 S
S, : : : 0.7 @ Sy |

1.0

—
-

09:00 09:15 09:30 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15
« Depart gate @9:05, reach runway @9:15, reach departure fix
@9:30; if scenario S, materializes, then go toward n, and reach
@9:45, else go toward n, and reach @10:05;...

= Decision can be based only on information available at the time
28
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Mathematical formulation: Deterministic ATFM

maximize total benefit of selected trajectories

s.t.  Select only one trajectory for each aircraft

Sector capacity constraints

Airport capacity envelope constraints

Binary variable indicating selected trajectory

29
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Solution process

" Very large-scale Integer Program

" P relaxation (Restricted Master Problem) solved
using column generation
« Sub-problems solved independently for each aircraft
(“tail”)
* Formulated as longest-path problem on a DAG
* Solved using dynamic programming
* Enables parallel implementation
= Effective heuristic to obtain bounds and assess
optimality gap

30

[Balakrishnan and Chandran, 2014]



Schematic of solution process for

Restricted Master Problem

operational constraints
/ Check Generate

Flight schedules; initial flight plans
I
feasibility prices A’s,t’ U o it 2 l5ub-problem

Start capacity forecasts;
AL I xvm
. I b-probl
\ Prices gub-probem 1
X2, 0>
2
Ty, XL Pr,
'_>lSub—probIem lj—"‘

New
frajectoriesy Trajectories + Valuations
waster node |no / Qistributed nodes /

v

Gelect optimal trajectorieM >

[Balakrishnan and Chandran, 2014]




Computational results (Deterministic ATFM)

= 24-hr planning horizon; 5 minute time-discretization

Reference Control Scale Horizon/disc. | Run times
Ground holds; 4,743 flights; 1,153 sector- 2+ hours
Maugis (1995) cancellations saturated time periods (no | 1 day/5 min | (no cancel-
airport capacity limits) lations)
Bertsimas and Stock 1,002 flights; 18 airports;
Ground/air holds : e PO g hours/5 min | 8+ hours
Patterson (1998) 305 sectors
Bertsimas and Stock | Ground/air ho.lds; limited 71 flights; 4 airports; S Tt i i
Patterson (2000) rerouting 42 sectors
Bertsimas et al. Ground/air holds; 6,745 flights; 30 airports; & hious Pl Th
(2011) rerouting network 145 sectors
Wei et al. (2013) | Aggregate model; air holds | 3,419 flt paths; 284 sectors | 2 hours/1 min 21 min
Ground/air holds; unrest- | 17,500 flights; 370 airports;
Balakrishnan and g : . .
ricted rerouting network; 375 sectors 24 hours/5 min 5 min
Chandran (2014) :
cancellations
32
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Computational results (Stochastic ATFM)

= 24-hr planning horizon; 10 minute time-discretization

Reference Control Scale Horizon/disc. | Run times

Ground/air holds; 160 flights; 4 airports;

Alonso et al. (2000) / e e e W 4 hours/5 min 31 min
max. delay 20 min 5 sectors; 13 scenarios
Ground/air holds; 148 flights; 40 sectors;

Marron (2004) / . : S ] . Not spec./5 min 12 min

rerouting 3 scenarios

Ground/air holds; 425 flights; 45 airports;

Agustin et al. (2012) 32 time-periods 5-15 min

rerouting; cancellations | 40 sectors; 40-60 scenarios
Ground/air holds; unrest- | 17,500 flights; 370 airports;
ricted rerouting network; | 375 sectors; 525 scenarios | 24 hours/10 min | 5-16 min

Balakrishnan and

Chandran (2014) cancellations

33



Computational example: 7/8/2013

= Optimal solution: 33,060 min ground delay; 8,245 min
airborne delay; 2% cancelled; 657 reroutes

7!8/%)13 4:00 am

el
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[Balakrishnan and Chandran, submitted, 2014]




Solving tomorrow’s ATFM problems

" Manned air traffic demand from SWAC simulation
« ~40,000 flights within the US
« ~25,000 unique airframes (accounts for connectivity)
= Assumes two types of constraints
« Sector capacities (same as today)
 Airport capacity envelopes (2030 improvements)
= Realistic UAS dataset from Raytheon/IAl (NASA/JPDO)
« ~35,000 flights + varying missions (typically smaller airports)
« Comm.,, fish spotting, cargo, etc., altitudes: 100-60,000 ft
* No alternative routing for unmanned aircraft

= ~50 combinations of costs, schedules and capacities

35



A day in the life of the NAS (2030 version)

= Optimize ~77K flights (<0.1% of optimal) in under 4 min
= 1-minute trajectory fidelity, 5-minute constraint fidelity
= “Rolling horizon” mode: ~6-8 hr with ~25K flights: < 1 min

G ]
*f,-. l'JS,Dept of Sjtfate Geographer
N ‘{ Image Landsat

o

Data SIGINOAA, US. Navy, NGA, GEBCO | (1()()8[(:{8%;?



