#### **Communications Network Economics**

#### Jianwei Huang

Network Communications and Economics Lab

Department of Information Engineering
The Chinese University of Hong Kong

March 2017

# The Role of Economics in Networking

- Explain operator behaviors
- Predict network equilibrium
- Envision network services
- Provide policy recommendations

#### **Explain Operator Behaviors**



- Operators of similar sizes upgrade technologies at different times
- A tradeoff between market share and upgrading cost
- Network effect provides additional benefit to late upgrade



[Duan-**H**-Walrand] "Economic Analysis of 4G Network Upgrade," *IEEE Transactions on Mobile Computing*, May 2015

# **Predict Network Equilibrium**



- On-demand data offloading from cellular networks to Wi-Fi networks
- When, where, and how much to offload?
- Market clearing through an iterative double auction mechanism



[losifidis-Gao-**H**-Tassiulas] "An Iterative Double Auction for Mobile Data Offloading" *IEEE/ACM Transactions on Networking*, October 2015 (*IEEE WiOpt* 2013 Best Paper Award)

#### **Envision Network Services**



- Monetization of the public Wi-Fi networks
- Free ad-sponsored Wi-Fi access vs. premium paid Wi-Fi access
- Optimal pricing mechanisms based on user valuation, visiting frequency, and advertisement concentration



[Yu-Cheung-Gao-H] "Public Wi-Fi Monetization via Advertising," *IEEE/ACM Transactions on Networking*, forthcoming (*IEEE INFOCOM* 2016 Best Paper Award Finalist)

#### **Provide Policy Recommendations**



- TV white space as golden unlicensed spectrum resources
- White space database operator manages the interferences
- Information market provides differentiated service to users



[Luo-Gao-H] "MINE GOLD to Deliver Green Communication in Cognitive Communications," *IEEE Journal on Selected Areas in Communications*, December 2015 (*IEEE WiOpt* 2014 Best Paper Award)

# Media Coverage



 Coverage by CUHK and in 20+ Hong Kong and Mainland Chinese news agencies (e.g., Mingpo, Sina, Sohu, and ChinaDaily)

#### **Economics of User-Provided Networks**

Joint work with Ming Tang & Lin Gao (CUHK)

Haitian Pang & Shou Wang & Lifeng Sun (Tsinghua University)

#### Infrastructure-Based Network



- A user obtains network connectivity from a network provider
- No network connectivity outside the network coverage
- Clear distinction between "providers" and "users"

#### **User-Provided Network**



- Users serve as micro-providers, offering connectivity to other users
- Exploit the diversity of user devices
- Extend coverage and service of network operators
- Better match demand and supply in heterogeneous networks

#### **Commercial UPNs**

|                  | Fixed Hosts | Mobile Hosts |
|------------------|-------------|--------------|
| Network-Assisted | Fon         | Karma        |
| Autonomous       | BeWiFi      | Open Garden  |

#### **Costs and Incentives**

- Resource sharing induces costs:
  - Reduced internet access bandwidth
  - Increased data usage cost
  - Reduced battery energy (for mobile users)
- Proper incentive mechanisms are critical for the success of UPNs

#### **Costs and Incentives**

- Resource sharing induces costs:
  - Reduced internet access bandwidth
  - Increased data usage cost
  - Reduced battery energy (for mobile users)
- Proper incentive mechanisms are critical for the success of UPNs
- We will focus on the incentive mechanism design for UPN-based mobile video streaming.

# **Single-User Video Streaming**

My downloading speed is <u>0.5Mbps</u>, want to watch video.



I can watch <u>240p</u> in YouTube Live, with the downloading speed of <u>0.5Mbps</u>. My downloading speed is <u>1Mbps</u>, do not watch video.



My resource is idle.

# Multi-User Cooperative Video Streaming



# **Crowdsourced Mobile Video Streaming**



- Crowdsource network resources from multiple near-by mobile users from potentially different service providers.
- Each mobile user watches a different video.

# **Adaptive BitRate Streaming**



- To achieve flexible Quality of Experience in wireless video streaming
- Single user case: choose the bitrate of each video segment based on real-time network conditions and user QoE preferences.

