
Extending SysML for
Integration with Solver-based

Simulation Tools

Ion Matei
Conrad Bock

Overview
§ Motivation and approach
§ Dynamic simulation overview
§ SysML extension
§ Detailed example
§ Transforming to simulation formats
§ Summary

Overview
§ Motivation and approach
§ Dynamic simulation overview
§ SysML extension
§ Detailed example
§ Transforming to simulation formats
§ Summary

§ Enabled by integrated models of:

Model-based Systems Engineering

Requirements

Accelerate at
of 4 m/s2

100 kw

hydraulic
pressure

mechanical
pressure

Designs

Analysis
and testing

4

Modeling Languages
§ Needed for people / computers to

share models.

Diagrams
and/or text

§ Graphics:
– Circles,
– Rectangles
– Lines

§ Domain
terms:
– Lathes, Feeders
– Drying, Shaping

§ What happens:
– Geometry changed.
– Pieces mounted

onto machines.
– Water removed. § Text:

– Reserved words

1. Acetylation
2. Saponification & Precipitation
3. Washing & Drying
4. Rhodla Flakes
5. Mixing
6. Spinning
7. Crimping
8. Drying
9. Laying
10. Pressing Bales

5

Systems Modeling Language
(SysML)

§ Most widely used graphical modeling
language for systems engineering.
§ Open standard published by the

Object Management Group (OMG).
§ Initiated by the International Council

on Systems Engineering (INCOSE).
§ First published in 2007, most recent

update in 2012.
§ Adopted by practically all commerical

and open source SE modeling tools. 6

SysML Diagrams

definition use

Components

Behavior

Requirements

Parametrics

sd ABS_ActivationSequence [Sequence Diagram]

d1:Traction
Detector

m1:Brake
Modulator

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

interaction
state

machine

stm TireTraction [State Diagram]

Gripping Slipping

LossOfTraction

RegainTraction
activity

7

SysML extends the Unified
Modeling Language (UML)
§ UML is the most widely used

graphical modeling language for
software (also published by OMG).
§ INCOSE chose to extend UML (and

approach OMG) because
– Modern systems/products usually have

significant amounts of software in them.
– Extending UML is a path to integrating

engineering and software development.
– Software modeling in UML has many

commonalities with systems
engineering modeling.

8

SysML/UML Diagrams

9

Internal Block
Diagram

Use Case
Diagram

State Machine
Diagram

Block Definition
Diagram

Extension of UML

Requirements
Diagram

As-is from UML

Parametric
Diagram

Interaction
Diagram

Activity
Diagram

Package
Diagram SysML

(structure)

Class Diagram Internal Structure
Diagram

Package
Diagram UML

SysML/UML
(behavior)

SysML as Hub for Engineering

§ Focus of this talk is integration with
solver-based simulation.

Solver-based Simulators
§ Solver-based simulators have user

interfaces similar to modeling tools.

§ But the tools treat these as equations

rather than physical things.

11

Solver-based Simulators
§ Generate differential equations from

diagrams and incrementally solve
them to give values of variables over
time.

 Time

0.1
0.2
0.3
0.4
0.5
0.6
0.7

SysML Hub for Simulators

§ Integration supported by different
profiles for each simulator.

Reduce Specialized Profiles

§ Extend SysML with a general
simulation profile.

Overview
§ Motivation and approach
§ Dynamic simulation overview
§ SysML extension
§ Detailed example
§ Transforming to simulation formats
§ Summary

Multiple Engineering Disciplines
§ Generally, solvers use the same numerical

algorithms for all the engineering
disciplines.

16

Multiple Engineering Disciplines
§ Possible because of commonality of

underlying physics.

17

Domain What is
flowing Flow rate Potential to

flow

Electrical Charge Current Voltage

Mechanics,
translational Momentum Force Velocity

Mechanics,
angular

Angular
momentum Torque Angular

velocity

Hydraulics
Volume

(uncompressable
fluid)

Volumetric
rate Pressure

Thermal Heat energy Heat flow
rate Temperature

Conservation Laws
§ Rates of flow follow conservation

laws, potentials to flow do not.

§ FR out 1 + FR out 2 = FR in
§ Potential to flow is the same on all

ends.
18

Potential to flow

Flow rate, out 1

Flow rate, in
Potential to flow

Flow rate, out 2

Potential to flow

Conservation Laws
§ Flow rates can be in either direction

(postive or negative).

§ FR out/in 1 + FR out/in 2 = FR in/out
§ Potential to flow is the same on all

ends.
19

Potential to flow

Flow rate, out/in 1

Flow rate, in/out
Potential to flow

Flow rate, out/in 2

Potential to flow

Simulating Information Flow
§ Information flow does not follow

conservation laws
– Information can be copied.
– Simulated as potential to flow (signals).

§ Information is the same on all ends.

20

Information

Information

Information

Simulator Constraints
§ Rates of flow cannot be simulated on

unidirectional flows.

§ FR out 1 + FR out 2 = FR in
§ Potential to flow is the same on all

ends.
21

Potential to flow

Flow rate, out 1

Flow rate, in
Potential to flow

Flow rate, out 2

Potential to flow

Simulator Constraints
§ Unidirectional flows cannot be

merged.

§ They can be split (reverse of above).
§ Bidirectional flows can be merged

and split.

22

Overview
§ Motivation and approach
§ Dynamic simulation overview
§ SysML extension
§ Detailed example
§ Transforming to simulation formats
§ Summary

§ Systems engineering models and
simulators are concened with
overlapping aspects of flow.

Integration with SE Modeling

24

Domain Kind of item
flowing

Electrical Charge

Mechanics,
translational Momentum

Mechanics,
angular

Angular
momentum

Fluid
Volume

(uncompressable
fluid)

Thermal Heat energy

Flow Rate
Potential to

flow

Current Voltage

Force Velocity

Torque Angular velocity

Volumetric
rate Pressure

Heat flow
rate Temperature

Direction
of flow

Systems Engineering Dynamic Simulators

§ Specify what is flowing and in which
direction.

Flow Properties in SysML

25

Crankshaft

out produces : Energy

Engine Wheel
cs : Crankshaft h : Hub

bdd PowerTrain

Direction
of flow

Kind of item
flowing

Hub

in accepts : Energy

Extending SysML
§ Bring flows and potentials into SysML for

generating simulator input.

26

«simBlock»
EnergyFlow

Crankshaft Hub

out produces : Energy
«simProperty» {referTo: produces}
 simProduces : EnergyFlow

in accepts : Energy
«simProperty» {referTo: accepts}
 simAccepts : EnergyFlow

«simVariable» {isConserved} energyFlowRate : Power
«simVariable» energyPotential : PotentialEnergy

bdd PowerTrain

Stereotypes

«stereotype»
Block

«stereotype»
SimBlock

{ all properties have SimVariable
 applied }

«stereotype»
SimVariable

referTo : FlowProperty

{ property is typed by Class with
 SimBlock applied }

«stereotype»
SimProperty

«metaclass»
Property

27

«stereotype»
SimConstant

{ property is a value property }

isContinuous : Boolean = true
isConserved: Boolean = false
changeCycle: Real = 0

Start here

Conservation and Directionality
§ SimBlocks for unidirectional flow

properties (in or out) can only have
non-conserved variables
(isConserved = false).
§ Simblocks for bidirectional flow

properties can have both conserved
and non-conserved variables.

Connection Constraints
§ SimBlocks of matching flow

properties must either be the same
or match exactly.
§ In flow properties can be connected

to no more than out flow property.
§ Out flow properties can be

connected to any number of in flow
properties.
§ Inout flow properties aren’t

constrained in linkage number.

Overview
§ Motivation and approach
§ Dynamic simulation overview
§ SysML extension
§ Detailed example
§ Transforming to simulation formats
§ Summary

Example (Graphics)

§ N-ary electrical connections broken
into binary SysML connectors.

ibd [block] Circuit

g : Ground

p: Pin

s : Source

p: Pin

 n: Pin c : Capacitor

n: Pin

 p: Pin

r : Resistor

p: Pin

 n: Pin

i : Inductor

p: Pin

 n: Pin

bdd CircuitBlocks

Example (Extensions)

«simBlock»
ElectricityFlow

sim variables
{isConserved} i : Current
v : Voltage

flow properties
inout electricity: Charge

sim properties
{referTo=electricity} sb: ElectricityFlow

«block»
Pin

«block»
Resistor

sim constants
R : Resistance= 10

 constraints
rc : ResistorConstraint

«block»
Capacitor

sim constants
C : Capacitance= 0.01

constraints
cc : CapacitorConstraint

«block»
Inductor

sim constants
L : Inductance= 0.1

constraints
ic : InductorConstraint

«block»
Source

constraints
sc : SourceConstraint

«block»
Ground

ports
p : Pin

constraints
sc : SourceConstraint

«block»
TwoPinElectricalComponent

ports
p : Pin
n : Pin

sim variables
{isConserved } iThru : Current
vDrop : Voltage

Start
here

Example (Constraint Blocks)

par [block] Resistor

vDrop

iThru

R

v:

i:

R:

posI: posV:

negI: negV:

rc : ResistorConstraint

n.sb.i n.sb.v

p.sb.i p.sb.v

«block»
TwoPinElectricalComponent

ports
p : Pin
n : Pin

sim variables
«isConserved» iThru : Current
vDrop : Voltage

«block»
Resistor

sim constants
R : Resistance= 10

 constraints
rc : ResistorConstraint

Example (Constraints)

§ Specifying mathematical equations.

bdd [block] CircuitEquations

«constraint»
ResistorConstraint

parameters
R : Resistance

constraints
{R*i = v}

«constraint»
CapacitorConstraint

parameters
C : Capacitance

constraints
{C*der(i) = v}

«constraint»
InductorConstraint

parameters
L : Inductance

constraints
{L*der(v) = i}

«constraint»
SourceConstraint

parameters
t : Time

constraints
{v=220*sin(314*t)}

«constraint»
GroundConstraint

parameters
posV : Voltage

constraints
{ 0 = posV}

«constraint»
BinaryElectrical

ComponentConstraint
parameters

i : Current
negI : Current
posI : Current

v : Voltage
negV : Voltage
posV : Voltage

constraints
{ v = posV - negV}
{ 0 = posI + negI }

{i = posI}

«block»
TwoPinElectricalComponent

ports
p : Pin
n : Pin

sim variables
«isConserved» iThru : Current
vDrop : Voltage

«block»
Resistor

sim constants
R : Resistance= 10

 constraints
rc : ResistorConstraint

Overview
§ Motivation and approach
§ Dynamic simulation overview
§ SysML extension
§ Detailed example
§ Transforming to simulation formats
§ Summary

Terminology Mapping

SysML+ Modelica Simulink /
Simscape

Block without
internal structure

Model without connections
BlockType /
Component

Block with internal
structure

Model with connections
System /

Component
SimBlock

(referring to a flow prop)
Connector Library elements

Variables
On SimBlocks Variables Ports / Variables

Connector Connection/Equation Line/Connection

Constraint block Equation
S-Function /

Equation

Mapping Internal Structure to
Modelica

model circuit
Resistor r(R=10);
Capacitor c(C=0.01);
Inductor i(L=0.1);
Source s;
Ground g;

equation
connect (s.p, c.n);
connect (c.n, r.p);
connect (r.n, i.p);
connect (i.n, c.p);
connect (c.p, s.n);
connect (s.n, g.p);

end circuit;

SysML Modelica

ibd [block] Circuit

g : Ground

p: Pin

s : Source

p: Pin

n: Pin c : Capacitor

n: Pin

p: Pin

r : Resistor

p: Pin

n: Pin

i : Inductor

p: Pin

n: Pin

Mapping Internal Structure to
Simscape

component circuit
 components

r = Resistor(R=10);
c = Capacitor(C=0.01);
i = Inductor(L=0.1);
S = Source;
G = Ground;

 end
 connections

connect (s.p, c.n);
connect (c.n, r.p);
connect (r.n, i.p);
connect (i.n, c.p);
connect (c.p, s.n);
connect (s.n, g.p);

 end
end

SysML
Simscape

ibd [block] Circuit

g : Ground

p: Pin

s : Source

p: Pin

n: Pin c : Capacitor

n: Pin

p: Pin

r : Resistor

p: Pin

n: Pin

i : Inductor

p: Pin

n: Pin

Mapping Constraints to Modelica

§ Equations in simulator
use variable names from
model after binding.

model Resistor “Electrical resistor"
Pin p,n;
flow Current iThru;
Voltage vDrop;
parameter Real R(unit="Ohm")
 "Resistance";
equation

vDrop = p.v - n.v;
 0 = p.i + n.i;
 iThru = p.i;
 R*iThru = vDrop;
end Resistor

Modelica

SysML+

par [block] Resistor

vDrop

iThru

R

v:

i:

R:

posI: posV:

negI: negV:

rc : ResistorConstraint

n.sb.i n.sb.v

p.sb.i p.sb.v

«constraint»
ResistorConstraint

parameters
i : Current
negI : Current
posI : Current
v : Voltage
negV : Voltage
posV : Voltage
R : Resistance

constraints
{ v = posV - negV}
{ 0 = posI + negI }
{ i = posI }
{ R*i = v }

«block»
TwoPinElectricalComponent

ports
p : Pin
n : Pin

sim variables
«isConserved» iThru : Current
vDrop : Voltage

«block»
Resistor

sim constants
R : Resistance= 10

constraints
rc : ResistorConstraint

Mapping Constraints to Simscape

component “Electrical Resistor“
 nodes
 p = foundation.electrical.
 electrical;
 n = foundation.electrical.
 electrical;
 end
 variables
 iThru = { 0, 'A' };
 vDrop = { 0, 'V' };
 end
 parameters
 R = { 1, 'Ohm' };
 end
 function setup
 across(vDrop, p.v, n.v);
 through(iThru, p.i, n.i);
 end
 equations
 R*iThru == vDrop;
 end
end

Simscape

SysML+

par [block] Resistor

vDrop

iThru

R

v:

i:

R:

posI: posV:

negI: negV:

rc : ResistorConstraint

n.sb.i n.sb.v

p.sb.i p.sb.v

«constraint»
ResistorConstraint

parameters
i : Current
negI : Current
posI : Current
v : Voltage
negV : Voltage
posV : Voltage
R : Resistance

constraints
{ v = posV - negV}
{ 0 = posI + negI }
{ i = posI }
{ R*i = v }

«block»
TwoPinElectricalComponent

ports
p : Pin
n : Pin

sim variables
«isConserved» iThru : Current
vDrop : Voltage

«block»
Resistor

sim constants
R : Resistance= 10

constraints
rc : ResistorConstraint

Mapping SimBlocks to Modelica

§ Pin in simulator has properties of SimBlocks
– Flow properties used only to determine direction

(“causality”) in usages of SimBlocks.

connector Pin
 flow Current i;
 Voltage v;
end EF; «simBlock»

ElectricityFlow

sim variables
«isConserved» i : Current
v : Voltage

flow properties
inout electricity: Charge

sim properties
«referTo=electricity» var : ElectricityFlow

«block»
Pin

SysML+ Modelica

Mapping SimBlocks to Simscape

«simBlock»
ElectricityFlow

sim variables
«isConserved» i : Current
v : Voltage

flow properties
inout electricity: Charge

sim properties
«referTo=electricity» var : ElectricityFlow

«block»
Pin

SysML+ Simscape

We can’t find how these
elements are specified, but
they are referred to in user

models, see later slides.

§ Pin in simulator is only the SimBlock
– Flow properties used only to determine direction

(“causality”) in usage of SimBlocks.

Overview
§ Motivation and approach
§ Dynamic simulation overview
§ SysML extension
§ Detailed example
§ Transforming to simulation formats
§ Summary

Summary
§ Goal is to reduce size and complexity of

simulator-specific profiles.
– by reusing and extending SysML.

§ SysML concerned with flow direction
(input/output) and kind of things flowing.
§ Simulators are concerned with flow

direction, potential, and rate.
§ Extend SysML with rate, potential, and

other aspects of simulated flow.
§ Use extended SysML to generate

simulator-specific files.

More Information
§ An Analysis of Solver-Based

Simulation Tools
• Survey of solver-based simulators
• (http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909924)

§ Modeling Methodologies and
Simulation for Dynamical Systems

• Describes two ways simulators are used.
• (http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7875.pdf)

§ SysML Extension for Dynamical
System Simulation Tools

• Covers a simulator-independent extension
of SysML.

• (http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7888.pdf)

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909924
http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7875.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7888.pdf

	Extending SysML for Integration with Solver-based Simulation Tools
	Overview
	Overview
	Model-based Systems Engineering
	Modeling Languages
	Systems Modeling Language (SysML)
	SysML Diagrams
	SysML extends the Unified Modeling Language (UML)
	SysML/UML Diagrams
	SysML as Hub for Engineering
	Solver-based Simulators
	Solver-based Simulators
	SysML Hub for Simulators
	Reduce Specialized Profiles
	Overview
	Multiple Engineering Disciplines
	Multiple Engineering Disciplines
	Conservation Laws
	Conservation Laws
	Simulating Information Flow
	Simulator Constraints
	Simulator Constraints
	Overview
	Integration with SE Modeling
	Flow Properties in SysML
	Extending SysML
	Stereotypes
	Conservation and Directionality
	Connection Constraints
	Overview
	Example (Graphics)
	Example (Extensions)
	Example (Constraint Blocks)
	Example (Constraints)
	Overview
	Terminology Mapping
	Mapping Internal Structure to Modelica
	Mapping Internal Structure to Simscape
	Mapping Constraints to Modelica
	Mapping Constraints to Simscape
	Mapping SimBlocks to Modelica
	Mapping SimBlocks to Simscape
	Overview
	Summary
	More Information

