The Road Ahead for Wireless
Technology: Dreams and Challenges




uture Wireless Networks

Ubiquitous Communication Among People and Devices

Ubiauito!

Next-generation Cellular
Wireless Internet Access
Sensor Networks

Smart Homes/Spaces
Automated Highways
Smart Grid

Body-Area Networks
Internet of Things

All this and more ...
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* Network Challenges 11

e High performance

e Extreme energy efficiency
e Scarce/bifurcated spectrum

e Heterogeneous networks B
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Reliability and coverage
Seamless internetwork handoff

* Device/SoC Challenges

e Performance

Complexity

Size, Power, Cost

High frequencies/mmWave
Multiple Antennas
Multiradio Integration
Coexistance




“Sorry America, your airwaves are full*”

o On the Horizon:
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~ loT is not (completely) hype
-

(" Consumer & Home \ [ SmartInfrastructure ) éecurity & Surveillance)

td -
a Retail 4 Others N
- L Bl s + LY ; : gl 3 @ ﬁlil”f
: _ B
| d E‘ g %&&6
E‘ﬁ f% i - = | _ [ . fprictin
g v ) : o B
My s LS o e
* Pl o 1 ¥ m & e
\ m / K g /
\ Vivante and the Vivante logo are trademarks of Vivante Corporation. All other product, image or service names in this presentation are the property of their respective owners. © 2013 Vivante Corporation /

Different requirements than smartphones: low rates/energy consumption
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~— Are we at the Shannon

limit of the Physical Layer?

We are at the Shannon Limit
e “The wireless industry has reached the theoretical limit
of how fast networks can go” K. Fitcher, Connected Planet

e “We’re 99% of the way” to the “barrier known as
Shannon’s limit,” D. Warren, GSM Association Sr. Dir. of Tech.

Shannon was wrong, there is no limit
e “There is no theoretical maximum to the amount of data

that can be carried by a radio channel” M. Gass, 802.11
Wireless Networks: The Definitive Guide

o “Effectively unlimited” capacity possible via personal cells
(pcells). S. Periman, Artemis.




- What would Shannon say?

We don’t know the Shannon
capacity of most wireless channels

e Time-varying channels.
e Channels with interference or relays.
o Cellular systems

e Ad-hoc and sensor networks
e Channels with delay/energy/SSS constraints.

Shannon theory provides design insights
and system performance upper bounds




Enablers for increasing wireless data rates

More spectrum (mmWave)

(Massive) MIMO

Innovations in cellular system design
Software-defined wireless networking

Cognitive radios
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“mmW as the next spectral frontier

* Large bandwidth allocations, far beyond the 20MHz of 4G
® Rain and atmosphere absorption not a big issue in small cells
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e Not that high at some frequencies; can be overcome with MIMO
* Need cost-effective mmWave CMOS; products now available
* Challenges: Range, cost, channel estimation, large arrays



~mmWave Massive MIMO

Unlicensed 60GHz and Light Licensed E-Band
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€10s of GHz of Spectrum=>» Dozens of devices

60GHz 70/80GHz § E | - &

@ B B
By 8 By
B8 B g Hundreds
- B B -
| i. : ! ¥ of antennas

* mmWaves have large attenuation and path loss

* For asymptotically large arrays with channel state
information, no attenuation, fading, interference or noise

* mmWave antennas are small: perfect for massive MIMO
® Bottlenecks: channel estimation and system complexity
* Non-coherent design holds significant promise




- Non-coherent massive MIMO

Propose simple energy-based modulation
No capacity loss for large arrays: !im Cowi = !\im C..

e Holds for single/multiple users (1 TX antenna, n RX antennas)
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Constellation optimization: unequal spacing
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Noncoherent communication demonstrates promising
performance with reasonably-sized arrays




-~

Rethinking Cellular System Design

How should cellular
Wil systems be designed?

Will gains be big or
incremental; in capacity,
coverage or energy?

Traditional cellular design assumes system is “interference-limited”
No longer the case with recent technology advances:
e MIMO, multiuser detection, cooperating BSs (CoMP) and relays
Raises interesting questions such as “what is a cell?”
Energy efficiency via distributed antennas, small cells, MIMO, and relays
Dynamic self-organization (SoN) needed for deployment and optimization



~~ Are small cells the solution to
increase cellular system capacity?

Yes, with reuse one and adaptive
techniques (Alouini/Goldsmith 1999)
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Future cellular networks will be hierarchical (large and small cells)
e Large cells for coverage, small cells for capacity/power efficiency
Small cells require self-optimization (SoN) in the@
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SON Premise and Architecture

Mobile Gateway
Installation Healing
A 4

¥

—
Sl Measurement o Sl
Configuration Server Optimization
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e Small Cell Challenges

e SoN algorithmic complexity
Distributed versus centralized control
Backhaul
Site Acquisition
Resistance from macrocell vendors




Why not use SoN for all wireless networks

Vehicle networks
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mmWave networks
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~ SDWN Challenges

Algorithmic complexity

e Frequency allocation alone is NP hard

e Also have MIMQO, power control, CST, hierarchical
networks: NP-really-hard

e Advanced optimization tools needed, including a
combination of centralized (cloud), distributed, and
locally centralized (fog) control

Hardware Interfaces (especially for WiFi)

Seamless handoff between heterogenous networks



Ad-hoc Networks and their Capacity

R12
Ad-hoc networks are fully connected

Capacity: n(n-1)-dimensional region defining max. data rate
between all node pairs with vanishing probability of error

Ad-hoc network topology combines broadcast, multiple access,
interference (IFC) and relay channels

Lower bounds use coding strategies for these canonical systems

Good upper bounds have been hard to obtain
Joint with S. Rini



Defining a coding scheme
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For each node in the network, scheme indicates

e To superposition encode, or not How to best

e To ra.lte split, or not combine the

e To bin, or not .

e To fully or partially interference decode, or not different

e To time share, or not techniques?

e To relay, or not
Encoding/decoding at a nodes depend on encoding/decoding at neighbors
Common messages entail code layering
Must do this for every node in the network

Coding and decoding possibilities grow exponentially with nodes



- Unified approach to random coding

. Enhanced Channel via
Original Channel

User Virtualization
(Single-hop network) GMM of Code and

Coding Operations Rate Constraints
For Reliability

»

Create virtual users via rate splitting
Interference from split message can be decoded and removed

Use a Graphical Markov Model (GMM) to capture conditional dependencies
of codewords due to its set of superposition, splitting and binning operations

Use packing (max rates in superposition) and covering (rate penalty due to
binning) lemmas to define rate bounds for reliable decoding
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“Green” Wireless Networks

Pico/Femto

How should wireless
systems be redesigned
for minimum energqgy?

Research indicates that
significant savings is possible

* Drastic energy reduction needed (especially for 10T)

e New Infrastuctures: Cell Size, BS/AP placement, Distributed
Antennas (DAS), Massive MIMO, Relays

* New Protocols: Coop MIMO, RRM, Sleeping, Relaying

e Low-Power (Green) Radios: Radio Architectures, Modulation,
Coding, Massive MIMO



~Energy-Constrained Radio

Transmit energy minimized by sending bits very slowly
e Leads to increased circuit energy consumption

Short-range networks must consider both transmit and
processing/circuit energy.
e Sophisticated encoding/decoding not always energy-efficient.
e MIMO techniques not necessarily energy-efficient
e Long transmission times not necessarily optimal
e Multihop routing not necessarily optimal

Recent work to minimize energy consumption in radios
e Sub-Nyquist sampling
e Codes to minimize total energy consumption



- Benefits of Sub-Nyquist Sampling
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® At the source encoder:

Source ""'A

Decoder

e Fewer bits to transmit

® At each receiver
e Fewer bits to process or relay

* We have determined
e Capacity/optimal transmission for sub-Nyquist-sampled channels
e Rate-distortion theory for sub-Nyquist sampled sources



ﬁlquist Sampled Channels

Analog Channel N(T) r ";
Message —»{ Encoder—» H ( f) —»| Decode ¥ Message

x(t) y(t) =

C. Shannon

Wideband systems may preclude Nyquist-rate sampling!

Sub-Nyquist sampling well explored in signal
processing
Landau-rate sampling, compressed sensing, etc.
Performance metric: MSE

H. Nyquist

We ask: what is the capacity-achieving sub-
Nyquist sampler and communication design

Joint with Y. Chen, Y. Eldar
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Optlmal Sub -Nyquist Sampllng
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e Also optimal non-uniform sampling technique
e For channel unknown, random sampling optimal
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* Theorem: Capacity of the sampled channel using a bank of m

filters with aggregate rate f,

MIMO - Decoupling

Water-filling

over singular values

Similar to
MIMO

Pre whitening



Example: Sparse Channels

o “Sparse” channel model
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Problem Statement: Find distortion as a function of R and f,
* Also find the optimal sampler and source encoder/decoder
e Noisy Gaussian analog source, sampled and compressed
N A A
R =1, = > T(YLLYR YY)

n=—N

e Metric: minimum MSE: i :
E(d(X (), X())= Iimsup%jE(X (t) - X (1)) dt

Joint with A. Kipnis, T. Weissman, Y. Eldar



- Main Results
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Optimal sampling rate f; is below Nyquist
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Sampling
Distortion

Compression

Distortion

~

Properties of the Solution

1 ;
R =5J’10g J10|df

. = [ min{J,0ldf | Preserve signal

B -/ (s

g components above
lf “noise floor” 6.

Rate R needed to
describe these
components: dictates ¢

Distortion is signal
components
below noise floor +
L sampling distortion

Distortion =mmse, (f,)+waterfilling over J(f)



muist ADCs with finite bit rate R
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- Should you sample fast w/low precision (Sigma-Delta A/D)
- Or sample below Nyquist with more precision
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~ Where should energy come from? geec==

Batteries and traditional charging mechanisms
« Well-understood devices and systems

Wireless-power transfer

« Poorly understood, especially at large distances and with
high efficiency

Communication with Energy Harvesting Devices
 Intermittent and random energy arrivals
« Communication becomes energy-dependent
« Can combine information and energy transmission
* New principals for communication system design needed.



pplications of Communications and IT to
biology, medicine, and neuroscience
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Can be developed for both macro (>cm) and
micro (<Kmm) scale communications

Greenfield area of research:

e Need new modulation schemes, channel
impairment mitigation, multiple acces, etc.

Joint with N. Farsad
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Applications

Microscale

MC Applications

Macroscale

Medicine

A 4

On-Chip MC

A 4

Nano
Manufacturing . e

City infrastructure
monitoring

A 4

Search and
Rescue

A 4
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Underwater ...

8 ) Data rate: .5 bps

Text Message via



Current Work 2™ ./
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Concentration system has
limited control on the

concentration at the receiver. ool

rati
o
(o]

T

t

©
~

Can use acid/base
transmission to decrease
concentration (ISI)

o
o
T

o
w

alized Hydrogen lon Concen
o o
w +a

m
o
N

Nor

o
-
-

Similar ideas can be applied
for multilevel modulation and
multiuser techniques
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Joint with N. Soltani, T. Coleman, R. Ma, J. Kim, and J. Parvizi
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Neuronal Signaling

e Communication done through action potentials (spikes)
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* Observe spike trains
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e Goal: Determine physical connections between neurons
e Aids in fundamental understanding of how the brain works

e Can be used to study learning and degeneration



Directed Information

e J](X™ - Y™) > 0 necessary for synapse to exist

— Not sufficient =» leads to false positives

O O

Broadcast Relay

ORONMOR®

— Can remove false positives by observing all neurons
— Like Maximum-likelihood detection
— But we can’t observe all neurons

Kim et al. (201 1),
— Delay of “relay” can mitigate false positives Quinn et al. (201 1)



ﬁvays through the brain

Dl inference

I(X® - Y™ =H(Y") — 2 H(Y;|Y:L, X1
i=1
Constrained DI inference

I(X" > Y™) = H(Y™) — EH(YIYl LXTP)pxm oy = HYm) — ZH(YIY‘ LXIB
i=1 i=1

We’ve developed a DMI model for the leaky integrate-and-fire neuron




Epileptic Seizure Focal Points

® Seizure caused by an oscillating signal moving across neurons
* When enough neurons oscillate, a seizure occurs
e Treatment “cuts out” signal origin: errors have serious implications

* Directed mutual information spanning tree algorithm applied
to ECoG measurements estimate the focal point of the seizure

* Application of our algorithm to existing data sets on 3 patients
matched well with their medical records
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“Electrocortical Silencer

Waveform Generator Goal: Silence the epileptic
firing in the cortex

Adaptively change
Fle(t) > output, €'(t), based g(t) pre-injection
7 on input, &(t) reiAa sy

Personalized

Electric Current Recorded Voltage S
Stimulation (t)

e'(t)
G(e(t),€'(t)) Stimulating and S
Recording Electrode l

g(t) post-injection

Current Status
e Trials on human subjects to start in December
e Also can be used for Parkinson's and depression




Summary

The next wave in wireless technology is upon us

e This technology will enable new applications that will change
people’s lives worldwide

Future wireless networks must support high rates for
some users and extreme energy efficiency for others

e Small cells, mmWave massive MIMO, Software-Defined
Wireless Networks, and energy-efficient design key enablers.

Communication tools and modeling techniques may
provide breakthroughs in other areas of science
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