

Control of Cyber-Physical Systems: Fundamental Challenges and Applications to Energy and Transportation Networks

Karl H. Johansson

ACCESS Linnaeus Center & Electrical Engineering
Royal Institute of Technology, Stockholm, Sweden
Joint work with

A. Alam, K.-Y. Liang, P. Sahlholm, J. Mårtensson, J. Larson, M. Molinari, A. Parisio, D. Varagnolo, H. Sandberg, F. Farokhi, C. Langbort

ISR Distinguished Lecture Series, University of Maryland, Dec 5, 2013

Cyber-physical systems are engineered systems whose operations are <u>monitored and controlled</u> by a <u>computing</u> and <u>communication</u> core <u>embedded</u> in objects and structures in the physical environment.

Outline

- Introduction
- Case study I: Goods transportation
- Case study II: Building management
- Cross-cutting scientific challenges
- Conclusions

Fuel-Optimal Goods Transportation Goods transported between cities over European highway network 2 000 0000 long haulage trucks in European Union (400 000 in Germany) Large distributed control systems with no real-time coordination today

Goal: Maximize total amount of platooning with limited intervention in vehicle speed and route

Larson et al., 2013

Receding Horizon Cruise Control for Platoon

- How to jointly minimize fuel consumption for a platoon of vehicles?
 Uphill and downhill segments; heavy and light vehicles
- Dynamics of vehicle i depend on distance $d_{i-1,i}$ to vehicle i-1:

$$\begin{split} \frac{\mathrm{d}d_{i-1,i}}{\mathrm{dt}} &= v_{i-1} - v_i \\ \mathrm{m}_{t_i} \frac{\mathrm{d}v_i}{\mathrm{dt}} &= F_{\mathrm{engine}}(\delta_i, \omega_{e_i}) - F_{\mathrm{brake}} - F_{\mathrm{air\,drag}}(v_i, d_{i-1,i}) \\ &\quad - F_{\mathrm{roll}}(\alpha_i) - F_{\mathrm{gravity}}(\alpha_i) \\ &= \mathrm{k}_i^{\mathrm{e}} T_e(\delta_i, \omega_{e_i}) - F_{\mathrm{brake}} - \mathrm{k}_i^{\mathrm{d}} v_i^2 f_i(d_{i-1,i}) \\ &\quad - \mathrm{k}_i^{\mathrm{f}} \cos \alpha_i - \mathrm{k}_i^{\mathrm{g}} \sin \alpha_i \end{split}$$

Alam et al., 2013

When is it Fuel Efficient for a Heavy-Duty Vehicle to Catch Up with a Platoon?

Liang et al., 2013

Outline

- Introduction
- Case study I: Goods transportation
- Case study II: Building management
- Cross-cutting scientific challenges
- Conclusions

Stockholm Royal Seaport

2010

- Oil depot
- Container terminal
- Ports
- Gas plant

2030

- 10,000 new homes
- 30,000 new work spaces
- 600,000 m2 commercial space
- Modern port and cruise terminal
- 236 hectares sustainable urban district
- Walking distance to city centre

Stockholm Royal Seaport

2010

- Oil depot
- Container terminal
- Ports
- Gas plant

2030

- 10,000 new homes
- 30,000 new work spaces
- 600,000 m2 commercial space
- Modern port and cruise terminal
- 236 hectares sustainable urban district
- Walking distance to city centre

Energy Consumption and Enabling Technologies

Energy consumption in Europe

- 40% of total energy use is in buildings
- 76% of building energy is for comfort

Enabling Information and Communication Technology

- Total energy savings of up to 15% by 2020
- Buildings can save 2.4 GtCO₂e

Enormous CPS potentials Energy efficiency requirements in building codes, International Energy Agency, Report, 2008 SMART 2020: Enabling the low carbon economy in the information age, The Climate Group, Report, 2008

CO₂ model

$$x_{CO_2}(k+1) = ax_{CO_2}(k) + bu_{CO_2}(k) + ew_{CO_2}(k)$$

 $y_{CO_2}(k) = x_{CO_2}(k)$

 $w_{\text{CO}_2}(k) = \text{occupancy at } k, \ u_{\text{CO}_2}(k) = \dot{m}_{\text{vent}}(k) x_{\text{CO}_2}(k)$

Temperature model

$$x_{\mathrm{T}}(k+1) = A_{\mathrm{T}}x_{\mathrm{T}}(k) + B_{\mathrm{T}}u_{\mathrm{T}}(k) + E_{\mathrm{T}}w_{\mathrm{T}}(k)$$

