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Air	transporta3on	

§ Drives	global	travel	&	commerce	
•  6.7B	passenger	enplanements/year		
•  85M	flights/year	worldwide	(2014)	

§ US	delays	cost	$30-40B	/year	
• Waste	740M	gallons	of	jet	fuel	
• AddiPonal	7.1M	metric	tons	of	CO2		

§ Significant	growth	expected		
• Next-generaPon	air	transportaPon	
systems	

•  Increased	levels	of	autonomy										
and	automaPon	

www.cnn.com	

www.bls.gov	

www.nasa.gov	
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§ Goals:	Efficiency,	robustness,	safety	
§ Challenges:	Uncertainty,	human	operators,	
compePPon	

§ Approach:		
• Use	real-world	data	
•  Build	simple,	interpretable	models	
• Develop	and	implement	scalable	algorithms	

§ PracPcal	algorithms	and	decision-support	
§ Cyber	+	Physical	+	Human	

Prac3cal	algorithms	for	air	transporta3on	
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Today:	Two	research	vigne1es	

§ Understanding	the	dynamics	of	delay	
• Delay	propagaPon	in	networks	with	switching	
topologies	

§ Mi3ga3ng	the	impacts	of	delay		
•  Large-scale,	stochasPc	opPmizaPon	algorithms	
for	air	traffic	flow	management		
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Problem	#1:		
Delays	propagate	
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Networks	are	ubiquitous,	and	yet…	

§ Networks	have	been	used	to	model	a	vast	range	of	
systems	(e.g.,	epidemics,	rumors,	power	grids,	
communicaPon	systems,	public	transport,	road,	rail,	air)	
•  Nodal	“state”	typically	assumed	to	belong	to	small	set	of	
discrete	values	(e.g.,	SuscepPble,	Infected,	Recovered)	

•  Typically	unweighted	and	undirected	networks	
•  Network	stucture	is	typically	assumed	to	be	staPc	

§ Air	traffic	delay	networks	are	different	because:	
•  Delays	are	beeer	modeled	as	conPnuous	quanPPes	
•  Underlying	interacPons	are	weighted	and	directed	
•  Networks	are	Pme-varying	
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A	network-centric	view	of	air	traffic	delays	

§ For	example,	delay	levels	on	edges	between	airports	
§ Weighted,	directed,	Pme-varying	networks	

SEA	

SFO	

ORD	

ATL	

DFW	

Adjacency	matrix,	A: 
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A	simplis3c	model	of	delay	dynamics	

§ Given	adjacency	matrix,	A =	[aij]	

§ “State”	of	system:	

§ For	a	fixed	network	topology,	the	system	evolves	as:		

	

				where																																			.		
[Gopalakrishnan	et	al.	CDC	2016]	
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Effect	of	network	structure	on	dynamics	

§ The	matrix	A	(and	consequently,					)	depends	on	
network	structure	

§ Let	us	consider	two	different	networks,	A1	and	A2:			
How	do	we	measure	if	they	are	similar	or	different?	
•  Comparison	of	state	evolu3on	(delay	dynamics)	

–  Effect	of							is	of	the	form	

–  Principal	eigenvector	of						forms	an	invariant	subspace	
–  Therefore,	dynamics	can	be	dis3nguished	by	spectral	radius	
of		

•  Comparison	of	network-theore3c	proper3es	

,	where	
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Network	centrality	metrics:		
Hub	and	Authority	scores	

§ Strong	hubs	point	to	strong	authoriPes;	strong	
authori3es	are	pointed	to	by	strong	hubs	

§ Extension	of	eigenvector	centrality	to	directed	graphs	
§ Hub	and	authority	scores	can	be	calculated	as	the	
principal	eigenvector	of	(Benzi	et	al.	2013)	

	

§ Discrete	modes	determined	by	clustering	based	on:	
•  Inbound	and	outbound	delays	at	each	airport	
•  Hub	and	authority	scores	of	each	airport	
•  System-wide	delay	trend	(increasing/decreasing)	

[Gopalakrishnan	et	al.	ACC	2016]	
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Dynamics	with	switching	network	topologies	

§ IdenPfy	set	of	characterisPc	
topologies	(“discrete	
modes	of	operaPon”)		

§ Determine	linear	
conPnuous	state	dynamics	
under	a	fixed	topology		

§ Switched	linear	system	with	
random	(Markovian)	
transiPons	

§ Markov	Jump	Linear	System	
(MJLS)	

Mode: SFO increasing
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[Gopalakrishnan	et	al.	CDC	2016]	
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Discrete	modes	correspond	to	different	
network	structures	(and	con3nuous	dynamics)	

Markov	Jump	Linear	System	
(MJLS)	

Con3nuous	state	resets	
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Stability	of	MJLS	models	

§ “Physical	interpretaPon”:	Will	delays	increase	or	
decrease	over	Pme	(e.g.,	over	the	course	of	a	day)?	