Learning models of human decision processes

= Decisions (for example, selection and use of runways)
drive system capacity

= Reverse-engineering decision processes enables

« Better optimization algorithms that account for true
objectives

» Better prediction of future decisions
= Learn maximum-likelihood models of decision processes
and utility functions
 Models that best explain real-world observations
« Identify influence of “unwritten” factors

37

Ramanujam & B. IEEE Trans. on Human-Machine Sys 2015; Avery & B. Transp. Res. Record 2016



Factors that influence runway configuration

selection

" Wind direction and speed; visibility

= Demand ¥ :
" |nertia ' /
e Switches need | J

coordination

= Noise abatement
" [nter-airport : gl £\
coordination

+.Google
C

= Primarily responsibility of Tower Supervisor or Controller-
in-Charge

38
[Delaura et al. 2014; FAA 2004; Standard Operating Procedures] [Sandberg 2012]



Solution approach: Discrete-Choice Modeling

= Decision-makers are assumed to consistently choose
the utility-maximizing option (from set of feasible
alternatives)

= Utility function is modeled as a linear function of the
independent variables plus an error term

Ui = (o + Bi - Xi) + €

\ J

Y
Observed component, V; Unobserved error

= For each observation, the decision-maker is assumed
to choose the alternative that maximizes utility

39



Predicting runway configuration choice

= Can identify statistically significant factors in configuration
selection, and their “weights”

" Good prediction accuracies, even few hours ahead
 Models tested for range of airports
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e Accuracy ~97% for 15-min horizon; ~80% for 3-hr horizon

Ramanujam & Balakrishnan IEEE Trans. on Human-Machine Sys 2015; 40
Avery & Balakrishnan ATM R&D Seminar 2015 and Transp. Research Record 2016.



Just scratching the surface:

Many important open challenges

= Autonomy: Integration of unmanned/manned aircraft

Robot—leoted Plane Makes
Safe Crossing of Atlarnitic

_ New York Times
No Hand on Controls From Newfoundland Sept. 23, 1947

to Oxf ord.Shlre— Take'Of f ’ F Ilg h.t and . “:is‘*;;ztn:nic ";ug;:;%éonmt).l. ‘(TF nu-x:fufucu mum .
Landing Are Fully Automatic e _

AT AN

By ANTHONY LEVIERO
Special to Tus Nrw Yorx Tiues. L

“Air Force officers speculated on the possibility of loading robot
planes, like the Skymaster, with bombs and sending them to distant
targets. For peaceful purposes, it was suggested that they might be
used as cargo carriers.”

41



Just scratching the surface:

Many important open challenges

= Autonomy: Integration of unmanned/manned aircraft

" Fairness: In networked resource allocation with multiple
constrained resources

" Incentives: To participate, to report truthfully
« Pareto-optimality in the stochastic context
" Privacy: Of valuations and flight delay costs

= Security: Of system in the presence of faults/incorrect
information and adversaries

= Interactions:
« Between humans & automation/autonomous systems
« Between strategic and tactical control
« Between different infrastructures

42



Summary

= Practical ATM algorithms can enhance system efficiency,
robustness and safety, and address uncertainty, human

operators and competition
« Leveraging cyber-physical + human elements is key!

= Several other important facets, including:

« Airport congestion control [IEEE Trans. on Intelligent Tranp. Sys. 2014,
Tranp. Res. A 2015, IEEE Trans. Human-Machine Sys 2014, Transp. Sc. 2016]

Weather-ATM integration [Transp. Sc. 2012; Transp. Res. Rec. 2015]

Statistical modeling of engine performance [Transp. Res. D 2012;
ICAS 2016]

Interactions between aviation and high-speed rail
[Transp. Res. Record 2012; Transport Policy 2014]

High-confidence control algorithms for aviation systems
[IEEE Trans. on Automatic Control 2015]
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