 $y_{\mathrm{T}}(k) = C_{\mathrm{T}}x_{\mathrm{T}}(k)$

 $w_{\mathrm{T}}(k) = ext{(outside temperature, solar radiation, internal heat gain)} \ u_{\mathrm{T}}(k) o |Q_{\mathrm{venting}}|, Q_{\mathrm{heating}} o \left(\dot{m}_{\mathrm{vent}}(k), T_{\mathrm{sa}}(k), T_{\mathrm{rad}}(k)\right)$

Parisio et al., 2013

Scenario-based CO₂ MPC

Chance Constraints

$$\mathbb{P}\left[\dot{m}_{\mathrm{vent}}^{\min}x_{\mathsf{CO}_2}(k) \leq u_{\mathsf{CO}_2}(k) \leq \dot{m}_{\mathrm{vent}}^{\max}x_{\mathsf{CO}_2}(k)\right] \geq 1 - \alpha \text{ (flow rate)}$$

$$\mathbb{P}\left[y_{\min} \leq y_{\mathsf{CO}_2}(k) \leq y_{\max}\right] \geq 1 - \alpha \text{ (air quality)}$$

Inputs Constraints

$$u_{\min} \le u_{\text{CO}_2}(k) \le u_{\max}$$

Cost Function

$$\sum_{k=0}^{N-1} c'(u(k)\Delta k)$$
 (minimize energy use)

Compute Control Inputs

$$\dot{m}_{\text{vent}}^{\text{CO}_2}(k) = \frac{u_{\text{CO}_2}(k)}{x_{\text{CO}_2}(k)}$$

Parisio et al., 2013

Scenario-based **Temp** MPC

Chance Constraints

$$\mathbb{P}\left[y_{\min} \leq y_{\mathrm{T}}(k) \leq y_{\max}\right] \geq 1 - \alpha_{\mathrm{T}}$$
 (thermal comfort)

Inputs Constraints

$$u_{\min} \le u_{\mathrm{T}}(k) \le u_{\max}$$

Cost Function

$$\sum_{k=0}^{N-1} c_T' (u_T(k)\Delta k)$$
 (minimize energy use)

Compute Setpoints for the Low-level Controllers

$$\left(\dot{m}_{\mathrm{vent}}(k), T_{\mathrm{sa}}(k), T_{\mathrm{rad}}(k)\right) = f\left(\dot{m}_{\mathrm{vent}}^{\mathsf{CO}_2}(k), u_{\mathrm{T}}(k)\right)$$

Parisio et al., 2013

How to Handle Chance Constraints

 $\omega := \text{random variable (weather, occupancy, } \dots)$

Uncertainty Modeling

$$\omega(k) = \bar{\omega}(k) + \tilde{\omega}(k)$$

- $\bar{\omega}(k) := \text{forecast}$
- $\tilde{\omega}(k)$:= forecast error

How to Handle Chance Constraints

 $\omega := \text{random variable (weather, occupancy, } \dots)$

Uncertainty Modeling

$$\omega(k) = \bar{\omega}(k) + \tilde{\omega}(k)$$

- $\bar{\omega}(k) := \text{forecast}$
- $\tilde{\omega}(k)$:= forecast error

Approximating Chance Constraints

[Calafiore, 2010]

- extract a limited number $S=\frac{2}{\alpha}\left(\ln\left(\frac{1}{\beta}\right)+N\cdot n_u\right)$ of i.i.d. outcomes (called *scenarios*)
- approximate $\mathbb{P}\left[y_{\min} \leq y(k) \leq y_{\max}\right] \geq 1 \alpha$ with $y_{\min} \leq y\left(\hat{\omega}^{j}(k)\right) \leq y_{\max}, \quad \forall j = 1, \dots, S$
- ullet remove redundant constraints: $\max_{j}\left\{ y\left(\hat{\omega}^{j}(k)\right)
 ight\} \leq y_{\max}$

Outline

- Introduction
- Case study I: Goods transportation
- Case study II: Building management
- Cross-cutting scientific challenges
- Conclusions

Cyber-Physical Systems Challenges

- Global and dense instrumentation of physical phenomena
- Interacting with a computational environment: closing the loop
- Security, privacy, usability

Distributed Services

- Self-configuring, self-optimization
- Reliable performance despite uncertain components, resilient aggregation

Programming the Ensemble

- Local rules with guaranteed global behavior
- Distributing control with limited information

- Heterogeneous systems: local sensor/actuator networks and wide-area networks
- Self-organizing multi-hop, resilient, energy-efficient routing
- Limited storage, noisy channels