# Multi-User Collaborative Video Streaming

• Three decisions when downloading a video segment



**Receiver Selection:** Whose segment?

**Bitrate Adaptation**What bitrate?

**Cost Compensation** How much to pay?

## Multi-User Collaborative Video Streaming

• Three decisions when downloading a video segment



 Need decentralized and asynchronous algorithm without complete network information

• User n downloads a segment of bitrate r for user m at time  $t_0$ 

- User n downloads a segment of bitrate r for user m at time  $t_0$
- Social welfare

$$W_{nm}(r) \triangleq U_m(r) - C_n(r)$$

- User n downloads a segment of bitrate r for user m at time  $t_0$
- Social welfare

$$W_{nm}(r) \triangleq U_m(r) - C_n(r)$$

Utility of receiver user m

$$U_m(r) \triangleq \underbrace{\log(1 + \theta_m r)}_{video\ quality} - \underbrace{\phi^{\rm QD}\left[R_m^{\rm PRE} - r\right]^+}_{quality\ degradation\ loss} - \underbrace{\phi^{\rm REB}\left[T_n(r,t_0) - B_m^{\rm CUR}\right]^+}_{rebuffering\ loss}$$

- $\triangleright$  (Private) valuation information  $\theta_m$
- (Private) state information  $\mu = (R_m^{\text{PRE}}, B_m^{\text{CUR}})$

- User n downloads a segment of bitrate r for user m at time  $t_0$
- Social welfare

$$W_{nm}(r) \triangleq U_m(r) - C_n(r)$$

Utility of receiver user m

$$U_m(r) \triangleq \underbrace{\log(1+\theta_m r)}_{\text{video quality}} - \underbrace{\phi^{\text{QD}}\left[R_m^{\text{PRE}} - r\right]^+}_{\text{quality degradation loss}} - \underbrace{\phi^{\text{REB}}\left[T_n(r,t_0) - B_m^{\text{CUR}}\right]^+}_{\text{rebuffering loss}}$$

- (Private) valuation information  $\theta_m$
- (Private) state information  $\mu = (R_m^{\text{PRE}}, B_m^{\text{CUR}})$
- Cost of downloader user n

$$C_n(r) \triangleq \underbrace{G_n^{\text{CELL}}(r)}_{cellular\ data\ payment} + \underbrace{E_n^{\text{CELL}}(r)}_{cellular\ energy} + \underbrace{E_{nm}^{\text{WiFi}}(r)}_{WiFi\ energy}$$

## **Design Objectives**

- Truthfulness: users truthfully reveal their utility functions despite of private information
- Efficiency: design a resource allocation mechanism to maximize the social welfare
- Optimality: design a resource allocation mechanism to maximize the downloader's benefit

# **Design Objectives**

- Truthfulness: users truthfully reveal their utility functions despite of private information
- Efficiency: design a resource allocation mechanism to maximize the social welfare
- Optimality: design a resource allocation mechanism to maximize the downloader's benefit
- Efficiency and optimality are conflicting objectives.

## **Design Objectives**

- Truthfulness: users truthfully reveal their utility functions despite of private information
- Efficiency: design a resource allocation mechanism to maximize the social welfare
- Optimality: design a resource allocation mechanism to maximize the downloader's benefit
- Efficiency and optimality are conflicting objectives.
- We will focus on achieving truthfulness and efficiency through a multi-dimensional auction mechanism

#### **Auction-Based Incentive Mechanism**



#### User 1 (Ready to download) Initiate an auction

User 1, 2, 3
Submit bid with
(bitrate, price)
-Bitrate Adaptation

# User 1 Winner & Payment -Receiver Selection -Cost Compensation

#### **Auction-Based Incentive Mechanism**



User 1
(Ready to download)
Initiate an auction

User 1, 2, 3
Submit bid with
(bitrate, price)
-Bitrate Adaptation

User 1
Winner & Payment
-Receiver Selection
-Cost Compensation

#### Auction-Based Incentive Mechanism



User 1 (Ready to download) Initiate an auction

Submit bid with (bitrate, price)

User 1, 2, 3

-Bitrate Adaptation

User 1 Winner & Payment -Receiver Selection -Cost Compensation

# **Challenge: Multi-Dimensional Bids**

- Each bid is multi-dimensional: (bitrate, price)
  - ► (0.2Mbps, 20¢) vs. (0.4Mbps, 35¢) vs. (1.3Mbps, 70¢)
- How to rank vectors to decide the winner and the payment?
- Solution: Second Score Auction

#### **Score Function**



- Score function: transforms a multi-dimensional bid to a scalar
  - Determined by the auctioneer (mechanism design)
  - ▶ Each user m can have a unique score function  $S_m(r,p)$

#### **Score Function**



- Score function: transforms a multi-dimensional bid to a scalar
  - Determined by the auctioneer (mechanism design)
  - **Each** user m can have a unique score function  $S_m(r,p)$
- Winner: bidder with the highest score
- Payment: determined by the second highest score

#### **Score Function**



- Score function: transforms a multi-dimensional bid to a scalar
  - Determined by the auctioneer (mechanism design)
  - ▶ Each user m can have a unique score function  $S_m(r,p)$
- Winner: bidder with the highest score
- Payment: determined by the second highest score
- How to choose the score function?

#### **Additive Score Function**



$$S_m(r,p) = p - C_n(r)$$

- Difference between the bidder m's price and the downloader n's cost
- All bidders have the same score function (related to downloader n)

## Winner Selection and Payment Determination



Winner = the bidder with the highest score

$$m^* = \arg\max_{m \in \mathcal{N}_n} (p_m - C_n(r_m))$$

#### Winner Selection and Payment Determination



Winner = the bidder with the highest score

$$m^* = \arg\max_{m \in \mathcal{N}_n} (p_m - C_n(r_m))$$

• Winner's **bitrate** = the winner's bid bitrate  $r_{m^*}$ 

## Winner Selection and Payment Determination



Winner = the bidder with the highest score

$$m^* = \arg\max_{m \in \mathcal{N}_n} (p_m - C_n(r_m))$$

- Winner's **bitrate** = the winner's bid bitrate  $r_{m^*}$
- Winner's **payment**  $\neq$  the winner's bid price  $p_{m^*}$ 
  - ▶ Payment  $\hat{p}_{m^*}$  represents the score damage to other users

$$\underbrace{\hat{p}_{m^*} - C_n(r_{m^*})}_{winner's \ revised \ score} = \underbrace{\max_{m \in \mathcal{N}_n/m^*} S_m(r_m, p_m)}_{second \ highest \ bidding \ score}$$

• A total of 3 bidders, and the score function is

$$S(r,p) = p - C_n(r) = p - 50 \cdot r$$

• A total of 3 bidders, and the score function is

$$S(r,p) = p - C_n(r) = p - 50 \cdot r$$

• Bids  $(r_m, p_m)$ :

A: (0.2Mbps, 20¢), B: (0.4Mbps, 35¢), C: (1.3Mbps, 70¢)

A total of 3 bidders, and the score function is

$$S(r,p) = p - C_n(r) = p - 50 \cdot r$$

- Bids (r<sub>m</sub>, p<sub>m</sub>):
   A: (0.2Mbps, 20¢), B: (0.4Mbps, 35¢), C: (1.3Mbps, 70¢)
- Scores:

$$S(r_A, p_A) = 20 - 50 \cdot 0.2 = 10$$
  
 $S(r_B, p_B) = 35 - 50 \cdot 0.4 = 15$   
 $S(r_C, p_C) = 70 - 50 \cdot 1.3 = 5$ 

A total of 3 bidders, and the score function is

$$S(r,p) = p - C_n(r) = p - 50 \cdot r$$

- Bids (r<sub>m</sub>, p<sub>m</sub>):
   A: (0.2Mbps, 20¢), B: (0.4Mbps, 35¢), C: (1.3Mbps, 70¢)
- Scores:

$$S(r_A, p_A) = 20 - 50 \cdot 0.2 = 10$$
  
 $S(r_B, p_B) = 35 - 50 \cdot 0.4 = 15$   
 $S(r_C, p_C) = 70 - 50 \cdot 1.3 = 5$ 

• Hence B is the winner, and the bitrate is 0.4Mbps.

A total of 3 bidders, and the score function is

$$S(r,p) = p - C_n(r) = p - 50 \cdot r$$

Bids (r<sub>m</sub>, p<sub>m</sub>):
 A: (0.2Mbps, 20¢), B: (0.4Mbps, 35¢), C: (1.3Mbps, 70¢)

Scores:

$$S(r_A, p_A) = 20 - 50 \cdot 0.2 = 10$$
  
 $S(r_B, p_B) = 35 - 50 \cdot 0.4 = 15$   
 $S(r_C, p_C) = 70 - 50 \cdot 1.3 = 5$ 

- Hence B is the winner, and the bitrate is 0.4Mbps.
- The payment of B is  $\hat{p}_B$ :

$$\hat{\rho}_B - C_n(r_B) = \hat{\rho}_B - 50 \cdot 0.4 = \max_{m \in \mathcal{N}_n/B} S(r_m, p_m) = 10$$

$$\Rightarrow \hat{\rho}_B = 30 \mathfrak{C}.$$

# **Equilibrium User Bidding Behavior**

## **Equilibrium User Bidding Behavior**

#### Theorem (Truthful Price Choice)

Given any bitrate r, a bidder m's equilibrium bidding price  $p_m$  is his true utility under r:

$$p_m(r)=U_m(r).$$

## **Equilibrium User Bidding Behavior**

#### Theorem (Truthful Price Choice)

Given any bitrate r, a bidder m's equilibrium bidding price  $p_m$  is his true utility under r:

$$p_m(r) = U_m(r).$$

#### **Theorem (Bitrate Selection)**

A bidder m's equilibrium bitrate  $r_m$  maximizes its score function, which corresponds to the social welfare if downloading for bidder m:

$$r_m = \arg \max_r (U_m(r) - C_n(r)) = \arg \max_r W_{nm}(r).$$

## **Efficiency**

#### **Theorem (Efficient Auction)**

Under the following score function

$$S_m(r,p) = p - C_n(r),$$

the auction is efficient as it maximizes the social welfare.

## Multi-Object Multi-Dimensional (MOMD) Auction

- One auction per segment may induce high signaling overhead
- How about allocating multiple objects (segments) per auction?
- Same design objectives: truthfulness and efficiency.
- A challenging problem in multi-dimensional auction.

• Assume that the auctioneer allocates K segments in each auction

- Assume that the auctioneer allocates K segments in each auction
- A bidder m submits bid in the form of (bitrate matrix, price vector)

- Assume that the auctioneer allocates K segments in each auction
- A bidder m submits bid in the form of (bitrate matrix, price vector)
  - ▶ bitrate matrix

$$\mathbf{R}^{m} = \begin{bmatrix} \mathbf{r}_{1}^{m} \\ \mathbf{r}_{2}^{m} \\ \vdots \\ \mathbf{r}_{K}^{m} \end{bmatrix} = \begin{bmatrix} r_{11}^{m} & 0 & \dots & 0 \\ r_{21}^{m} & r_{22}^{m} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ r_{K1}^{m} & r_{K2}^{m} & \dots & r_{KK}^{m} \end{bmatrix}$$

★  $r_{ii}^{m}$ : the bitrate for the  $i^{th}$  segment if bidder m is allocated l segments.

- Assume that the auctioneer allocates K segments in each auction
- A bidder m submits bid in the form of (bitrate matrix, price vector)
  - ▶ bitrate matrix

$$\mathbf{R}^{m} = \begin{bmatrix} \mathbf{r}_{1}^{m} \\ \mathbf{r}_{2}^{m} \\ \vdots \\ \mathbf{r}_{K}^{m} \end{bmatrix} = \begin{bmatrix} r_{11}^{m} & 0 & \dots & 0 \\ r_{21}^{m} & r_{22}^{m} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ r_{K1}^{m} & r_{K2}^{m} & \dots & r_{KK}^{m} \end{bmatrix}$$

- ★  $r_{li}^{m}$ : the bitrate for the  $i^{th}$  segment if bidder m is allocated l segments.
- price vector

$$\mathbf{p}^{m} = (p_{1}^{m}, p_{2}^{m}, ..., p_{K}^{m})$$

★  $p_l^m$ : the total price if bidder m is allocated l segments.

- An auction allocates K = 4 segments.
- User m's bid:  $(\mathbf{R}^m, \mathbf{p}^m)$ 
  - bitrate matrix

$$\boldsymbol{R}^m = \begin{bmatrix} \boldsymbol{r}_1^m \\ \boldsymbol{r}_2^m \\ \boldsymbol{r}_3^m \\ \boldsymbol{r}_4^m \end{bmatrix} = \begin{bmatrix} 1.3 \text{Mbps} & 0 & 0 & 0 \\ 0.4 \text{Mbps} & 1.3 \text{Mbps} & 0 & 0 \\ 0.4 \text{Mbps} & 0.4 \text{Mbps} & 0.4 \text{Mbps} & 0 \\ 0.2 \text{Mbps} & 0.2 \text{Mbps} & 0.2 \text{Mbps} & 0.4 \text{Mbps} \end{bmatrix}$$

- ★ Different segments can have different bitrates (e.g., 2nd row)
- \* As the number of segment allocation changes, the bitrates of the same segment can change (e.g., 3rd column)
- price vector

$$p^m = (70c, 105c, 120c, 135c)$$

#### **MOMD Auction: Score Function**

• Score function if bidder *m* is allocated *l* segments:

$$\phi(\mathbf{r}_{l}^{m}, p_{l}^{m}) = p_{l}^{m} - C_{n}(\mathbf{r}_{l}^{m}), \forall l \in \{1, \dots, K\}$$

 $ightharpoonup r_l^m$  is Ith row of bidder m's bidding matrix.