§ Almost-Sure	Stability:	A	system	is	said	to	be	almost-
surely	stable	if	the	state	tends	to	zero	as	Pme	tends	to	
infinity	with	probability	1,	that	is,	

			for	any	nonnegaPve	iniPal	condiPon,								.	
§ Derive	condiPons	for	the	stability	of	a	discrete-Pme	
Markov	Jump	Linear	System	with	Pme-varying	transiPon	
matrices	and	conPnuous	state	resets	(depends	on	Γi’s,	
πij(t)	and	Jij)	

[Gopalakrishnan	et	al.	CDC	2016]	
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Some	discrete	modes	are	stable,	while	others	
are	not…	

§  	 	 		 														is	stable	if	and	only	if	the	spectral	
radius	of	the	matrix	Γ	is	less	than	1	

	 		

§  Stability	of	component	modes	is	neither	necessary	nor	
sufficient	for	the	stability	of	a	switched	system	
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Is	the	MJLS	stable?	

§ Consider	“average”	transiPon	matrix	for	each	hour	of	day	

§ The	resulPng	MJLS	model	is	not	stable	
[Gopalakrishnan	et	al.	CDC	2016]	
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Transi3on	matrices	exhibit	temporal	pa1erns	
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Stability	of	MJLS	model	

§ Consider	stability	of	MJLS	model	with	periodic	
Pme-varying	mode	transiPon	matrices	(determined	
by	hour	of	day)	

§ ResulPng	MJLS	model	shown	to	be	stable	

§ System	appears	to	be	stabilized	by	the	temporal	
variaPons	in	the	mode	transiPon	matrices	

[Gopalakrishnan	et	al.	CDC	2016]	
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MJLS	model	valida3on	

§ Model	learned	using	2011	data;	validaPon	using	
2012	data	
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Measure	of	airport	resilience:	Delay	persistence	

[Gopalakrishnan	et	al.	CDC	2016]	
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Next	steps	

§ Analysis	of	dwell	Pmes	in	each	discrete	mode	
•  How	long	does	a	‘’delay	state”	tend	to	persist?	

§ Factors	that	trigger	mode	transiPons	
•  Weather	impacts,	Traffic	Management	IniPaPves	

§ PredicPon	of	future	delays	and	delay	states	
•  Current	delay	state	can	help	predict	link	delays	6	hr	in	
advance	with	23	min	avg.	error	[Rebollo/Balakrishnan	2014]	

§ Mul3-layer,	mul3-3mescale	networks	
•  CancellaPons,	operaPons,	capacity	impacts	[ICRAT	2016]	
•  InteracPons	between	networks	
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Problem	#2:	
Capacity	constraints	can	cause	large	delays	

[Movie	courtesy	Rich	DeLaura,	MIT	Lincoln	Lab]	
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Airport	and	airspace	capaci3es	

BOS,	good	weather	

BOS,	poor	weather	

[FAA	Airport	Capacity	Benchmark	2004]	

§ Airport	arrival/departure	rate	
tradeoffs	(capacity	envelopes)	
•  Depend	on	visibility,	wind,	etc.	

§ Airspace	is	divided	into	sectors;	
subject	to	max	occupancy	limits	
•  Depend	on	geometry,	traffic	
paeerns,	air	traffic	controller	
workload,	weather,	etc.		
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Challenges:	Flight	connec3vity	+	uncertainty	

§ Only	6%	of	aircrat	
fly	just	one	flight	
per	day	
•  Results	in	delay	
propagaPon	

•  Rolling	horizon	
opPmizaPon	is				
subopPmal	

§ Capacity	forecasts	
are	subject	to	
uncertainty	
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Problem	statement:		
Air	Traffic	Flow	Management	

§ Given	set	of	flights	with	assigned	aircrat,	(scenario	tree	
and)	capacity	profiles,	idenPfy	trajectory	for	each	aircrat	
to	maximize	(expected)	system-wide	profit,	and	saPsfy	
operaPonal/capacity	constraints	(in	all	scenarios)	
•  Constraints:	

–  Airport/airspace	sector	capacity	limits	
–  Flight	connecPvity	and	turn-around	Pmes	
– Maximum/minimum	transit	Pmes	and	speeds	

•  Control	acPons:		
– Ground/airborne	delays	
–  RerouPng	
–  CancellaPons	
	

[Odoni	1987;	Helme	1992;	Vranas	1994;	Maugis	et	al.	1995;	Bertsimas	&	Stock	Paeerson	1998;		
Bayen	et	al.	2006;	Bertsimas	et	al.	2011;		Wei	et	al.	2013;	Balakrishnan	&	Chandran	2014]	
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Trajectory	defini3on	

§ Time	is	discrePzed	(e.g.,	5-minute	intervals)	
§ Sequence	of	node-Pme	combinaPons	represenPng	the	
flight	path	of	an	aircrat	

Dest. gate

Orig. gate

Hold

Arr. fix

RunwaySector 1

Sector 2

Dep. fix

Runway

1 4n

3n

2n
5n

6n

n

[Balakrishnan	and	Chandran,	2014]	
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Handling	uncertainty:	Trajectory	trees	

§  LocaPon	of	aircrat	at	each	Pme	during	a	scenario	+	acPon	to	
perform	as	each	new	scenario	unfolds	

		

	 		

	 	 		
•  Depart	gate	@9:05,	reach	runway	@9:15,	reach	departure	fix	
@9:30;	if	scenario	S2	materializes,	then	go	toward	n1	and	reach	
@9:45,	else	go	toward	n2	and	reach	@10:05;…	

§  Decision	can	be	based	only	on	informaPon	available	at	the	Pme	
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Mathema3cal	formula3on:	Determinis3c	ATFM	

maximize		total	benefit	of	selected	trajectories	

Select	only	one	trajectory	for	each	aircrat	

Sector	capacity	constraints	

Airport		capacity	envelope	constraints	

Binary	variable	indicaPng	selected	trajectory	

[Balakrishnan	and	Chandran,	2014]	
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Solu3on	process	

§ Very	large-scale	Integer	Program	
§ LP	relaxaPon	(Restricted	Master	Problem)	solved	
using	column	generaPon	
•  Sub-problems	solved	independently	for	each	aircrat	
(“tail”)	

•  Formulated	as	longest-path	problem	on	a	DAG	
•  Solved	using	dynamic	programming	
•  Enables	parallel	implementaPon	

§ EffecPve	heurisPc	to	obtain	bounds	and	assess	
opPmality	gap	

[Balakrishnan	and	Chandran,	2014]	
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[Balakrishnan	and	Chandran,	2014]	
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Computa3onal	results	(Determinis3c	ATFM)	

Balakrishnan	and	
Chandran	(2014)	

§ 24-hr	planning	horizon;	5	minute	Pme-discrePzaPon	

[Balakrishnan	and	Chandran,	2014]	
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Computa3onal	results	(Stochas3c	ATFM)	

§ 24-hr	planning	horizon;	10	minute	Pme-discrePzaPon	

Balakrishnan	and	
Chandran	(2014)	
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Computa3onal	example:	7/8/2013	

§ OpPmal	soluPon:	33,060	min	ground	delay;	8,245	min	
airborne	delay;	2%	cancelled;		657	reroutes	

[Balakrishnan	and	Chandran,	submieed,	2014]	
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Solving	tomorrow’s	ATFM	problems	

§ Manned	air	traffic	demand	from	SWAC	simulaPon	
•  ~40,000	flights	within	the	US	
•  ~25,000	unique	airframes	(accounts	for	connecPvity)	

§ Assumes	two	types	of	constraints	
•  Sector	capaciPes	(same	as	today)	
•  Airport	capacity	envelopes	(2030	improvements)	

§ RealisPc	UAS	dataset	from	Raytheon/IAI	(NASA/JPDO)	
•  ~35,000	flights	+	varying	missions	(typically	smaller	airports)	
•  Comm.,	fish	spoxng,	cargo,	etc.,	alPtudes:	100-60,000	t	
•  No	alternaPve	rouPng	for	unmanned	aircrat	

§ ~50	combinaPons	of	costs,	schedules	and	capaciPes	
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A	day	in	the	life	of	the	NAS	(2030	version)		

§ OpPmize	~77K	flights	(≤0.1%	of	opPmal)	in	under	4	min	
§  1-minute	trajectory	fidelity,	5-minute	constraint	fidelity	
§  “Rolling	horizon”	mode:	~6-8	hr	with	~25K	flights:	<	1	min	
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Learning	models	of	human	decision	processes		

§ Decisions	(for	example,	selecPon	and	use	of	runways)	
drive	system	capacity	

§ Reverse-engineering	decision	processes	enables	
•  Be1er	op3miza3on	algorithms	that	account	for	true	
objecPves	

•  Be1er	predic3on	of	future	decisions	
§ Learn	maximum-likelihood	models	of	decision	processes	
and	uPlity	funcPons	
• Models	that	best	explain	real-world	observaPons	
•  IdenPfy	influence	of	“unwrieen”	factors	

Ramanujam	&	B.	IEEE	Trans.	on	Human-Machine	Sys	2015;	Avery	&	B.	Transp.	Res.	Record	2016	



38	

Factors	that	influence	runway	configura3on	
selec3on	

§ Wind	direcPon	and	speed;	visibility		
§ Demand	
§  InerPa	
•  Switches	need	 	 	 	 	 											
coordinaPon		

§ Noise	abatement		
§  Inter-airport	 	 	 	 	 								
coordinaPon	

	

§ Primarily	responsibility	of	Tower	Supervisor	or	Controller-
in-Charge	

[Sandberg	2012]	[DeLaura	et	al.	2014;	FAA	2004;	Standard	OperaPng	Procedures]	
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§ Decision-makers	are	assumed	to	consistently	choose	
the	uPlity-maximizing	opPon	(from	set	of	feasible	
alternaPves)	

§ UPlity	funcPon	is	modeled	as	a	linear	funcPon	of	the	
independent	variables	plus	an	error	term	

	
	

§ For	each	observaPon,	the	decision-maker	is	assumed	
to	choose	the	alternaPve	that	maximizes	uPlity	

Observed	component, Vi Unobserved	error	

Solu3on	approach:	Discrete-Choice	Modeling	
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Predic3ng	runway	configura3on	choice		

§ Can	idenPfy	staPsPcally	significant	factors	in	configuraPon	
selecPon,	and	their	“weights”	

§ Good	predicPon	accuracies,	even	few	hours	ahead	
• Models	tested	for	range	of	airports	

	
	 		

•  Accuracy	~97%	for	15-min	horizon;	~80%	for	3-hr	horizon	
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Ramanujam	&	Balakrishnan	IEEE	Trans.	on	Human-Machine	Sys	2015;		
Avery	&	Balakrishnan	ATM	R&D	Seminar	2015	and	Transp.	Research	Record	2016.	
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Just	scratching	the	surface:		
Many	important	open	challenges	

§ Autonomy:	IntegraPon	of	unmanned/manned	aircrat		
	

New York Times 
Sept. 23, 1947 

“Air	 Force	 officers	 speculated	 on	 the	 possibility	 of	 loading	 robot	
planes,	 like	the	Skymaster,	with	bombs	and	sending	them	to	distant	
targets.	 For	peaceful	purposes,	 it	was	 suggested	 that	 they	might	be	
used	as	cargo	carriers.”	
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Just	scratching	the	surface:		
Many	important	open	challenges	

§ Autonomy:	IntegraPon	of	unmanned/manned	aircrat		
§ Fairness:	In	networked	resource	allocaPon	with	mulPple	
constrained	resources	

§  Incen?ves:	To	parPcipate,	to	report	truthfully	
•  Pareto-opPmality	in	the	stochasPc	context	

§ Privacy:	Of	valuaPons	and	flight	delay	costs	
§ Security:	Of	system	in	the	presence	of	faults/incorrect	
informaPon	and	adversaries	

§  Interac?ons:		
•  Between	humans	&	automaPon/autonomous	systems	
•  Between	strategic	and	tacPcal	control	
•  Between	different	infrastructures	



43	

Summary	

§ PracPcal	ATM	algorithms	can	enhance	system	efficiency,	
robustness	and	safety,	and	address	uncertainty,	human	
operators	and	compePPon	
•  Leveraging	cyber-physical	+	human	elements	is	key!	

§ Several	other	important	facets,	including:	
•  Airport	congesPon	control	[IEEE	Trans.	on	Intelligent	Tranp.	Sys.	2014,	
Tranp.	Res.	A	2015,	IEEE	Trans.	Human-Machine	Sys	2014,	Transp.	Sc.	2016]	

•  Weather-ATM	integraPon	[Transp.	Sc.	2012;	Transp.	Res.	Rec.	2015]	
•  StaPsPcal	modeling	of	engine	performance	[Transp.	Res.	D	2012;	
ICAS	2016]	

•  InteracPons	between	aviaPon	and	high-speed	rail	 			
[Transp.	Res.	Record	2012;	Transport	Policy	2014]	

•  High-confidence	control	algorithms	for	aviaPon	systems		
[IEEE	Trans.	on	AutomaPc	Control	2015]		

	
	


