

Extending SysML for Integration with Solver-based Simulation Tools

Ion Matei
Conrad Bock

Overview

- § Motivation and approach
- § Dynamic simulation overview
- § SysML extension
- § Detailed example
- § Transforming to simulation formats
- § Summary

Overview

- § Motivation and approach
- § Dynamic simulation overview
- § SysML extension
- § Detailed example
- § Transforming to simulation formats
- § Summary

Model-based Systems Engineering

§ Enabled by integrated models of:

Modeling Languages

§ Needed for people / computers to share models.

- § Graphics:
 - Circles,
 - Rectangles
 - Lines
- § Text:
 - Reserved words

- § Domain terms:
 - Lathes, Feeders
 - Drying, Shaping

- § What happens:
 - Geometry changed.
 - Pieces mounted onto machines.
 - Water removed.

Systems Modeling Language (SysML)

- § Most widely used graphical modeling language for systems engineering.
- § Open standard published by the Object Management Group (OMG).
- § Initiated by the International Council on Systems Engineering (INCOSE).
- § First published in 2007, most recent update in 2012.
- § Adopted by practically all commerical and open source SE modeling tools. 6

SysML Diagrams

Requirements

Components

SysML extends the Unified Modeling Language (UML)

- § UML is the most widely used graphical modeling language for software (also published by OMG).
- § INCOSE chose to extend UML (and approach OMG) because
 - Modern systems/products usually have significant amounts of software in them.
 - Extending UML is a path to integrating engineering and software development.
 - Software modeling in UML has many commonalities with systems engineering modeling.

SysML/UML Diagrams

SysML/UML (behavior)

Activity Diagram

State Machine Diagram

Use Case Diagram

Interaction Diagram

As-is from UML

Extension of UML

SysML as Hub for Engineering

§ Focus of this talk is integration with solver-based simulation.

Solver-based Simulators

§ Solver-based simulators have user interfaces similar to modeling tools.

§ But the tools treat these as equations rather than physical things.

Solver-based Simulators

§ Generate differential equations from diagrams and incrementally solve them to give values of variables over time.

SysML Hub for Simulators

§ Integration supported by different profiles for each simulator.

Reduce Specialized Profiles

§ Extend SysML with a general simulation profile.

Overview

- § Motivation and approach
- § Dynamic simulation overview
- § SysML extension
- § Detailed example
- § Transforming to simulation formats
- § Summary

Multiple Engineering Disciplines

§ Generally, solvers use the same numerical algorithms for all the engineering disciplines.

Multiple Engineering Disciplines

§ Possible because of commonality of underlying physics.

Domain	What is flowing	Flow rate	Potential to flow
Electrical	Charge	Current	Voltage
Mechanics, translational	Momentum	Force	Velocity
Mechanics, angular	Angular momentum	Torque	Angular velocity
Hydraulics	Volume (uncompressable fluid)	Volumetric rate	Pressure
Thermal	Heat energy	Heat flow rate	Temperature

Conservation Laws

§ Rates of flow follow conservation laws, potentials to flow do not.

- § FR out 1 + FR out 2 = FR in
- § Potential to flow is the same on all ends.

Conservation Laws

§ Flow rates can be in either direction (postive or negative).

- § FR out/in 1 + FR out/in 2 = FR in/out
- § Potential to flow is the same on all ends.

Simulating Information Flow

- § Information flow does not follow conservation laws
 - Information can be copied.
 - Simulated as potential to flow (signals).

§ Information is the same on all ends.

Simulator Constraints

§ Rates of flow cannot be simulated on unidirectional flows.

- § FR out 1 + FR out 2 = FR in
- § Potential to flow is the same on all ends.

Simulator Constraints

§ Unidirectional flows cannot be merged.

- § They can be split (reverse of above).
- § Bidirectional flows can be merged and split.

Overview

- § Motivation and approach
- § Dynamic simulation overview
- § SysML extension
- § Detailed example
- § Transforming to simulation formats
- § Summary

Integration with SE Modeling

§ Systems engineering models and simulators are concened with overlapping aspects of flow.

Domain	Kind of item flowing		Flow Rate	Potential to flow
Electrical	Charge		Current	Voltage
Mechanics, translational	Momentum		Force	Velocity
Mechanics, angular	Angular momentum	Direction of flow	Torque	Angular velocity
Fluid	Volume (uncompressable fluid)		Volumetric rate	Pressure
Thermal	Heat energy	X	Heat flow rate	Temperature

Systems Engineering

Dynamic Simulators

Flow Properties in SysML

§ Specify what is flowing and in which direction.

Extending SysML

§ Bring flows and potentials into SysML for generating simulator input.

Stereotypes

Conservation and Directionality

- § SimBlocks for unidirectional flow properties (in or out) can only have non-conserved variables (isConserved = false).
- § Simblocks for bidirectional flow properties can have both conserved and non-conserved variables.

Connection Constraints

- § SimBlocks of matching flow properties must either be the same or match exactly.
- § In flow properties can be connected to no more than out flow property.
- § Out flow properties can be connected to any number of *in* flow properties.
- § Inout flow properties aren't constrained in linkage number.

Overview

- § Motivation and approach
- § Dynamic simulation overview
- § SysML extension
- § Detailed example
- § Transforming to simulation formats
- § Summary

Example (Graphics)

§ N-ary electrical connections broken into binary SysML connectors.

Example (Extensions)

Example (Constraint Blocks)

Example (Constraints)

§ Specifying mathematical equations.

Overview

- § Motivation and approach
- § Dynamic simulation overview
- § SysML extension
- § Detailed example
- § Transforming to simulation formats
- § Summary

Terminology Mapping

SysML+	Modelica	Simulink / Simscape
Block without internal structure	Model without connections	BlockType / Component
Block with internal structure	Model with connections	System / Component
SimBlock (referring to a flow prop)	Connector	Library elements
Variables On SimBlocks	Variables	Ports / Variables
Connector	Connection/Equation	Line/Connection
Constraint block	Equation	S-Function / Equation

Mapping Internal Structure to Modelica


```
model circuit
   Resistor r(R=10);
   Capacitor c(C=0.01);
   Inductor i(L=0.1);
   Source s;
   Ground q;
equation
   connect (s.p, c.n);
   connect (c.n, r.p);
   connect (r.n, i.p);
   connect (i.n, c.p);
   connect (c.p, s.n);
   connect (s.n, g.p);
end circuit;
```

SysML

Modelica

Mapping Internal Structure to Simscape


```
component circuit
 components
   r = Resistor(R=10);
   c = Capacitor(C=0.01);
   i = Inductor(L=0.1);
     = Source;
   G = Ground:
 end
 connections
   connect (s.p, c.n);
   connect (c.n, r.p);
   connect (r.n, i.p);
   connect (i.n, c.p);
   connect (c.p, s.n);
   connect (s.n, q.p);
 end
end
```

SysML

Simscape

Mapping Constraints to Modelica

n.sb.i

n.sb.v

i : Current

v : Voltage

 $\{i = posl\}$ $R^*i = v$

Mapping Constraints to Simscape

«block» TwoPinElectricalComponent ports p:Pin n:Pin sim variables «isConserved» iThru: Current vDrop: Voltage «block» Resistor sim constants R: Resistance= 10 constraints rc : ResistorConstraint par [block] Resistor p.sb.v p.sb.i posV: vDrop rc: ResistorConstraint iThru R

negV:

n.sb.v

n.sb.i

```
component "Electrical Resistor"
 nodes
    p = foundation.electrical.
                        electrical;
    n = foundation.electrical.
                        electrical:
  end
 variables
    iThru = { 0, 'A' };
vDrop = { 0, 'V' };
 end
 parameters
    R = \{ 1, 'Ohm' \};
 end
 function setup
    across( vDrop, p.v, n.v );
    through( iThru, p.i, n.i );
 end
 equations
    R*iThru == vDrop;
end
end
          Simscape
```

SysML+

ResistorConstraint

parameters
i: Current
negl: Current
posl: Current
v: Voltage
negV: Voltage
posV: Voltage
R: Resistance

«constraint»

constraints
{ v = posV - negV}
{ 0 = posI + negI }
{ i = posI }
{ R*i = v }

Mapping SimBlocks to Modelica

- § Pin in simulator has properties of SimBlocks
 - Flow properties used only to determine direction ("causality") in usages of SimBlocks.

Mapping SimBlocks to Simscape

SysML+

Simscape

- § Pin in simulator is only the SimBlock
 - Flow properties used only to determine direction ("causality") in usage of SimBlocks.

Overview

- § Motivation and approach
- § Dynamic simulation overview
- § SysML extension
- § Detailed example
- § Transforming to simulation formats
- § Summary

Summary

- § Goal is to reduce size and complexity of simulator-specific profiles.
 - by reusing and extending SysML.
- § SysML concerned with flow direction (input/output) and kind of things flowing.
- § Simulators are concerned with flow direction, potential, and rate.
- § Extend SysML with rate, potential, and other aspects of simulated flow.
- § Use extended SysML to generate simulator-specific files.

More Information

- § An Analysis of Solver-Based Simulation Tools
 - Survey of solver-based simulators
 - <u>(http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909924)</u>
- § Modeling Methodologies and Simulation for Dynamical Systems
 - Describes two ways simulators are used.
 - (http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7875.pdf)
- § SysML Extension for Dynamical System Simulation Tools
 - Covers a simulator-independent extension of SysML.
 - (http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7888.pdf)