#### **MOMD Auction: Score Function**

Score function if bidder m is allocated l segments:

$$\phi(\mathbf{r}_{l}^{m}, p_{l}^{m}) = p_{l}^{m} - C_{n}(\mathbf{r}_{l}^{m}), \forall l \in \{1, \dots, K\}$$

- $ightharpoonup r_l^m$  is Ith row of bidder m's bidding matrix.
- Compute the marginal scores:

$$\mathbf{S}^{m} = \{S_{1}^{m}, S_{2}^{m}, ... S_{K}^{m}\},$$

where

$$S_{k}^{m} = \begin{cases} \phi(\mathbf{r}_{1}^{m}, p_{1}^{m}), & l = 1\\ \phi(\mathbf{r}_{l}^{m}, p_{l}^{m}) - \phi(\mathbf{r}_{l-1}^{m}, p_{l-1}^{m}), & l \geq 2 \end{cases}$$

Score increase due to each additional segment allocation

### **MOMD Auction: Winner & Payment**

- Winners: the bidders that submit the highest marginal scores
  - Can have multiple different winners
- Payment: the marginal score damage that caused by the winner

- A total of 3 bidders, and an auction allocates K = 4 segments.
- ullet The marginal score  $oldsymbol{\mathcal{S}}^m$  for three bidders:

```
S^1: \{8, 7, 5, 2\};
```

$$\mathbf{S}^2: \{9, 6, 3, 2\};$$

$$\mathbf{S}^3: \{\mathbf{4}, \ \mathbf{4}, \ \mathbf{3}, \ \mathbf{1}\}.$$

- A total of 3 bidders, and an auction allocates K = 4 segments.
- The marginal score  $S^m$  for three bidders:

$$S^1$$
: {8, 7, 5, 2};  
 $S^2$ : {9, 6, 3, 2};  
 $S^3$ : {4, 4, 3, 1}.

- Winners based on the highest 4 marginal scores  $\mathbf{S}^{\dagger} = \{9, 8, 7, 6\}$ 
  - ▶ User 1 wins two segments, and user 2 wins two segments

- A total of 3 bidders, and an auction allocates K = 4 segments.
- The marginal score  $S^m$  for three bidders:

$$S^1$$
: {8, 7, 5, 2};  
 $S^2$ : {9, 6, 3, 2};  
 $S^3$ : {4, 4, 3, 1}.

- Winners based on the highest 4 marginal scores  $\mathbf{S}^{\dagger} = \{9, 8, 7, 6\}$ 
  - ▶ User 1 wins two segments, and user 2 wins two segments
- Payment of user 1 based on marginal score damage
  - Without user 1, the highest 4 marginal scores are  $\hat{\mathbf{S}}^{-1} = \{9, 6, 4, 4\}$
  - ▶ Due to user 1, user 3 loses two segments with marginal scores {4,4}
  - User 1's payment  $\widetilde{p}_1$  needs to compensate his marginal core damage

$$\underbrace{\tilde{p}_1 - C_n(\mathbf{r}_2^1)}_{\text{score function}} = \underbrace{4+4}_{\text{score damage}}$$

### **MOMD Auction: Properties**

#### Theorem (Truthfulness and Efficiency)

Under a mild technical condition, we can prove the truthfulness of the users' bidding at the equilibrium, and show that the auction is efficient.

#### **Simulation**

- 50 video users
- Link capacities derived from real traces
- 3 schemes for single-object multi-dimensional auction
  - ▶ Non: Non-cooperative benchmark
  - Partial: Partially cooperative benchmark (in pairs)
  - ► Full-E: Fully cooperative with efficient score function

#### **Social Welfare**



- Social welfare decreases with the disconnected use percentage
- When 80% of users do not have Internet connection, full cooperation is 5 times better than non-cooperation.

### **Downloader's Payoff**



- Downloader's payoff increases with disconnected user percentage
- When 80% of users are disconnected, full cooperation is 5 times better than partial cooperation.

### **Demonstration System**



- Mobile devices: Raspberry Pls, with monitors, LTE USB modems, and Wi-Fi adapters.
- Devices can dynamically join and leave the cooperative group in a decentralized fashion.

#### **Future Work**

- Mobility management
- Impact of social relationship
- Trust and security

### The Big Picture

- New paradigm of network sharing
  - Blurring the boundaries among networks
  - New perspectives on network competition and cooperation
  - New pricing plans and economic mechanisms
- The rise of collaborative economy in communication networks
  - Business-to-Business (B2B) collaborations
  - Business-to-Consumer (B2C) collaborations
  - ▶ Peer-to-Peer (P2P) collaborations
- The need of data-driven network economics
  - ▶ Data analytics lead to new opportunities for technology improvement and economic mechanism design