Real-Time Operating Systems

- Extensive resource-constrained concurrency
- Modularity and data-driven physics-based modeling

1000 Radios per Person

- Low-power processors, radio communication, encryption
- Coordinated resource management, spectrum efficiency

Sastry & J, 2010

How to analyze, design, and implement networked control with

- Guaranteed global objective from local interactions
- Physical dynamics coupled with information interactions
- Tradeoff computation-communication-control complexities
- Robustness to external disturbances other uncertainties

- Decentralized control extensively studied:
 - Witsenhausen; Ho & Chu; Sandell & Athans; Anderson & Moore; Siljak; Davison & Chang; Rotkowitz & Lall; etc
- Typically assumes full model information (knowledge of all P_i)
- What if at the design of C₁ only surrounding P_i's are known?

The role of plant model information

Inter-vehicle distances d_{12} and d_{23} are locally controlled through vehicle torques u_i

$$\begin{bmatrix} \dot{v}_1(t) \\ \dot{d}_{12}(t) \\ \dot{v}_2(t) \\ \dot{d}_{23}(t) \\ \dot{v}_3(t) \end{bmatrix} = \begin{bmatrix} -\varrho_1/m_1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & -\varrho_2/m_2 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & -\varrho_3/m_3 \end{bmatrix} \begin{bmatrix} v_1(t) \\ d_{12}(t) \\ v_2(t) \\ d_{23}(t) \\ v_3(t) \end{bmatrix} + \begin{bmatrix} b_1/m_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_2/m_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & b_3/m_3 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \\ u_3(t) \\ w_4(t) \\ w_5(t) \end{bmatrix} + \begin{bmatrix} w_1(t) \\ w_2(t) \\ w_3(t) \\ w_4(t) \\ w_5(t) \end{bmatrix}$$

How does knowledge of the vehicle mass m; influence performance?

Example

$$x_1(k+1) = a_{11}x_1(k) + a_{12}x_2(k) + u_1(k)$$

$$x_2(k+1) = a_{21}x_1(k) + a_{22}x_2(k) + u_2(k)$$

$$J = \sum_{k=1}^{\infty} ||x(k)||^2 + ||u(k)||^2$$

Keep J small, when

Controller 1 knows only a_{11} and a_{12} Controller 2 knows only a_{21} and a_{22}

$$u_1(k) = -a_{11}x_1(k) - a_{12}x_2(k)$$

 $u_2(k) = -a_{21}x_1(k) - a_{22}x_2(k)$ achieves $J \le 2J^*$

No limited plant model information strategy can do better.

Langbort & Delvenne, 2011

Why Limited Plant Model Information?

Complexity

Controllers are easier to implement and maintain if they mainly depend on local model information

Availability

The model of other subsystems is not available at the time of design

Privacy

Competitive advantages not to share private model information

Networked Control System

Networked Control System

Networked Control System

Physical Constraints

Model Information Limitations

Plant Graph

$$\begin{aligned} x_i(k+1) &= A_{ii}x_i(k) + \sum_{j \neq i} A_{ij}x_j(k) + B_{ii}u_i(k) \\ \text{Plant: } P &= (A,B,x_0) \in \mathcal{A} \times \mathcal{E} \times \mathbb{R}^n \\ x_i &\in \mathbb{R}^{n_i} \text{ and } u_i \in \mathbb{R}^{n_i} \end{aligned}$$

Plant Graph

$$x_{i}(k+1) = A_{ii}x_{i}(k) + \sum_{j \neq i} A_{ij}x_{j}(k) + B_{ii}u_{i}(k)$$

Plant: $P = (A, B, x_0) \in \mathcal{A} \times \mathcal{B} \times \mathbb{R}^n$

 $\mathcal{A} = \{ A \in \mathbb{R}^{n \times n} | A_{ij} = 0 \in \mathbb{R}^{n_i \times n_j} \text{ for all } 1 \le i, j \le q \text{ such that } (s_P)_{ij} = 0 \}$

$$S_P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$S_P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} A_{11} & A_{12} & 0_{n_1 \times n_3} \\ 0_{n_2 \times n_1} & A_{22} & A_{23} \\ 0_{n_3 \times n_1} & A_{32} & A_{33} \end{bmatrix}$$

Plant Graph

$$x_i(k+1) = A_{ii}x_i(k) + \sum_{j \neq i} A_{ij}x_j(k) + B_{ii}u_i(k)$$

Plant: $P = (A, B, x_0) \in \mathcal{A} \times \mathcal{E} \times \mathbb{R}^n$ $x_i \in \mathbb{R}^{n_i} \text{ and } u_i \in \mathbb{R}^{n_i}$

$$x_i \in \mathbb{R}^{n_i}$$
 and $u_i \in \mathbb{R}^{n_i}$

 $\mathcal{A} = \{ A \in \mathbb{R}^{n \times n} | A_{ij} = 0 \in \mathbb{R}^{n_i \times n_j} \text{ for all } 1 \le i, j \le q \text{ such that } (s_p)_{ij} = 0 \}$

$$S_P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$S_P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} A_{11} & A_{12} & 0_{n_1 \times n_3} \\ 0_{n_2 \times n_1} & A_{22} & A_{23} \\ 0_{n_3 \times n_1} & A_{32} & A_{33} \end{bmatrix}$$

 $\mathcal{Z} = \{B \in \mathbb{R}^{n \times n} \mid \underline{\sigma}(B) \geq \epsilon, B_{ij} = 0 \in \mathbb{R}^{n_i \times n_j} \text{ for all } 1 \leq i \neq j \leq q \}$

$$B = \begin{bmatrix} B_{11} & 0_{n_1 \times n_2} & 0_{n_1 \times n_3} \\ 0_{n_2 \times n_1} & B_{22} & 0_{n_2 \times n_3} \\ 0_{n_3 \times n_1} & 0_{n_3 \times n_2} & B_{33} \end{bmatrix}$$

Control Graph

$$u(k) = Kx(k)$$

 $\mathcal{K} = \{ K \in \mathbb{R}^{n \times n} | K_{ij} = 0 \in \mathbb{R}^{n_i \times n_j} \text{ for all } 1 \le i, j \le q \text{ such that } (s_K)_{ij} = 0 \}$

$$S_K = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \qquad K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$S_K = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \qquad K = \begin{bmatrix} K_{11} & 0_{n_1 \times n_2} & 0_{n_1 \times n_3} \\ K_{21} & K_{22} & 0_{n_2 \times n_3} \\ 0_{n_3 \times n_1} & K_{32} & K_{33} \end{bmatrix}$$

Design Graph

$$K = \Gamma(P) = \Gamma(A, B)$$

The map $[\Gamma_{i1} \quad \cdots \quad \Gamma_{iq}]$ is only a function of $\{[A_{j1} \quad \cdots \quad A_{jq}], B_{jj} | (s_C)_{ij} \neq 0\}$.

$$S_C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Design Graph

$$K = \Gamma(P) = \Gamma(A,B)$$

The map $[\Gamma_{i1} \cdots \Gamma_{iq}]$ is only a function of $\{[A_{j1} \cdots A_{jq}], B_{jj} | (s_C)_{ij} \neq 0\}$.

$$S_C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

 $[\Gamma_{31} \quad \Gamma_{32} \quad \Gamma_{33}] \text{ is a function of } \{ [A_{21} \quad A_{22} \quad A_{23}], B_{22}, [A_{31} \quad A_{32} \quad A_{33}], B_{33} \}$

HVAC Control Example

Performance Metric

The **competitive ratio** of a control design method Γ is defined as

$$r_P(\Gamma) = \sup_{P \in \mathcal{P}} \frac{J_P(\Gamma(A, B))}{J_P(K^*(P))}$$

Performance Metric

The **competitive ratio** of a control design method Γ is defined as

$$r_P(\Gamma) = \sup_{P \in \mathcal{P}} \frac{J_P(\Gamma(A, B))}{J_P(K^*(P))}$$

A control design method Γ' is said to $\boldsymbol{dominate}$ another control design method Γ if

$$J_P(\Gamma'(A,B)) \le J_P(\Gamma(A,B)), \quad \text{for all } P = (A,B,x_0) \in \mathcal{P}$$

with strict inequality holding for at least one plant.

When no such Γ' exists, we say that Γ is **undominated**.

Performance Metric

The **competitive ratio** of a control design method Γ is defined as

$$r_P(\Gamma) = \sup_{P \in \mathcal{P}} \frac{J_P(\Gamma(A, B))}{J_P(K^*(P))}$$

A control design method Γ' is said to **dominate** another control design method Γ if

$$J_P(\Gamma'(A,B)) \le J_P(\Gamma(A,B)),$$
 for all $P = (A,B,x_0) \in \mathcal{P}$

with strict inequality holding for at least one plant.

When no such Γ' exists, we say that Γ is **undominated**.

$$J_{P}(K) = \sum_{k=1}^{\infty} x(k)^{T} