
Physical model based
systems design

Albert Benveniste (Inria-Rennes)

Updated October 2016

Contents

1. Physical Modeling & Systems Design:
a vision

2. The foundations for compiling Modelica
(multi-mode DAE systems)

Acknowledgements:
• Benoît Caillaud, Khalil Ghorbal
• Tim Bourke, Marc Pouzet;
• Hilding Elmqvist, Martin Otter, Sven-Erik Mattsson;
• Paul Caspi and Paul Le Guernic .

18/10/2016Albert Benveniste -- March 2016 - 2

Physical Modeling & Systems
Design: the overall vision

Albert Benveniste July 2014

Physical modeling using Modelica
(DAE: Differential Algebraic Equation)

Albert Benveniste -- March 2016 - 4

Modelica: multi-mode DAE systems:

�𝐢𝐢𝐟𝐟 𝑏𝑏 𝐝𝐝𝐨𝐨 𝐹𝐹 𝑥̇𝑥, 𝑥𝑥, 𝑢𝑢 = 0
𝑏𝑏 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑥̇𝑥, 𝑥𝑥, 𝑢𝑢

• Modelica supports component
based physical system modeling
(not Simulink)

• Compilation is complex:
• Latent constraints
• Index reduction
• Structural analysis

• Requires sophisticated causality
analyses (as for bond graphs)

18/10/2016

Our focus

Not discussed
see [Elmqvist 2014,2015]

The overall vision

18/10/2016Albert Benveniste -- March 2016 - 5

3D CAD

Requir.

Safety
Monitoring

Modelica & Requirement Engineering

Albert Benveniste July 2014

Modelica + Requirements

18/10/2016Albert Benveniste -- March 2016 - 8

A requirement profile has
been defined for Modelica
[Fritzson14]

 Provision for writing
requirements

 Linking requirements to
test cases

 The link is syntactic, not
semantic

Is this all we need? No!

Requirement architectures
differ from (physical) system
architectures

 Identifying
responsibilities:
 guarantees offered

by the system, vs.
 assumptions on the

environment

 Conjunction of
requirements

 Several viewpoints

 From system to
subsystem: refinement

Modelica + Requirements

18/10/2016Albert Benveniste -- March 2016 - 9

Is this all we need? No!

Requirement architectures
differ from (physical) system
architectures

 Responsibilities must be
clearly identified:
 guarantees, vs.
 assumptions

 Conjunction of
requirements;
several viewpoints

 From system to
subsystem: refinement
& parallel composition

∧

≤

⊗ ⊗

Req: assume
Req: assume
Req: guarantee
Req: guarantee
Req: guarantee

CONTRACTS

Modelica + Contracts

• Assume/Guarantee contracts

• 𝐶𝐶 = 𝐴𝐴, 𝐺𝐺 = (Assumption, Guarantee)
= pair of Modelica properties

• All the needed operators and relations exist

• Other forms of contract exist…

Albert Benveniste -- March 2016 18/10/2016 - 10

Modelica & Safety Engineering

Albert Benveniste July 2014

Modelica + Safety

18/10/2016Albert Benveniste -- March 2016 - 12

• Extend Modelica models
with failure modes

• Use Modelica structural
analysis to derive fault
effects and propagation
(fault tree)

• Check critical branches of
the fault tree on the
detailed Modelica model
(guided simulation)

We can go beyond and perform system wide alarm handling

Telecom network diag [Fabre et al. 2006]

18/10/2016Albert Benveniste -- March 2016 - 13

Network of
automata
modeling fault
propagation

Diagnosis algorithm

18/10/2016Albert Benveniste -- March 2016 - 14

• Automaton describing the
operating modes
(nominal, failed_x, …)
and their transitions

• Some transitions are
observed (alarms)

• System = product of many
such automata

• Reconstruct hidden state
histories from observations
(state observer)

How to construct models?
Self-Modeling

18/10/2016Albert Benveniste -- March 2016 - 15

Behavior of generic
Network elements

Automatic generation
and deployment of

diagnosis algorithms

Automatic generation
of behavioral model

Capturing architecture
(network discovery)

Standards:
SDH, WDM, OTN,

GMPLS…

How to construct models?
Self-Modeling

18/10/2016Albert Benveniste -- March 2016 - 16

Capturing architecture
(network discovery)

Behavior of generic
elements

Automatic generation
and deployment of

diagnosis algorithms

Automatic generation
of behavioral model

traceability
+ models

FMEA
(Fault Mode and
Effects Analysis)

Modelica & System wide Diagnosis

Albert Benveniste July 2014

Modelica
(DAE: Differential Algebraic Equation)

Albert Benveniste, March 2016 - 18

Modelica: multi-mode DAE systems:

�𝐢𝐢𝐟𝐟 𝑏𝑏 𝐝𝐝𝐨𝐨 𝐹𝐹 𝑥̇𝑥, 𝑥𝑥, 𝑢𝑢 = 0
𝑏𝑏 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑥̇𝑥, 𝑥𝑥, 𝑢𝑢

• Modelica supports component
based physical system modeling
(not Simulink)

• Compilation is complex:
• Latent constraints
• Index reduction
• Structural analysis…

• Requires sophisticated causality
analyses (as for bond graphs)

• Idea: exploit the power of
Modelica analyses by automatically
deriving parity checks

From Modelica to parity checks,
automatically

Albert Benveniste -- March 2016 - 19

• Westinghouse braking system;
control: pressure at the head of the train

• Each wagon induces two modes:
valve 𝐷𝐷1 open / closed

• 2𝑛𝑛 modes for a 𝑛𝑛 wagons train

• Resistor 𝑅𝑅3 captures possible leakage

18/10/2016

From Modelica to parity checks,
automatically

Albert Benveniste -- March 2016 - 20

• Westinghouse braking system;
control: pressure at the head of the train

• Each wagon induces two modes:
valve 𝐷𝐷1 open / closed

• 2𝑛𝑛 modes for a 𝑛𝑛 wagons train

• Resistor 𝑅𝑅3 captures possible leakage
• Nominal / Leak : 𝑅𝑅3 = ∞ / 𝑅𝑅3 < ∞

• Goal: monitoring for a possible leakage
• What should we measure?
• Where to put sensors?
• Getting all of this from Modelica compilation

18/10/2016

From Modelica to parity checks,
automatically

Albert Benveniste -- March 2016 - 21

• The failure is non detectable when 𝐷𝐷1 is open
(no breaking mode)

• (no flow traverses 𝑅𝑅3 in this case)
• Diagnosticability is mode-dependent

(recall: 2𝑛𝑛 modes for a 𝑛𝑛 wagons train)

• How to generate parity checks
• To monitor all possible leaks
• By measuring (some or all of) the flows?

flow

18/10/2016

From Modelica to parity checks,
automatically

Albert Benveniste -- March 2016 - 22

• Idea: reuse the same Modelica model with
the following adjustments:

• Subset of the flows 𝜑𝜑𝑗𝑗1, … , 𝜑𝜑𝑗𝑗𝑘𝑘 : inputs
(possibly constrained)

• Resistors 𝑅𝑅1, … , 𝑅𝑅𝑛𝑛: nominal parameters
• Unobserved states 𝑋𝑋 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

• The mode-dependent causality analysis of the
Modelica model reveals that diagnosticability
is mode-dependent

flow

18/10/2016

From Modelica to parity checks,
automatically

Albert Benveniste -- March 2016 - 23

• We have our Modelica model for
simulation

• And the actual system for monitoring

• Some (but not all) states or outputs are
measured

18/10/2016

From Modelica to parity checks,
automatically

Albert Benveniste -- March 2016 - 2418/10/2016

• And feed the Modelica model with all
the measurement data

• Yields an overconstrained Modelica
model; exploit it to measure
model/data fit

• Collect measurement data from the
system in operation

Contents

1. Physical Modeling & Systems Design:
a vision

2. The foundations for compiling Modelica
(multi-mode DAE systems)

18/10/2016Albert Benveniste -- March 2016 - 25

The need for flexibility and solid
foundations

Albert Benveniste July 2014

Modelica, thou shall be flexible and
formally sound

18/10/2016Albert Benveniste -- March 2016 - 27

• Flexible
• Simulating
• Supporting safety analyses
• Generating fault trees
• Generating parity equations
• Handling multi-mode

with no restriction
• Supporting non-regular

systems?

• Formally sound
• Benefiting from the heritage of

synchronous languages

18/10/2016Albert Benveniste -- March 2016 - 28

Challenging hybrid causal loops in
Modelica tools

At the instant of
reset, x and y each
have a value defined
in terms of their
values just prior to
the reset.

model scheduling
Real x(start=0);
Real y(start=0);

equation
der(x)=1;
der(y)=x;

when x>=2 then
reinit(x,-3*pre(y));

end when;
when x>=2 then

reinit(y,-4*pre(x));
end when;

end scheduling

18/10/2016Albert Benveniste -- March 2016 - 29

Challenging hybrid causal loops in
Modelica tools

Take the pre’s away:

At the time of reset, x
and y are in cyclic
dependency chain.

The simulation
runtime (of both
OpenModelica and
Dymola), chooses to
reinitialize x first,
with the value -6 as
before, and then to
reinitialize y in terms
of the updated value
of x: 24.

model scheduling
Real x(start=0);
Real y(start=0);

equation
der(x)=1;
der(y)=x;

when x>=2 then
reinit(x,-3*y);

end when;
when x>=2 then

reinit(y,-4*x);
end when;

end scheduling

18/10/2016Albert Benveniste -- March 2016 - 30

Challenging hybrid causal loops in
Modelica tools

What happens, if we
reverse the order of
the two reinit?…

The simulation result
changes, as shown on
the bottom diagram.

The same
phenomenon occurs
if the reinit’s are each
placed in their own
when clause.

model scheduling
Real x(start=0);
Real y(start=0);

equation
der(x)=1;
der(y)=x;

when x>=2 then
reinit(x,-3*y);

end when;
when x>=2 then

reinit(y,-4*x);
end when;

end scheduling

• The causal version (with the “pre”) is scheduled properly
and simulates as expected.

• The non-causal programs are accepted as well,
but the result is not satisfactory.

• Algebraic loops cannot be rejected, even in resets, since they
are just another kind of equation. They should be accepted,
but the semantics of a model must not depend on its layout!

• Studying causality can help to understand the detail of
interactions between discrete and continuous code.

18/10/2016Albert Benveniste -- March 2016 - 31

Challenging hybrid causal loops in
Modelica tools

All about synchronous languages in a
few slides

Compilation schemes from the
Constructive Semantics
Albert Benveniste July 2014

An example of Signal program
and its compilation

18/10/2016Albert Benveniste -- March 2016 - 33

• Why discussing Signal?
• Among synchronous languages, Signal is

closest to Modelica
• It has clocks and equations on clocks, and
• Requires mode-dependent causality analysis

An example of Signal program
and its compilation

18/10/2016Albert Benveniste -- March 2016 - 34

• Why discussing Signal?
• Among synchronous languages, Signal is

closest to Modelica
• It has clocks and equations on clocks, and
• Requires mode-dependent causality analysis

• The Signal vintage watch
• This is an old mechanical watch like the one

I have. Turn the button. The watch goes for
some time, and then stops. When it stops,
turn again the button… and so on…

An example of Signal program
and its compilation

18/10/2016Albert Benveniste -- March 2016 - 35

(X := IN default ZX-1
(| ZX := X$1 init 0
(| IN ^= when (ZX < 0))

Input IN returns X

This was Signal code; Lustre-like pseudo-code follows:

pre(X) init 0 in
if pre(X) < 0

then (get IN and set X := IN)
else (set X := pre(X)-1)

An example of Signal program
and its compilation

18/10/2016Albert Benveniste -- March 2016 - 36

(X := IN default ZX-1
(| ZX := X$1 init 0
(| B := (ZX < 0)
(| IN ^= (when B) ^< B
(| H ^= B ^= X ^= ZX)

[B]: when B

XIN ZX

H[B]

B

[B] H-[B]

An example of Signal program
and its compilation

18/10/2016Albert Benveniste -- March 2016 - 37

(X := IN default ZX-1
(| ZX := X$1 init 0
(| B := (ZX < 0)
(| IN ^= (when B) ^< B
(| H ^= B ^= X ^= ZX)

[B]: when B

Case B = true
Case B = false

XIN ZX

H[B]

B

[B] H-[B]

An example of Signal program
and its compilation

18/10/2016Albert Benveniste -- March 2016 - 38

(X := IN default ZX-1
(| ZX := X$1 init 0
(| B := (ZX < 0)
(| IN ^= (when B) ^< B
(| H ^= B ^= X ^= ZX)

[B]: when B

Case B = true

XIN ZX

H[B]

B

An example of Signal program
and its compilation

18/10/2016Albert Benveniste -- March 2016 - 39

(X := IN default ZX-1
(| ZX := X$1 init 0
(| B := (ZX < 0)
(| IN ^= when B ^< B
(| H ^= B ^= X ^= ZX)

[B]: when B

Case B = false

XIN ZX

H[B]

B

An example of Signal program
and its compilation

18/10/2016Albert Benveniste -- March 2016 - 40

Constructive Semantics:
execution scheme that schedules
atomic actions (here: evaluating expressions)
and successfully evaluates all variables at each reaction

XIN ZX

H[B]

B

[B] H-[B]

From Synchronous Languages to the
Structural Analysis of
multi-mode DAE systems

From continuous to discrete time
using non-standard analysis
Albert Benveniste July 2014

A simple clutch

• The clutch has two modes:
• engaged : 𝛾𝛾 = 𝑇𝑇 ; DAE
• released : 𝛾𝛾 = 𝐹𝐹 ; ODE

18/10/2016Albert Benveniste -- March 2016 - 42

𝜔𝜔1′ = 𝑓𝑓1(𝜔𝜔1, 𝜏𝜏1)
𝜔𝜔2
′ = 𝑓𝑓2(𝜔𝜔2, 𝜏𝜏2)

if 𝛾𝛾 then �𝜔𝜔1 − 𝜔𝜔2 = 0
𝜏𝜏1 + 𝜏𝜏2 = 0

else �𝜏𝜏1 = 0
𝜏𝜏2 = 0

A simple clutch

• The clutch has two modes:
• engaged : 𝛾𝛾 = 𝑇𝑇 ; DAE
• released : 𝛾𝛾 = 𝐹𝐹 ; ODE

• Is it enough to make DAE analysis
mode dependent?

• problem: this says nothing about
how to handle the resets at mode
change

• When the clutch engages and the two
rotation speeds differ, an impulse
occurs for the torques

• This example is not supported by
existing Modelica tools today

18/10/2016Albert Benveniste -- March 2016 - 43

𝜔𝜔1′ = 𝑓𝑓1(𝜔𝜔1, 𝜏𝜏1)
𝜔𝜔2
′ = 𝑓𝑓2(𝜔𝜔2, 𝜏𝜏2)

if 𝛾𝛾 then �𝜔𝜔1 − 𝜔𝜔2 = 0
𝜏𝜏1 + 𝜏𝜏2 = 0

else �𝜏𝜏1 = 0
𝜏𝜏2 = 0

A simple clutch
the “engaged” mode
• The source DAE model is in black

• In red I have added a latent equation,
which implicitly holds although not
written in the source

• When all latent equations are added
(here only 1), we inherit a structurally
nonsingular system of algebraic eqns
(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒4, 𝑒𝑒5) with dependent variables
𝜏𝜏1, 𝜏𝜏2, 𝜔𝜔1′ , 𝜔𝜔2′ (dummy derivatives)

• Solving it yields the velocities as an
implicit function of the positions ≈ODE

18/10/2016Albert Benveniste -- March 2016 - 44

𝜔𝜔1′ = 𝑓𝑓1(𝜔𝜔1, 𝜏𝜏1)
𝜔𝜔2
′ = 𝑓𝑓2(𝜔𝜔2, 𝜏𝜏2)

if 𝛾𝛾 then �𝜔𝜔1 − 𝜔𝜔2 = 0
𝜏𝜏1 + 𝜏𝜏2 = 0

else �𝜏𝜏1 = 0
𝜏𝜏2 = 0

𝜔𝜔1′ = 𝑓𝑓1 𝜔𝜔1, 𝜏𝜏1 (𝑒𝑒1)
𝜔𝜔2
′ = 𝑓𝑓2 𝜔𝜔2, 𝜏𝜏2 (𝑒𝑒2)

𝜔𝜔1 − 𝜔𝜔2 = 0 (𝑒𝑒3)
𝜔𝜔1′ − 𝜔𝜔2

′ = 0 (𝑒𝑒4)
𝜏𝜏1 + 𝜏𝜏2 = 0 (𝑒𝑒5)

A simple clutch
trying existing tools

• Unfortunately, this tells nothing about
how to handle the mode changes

• The difficult case is 𝛾𝛾: 𝐹𝐹 → 𝑇𝑇
(the clutch gets engaged)

• Some simulation results for this
example by existing tools follow

18/10/2016Albert Benveniste -- March 2016 - 45

𝜔𝜔1′ = 𝑓𝑓1(𝜔𝜔1, 𝜏𝜏1)
𝜔𝜔2
′ = 𝑓𝑓2(𝜔𝜔2, 𝜏𝜏2)

if 𝛾𝛾 then �𝜔𝜔1 − 𝜔𝜔2 = 0
𝜏𝜏1 + 𝜏𝜏2 = 0

else �𝜏𝜏1 = 0
𝜏𝜏2 = 0

𝜔𝜔1′ = 𝑓𝑓1 𝜔𝜔1, 𝜏𝜏1 (𝑒𝑒1)
𝜔𝜔2
′ = 𝑓𝑓2 𝜔𝜔2, 𝜏𝜏2 (𝑒𝑒2)

𝜔𝜔1 − 𝜔𝜔2 = 0 (𝑒𝑒3)
𝜔𝜔1′ − 𝜔𝜔2

′ = 0 (𝑒𝑒4)
𝜏𝜏1 + 𝜏𝜏2 = 0 (𝑒𝑒5)

A simple clutch
trying Modelica

• Mode changes 𝐹𝐹 → 𝑇𝑇 → 𝐹𝐹 at 𝑡𝑡 = 5, 10

The following error was detected at time: 5.002
Error: Singular inconsistent scalar system for
f1 = ((if g then w1-w2 else 0.0))/(-(if g then
0.0 else 1.0)) = -0.502621/-0
Integration terminated before reaching
"StopTime“ at T = 5

• The reason is that Dymola has
symbolically pivoted the system of
equations, independently of the mode.
By doing so, it has produced an
equation defining f1 that is singular in
mode g.

18/10/2016Albert Benveniste -- March 2016 - 46

model ClutchBasic
parameter Real w01=1;
parameter Real w02=1.5;
parameter Real j1=1;
parameter Real j2=2;
parameter Real k1=0.01;
parameter Real k2=0.0125;
parameter Real t1=5;
parameter Real t2=7;
Real t(start=0, fixed=true);
Boolean g(start=false);
Real w1(start = w01, fixed=true);
Real w2(start = w02, fixed=true);
Real f1;
Real f2;
equation
der(t) = 1;
g = (t >= t1) and (t <= t2);
j1*der(w1) = -k1*w1 + f1;
j2*der(w2) = -k2*w2 + f2;
0 = if g then w1-w2 else f1;
f1 + f2 = 0;
end ClutchBasic;

A simple clutch
trying Mathematica (NDSolve)

18/10/2016Albert Benveniste -- March 2016 - 47

NDSolve[{
w1'[t] == -0.01 w1[t] + t1[t],
2 w2'[t] == -0.0125 w2[t] + t2[t],
t1[t] + t2[t] == 0,
s[t] (w1[t] - w2[t]) + (1 - s[t]) t1[t]
== 0,
w1[0] == 1.0, w2[0] == 1.501, s[0] == 0,
WhenEvent[t == 5,
{s[t] -> 1}
]
},
{w1, w2, t1, t2,s},
{t, 0, 7}, DiscreteVariables -> s]

No crash at mode change. But
nondeterministic reset reveals that
cold restart is indeed performed by
NDSolve on this example.

Mode changes
𝐹𝐹 → 𝑇𝑇 at 𝑡𝑡 = 5
𝑇𝑇 → 𝐹𝐹 at 𝑡𝑡 = 10

A simple clutch
a comprehensive approach

• The difficult case is 𝛾𝛾: 𝐹𝐹 → 𝑇𝑇
(the clutch gets engaged)

• We handle this by invoking
nonstandard analysis and expand:
𝜔𝜔′ = 𝜔𝜔∎−𝜔𝜔

𝜕𝜕
where 𝜔𝜔∎ is the “next”

operator and time step 𝜕𝜕 is an
infinitesimal of nonstandard analysis

• This brings the whole model to
discrete-time and we are able to
combine the techniques from
synchronous languages with those
of index analysis from DAE

18/10/2016Albert Benveniste -- March 2016 - 48

𝜔𝜔1′ = 𝑓𝑓1(𝜔𝜔1, 𝜏𝜏1)
𝜔𝜔2
′ = 𝑓𝑓2(𝜔𝜔2, 𝜏𝜏2)

if 𝛾𝛾 then �𝜔𝜔1 − 𝜔𝜔2 = 0
𝜏𝜏1 + 𝜏𝜏2 = 0

else �𝜏𝜏1 = 0
𝜏𝜏2 = 0

A simple clutch
our results

18/10/2016Albert Benveniste -- March 2016 - 49

The reset is handled satisfactorily.
The rotation speed right after
engagement sits between the two
rotation speeds before, which
matches the intuition from physics.

𝜔𝜔1′ = 𝑓𝑓1(𝜔𝜔1, 𝜏𝜏1)
𝜔𝜔2
′ = 𝑓𝑓2(𝜔𝜔2, 𝜏𝜏2)

if 𝛾𝛾 then �𝜔𝜔1 − 𝜔𝜔2 = 0
𝜏𝜏1 + 𝜏𝜏2 = 0

else �𝜏𝜏1 = 0
𝜏𝜏2 = 0

Mode changes
𝐹𝐹 → 𝑇𝑇 at 𝑡𝑡 = 5
𝑇𝑇 → 𝐹𝐹 at 𝑡𝑡 = 10

Structural Analysis of
multi-mode DAE systems

See my detailed lecture

Albert Benveniste July 2014

Conclusion

1. Physical modeling is central to systems design
• Modeling for simulation
• Modeling fault propagation
• Generating parity checks for diagnostics
• Complemented with modeling the computing architecture

18/10/2016Albert Benveniste -- March 2016 - 62

Conclusion

1. Physical modeling is central to systems design
• Modeling for simulation
• Modeling fault propagation
• Generating parity checks for diagnostics
• Complemented with modeling the computing architecture

2. The compilation of physical models requires a
difficult structural analysis
• Source of difficulties in current tools
• Techniques from synchronous languages help
• Efficient algorithms are yet to obtain

18/10/2016Albert Benveniste -- March 2016 - 63

Thanks

	Physical model based systems design�
	Contents
	Physical Modeling & Systems Design: the overall vision
	Physical modeling using Modelica�(DAE: Differential Algebraic Equation)
	The overall vision�
	Modelica & Requirement Engineering
	Modelica + Requirements�
	Modelica + Requirements�
	Modelica + Contracts�
	Modelica & Safety Engineering
	Modelica + Safety�
	Telecom network diag [Fabre et al. 2006]�
	Diagnosis algorithm�
	How to construct models? Self-Modeling
	How to construct models? Self-Modeling
	Modelica & System wide Diagnosis
	Modelica�(DAE: Differential Algebraic Equation)
	From Modelica to parity checks, automatically
	From Modelica to parity checks, automatically
	From Modelica to parity checks, automatically
	From Modelica to parity checks, automatically
	From Modelica to parity checks, automatically
	From Modelica to parity checks, automatically
	Contents
	The need for flexibility and solid foundations
	Modelica, thou shall be flexible and formally sound
	Challenging hybrid causal loops in Modelica tools
	Challenging hybrid causal loops in Modelica tools
	Challenging hybrid causal loops in Modelica tools
	Challenging hybrid causal loops in Modelica tools
	All about synchronous languages in a few slides
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	From Synchronous Languages to the Structural Analysis of �multi-mode DAE systems
	A simple clutch�
	A simple clutch�
	A simple clutch�the “engaged” mode
	A simple clutch�trying existing tools
	A simple clutch�trying Modelica
	A simple clutch�trying Mathematica (NDSolve)
	A simple clutch�a comprehensive approach
	A simple clutch�our results
	Structural Analysis of �multi-mode DAE systems
	Conclusion�
	Conclusion�
	Thanks

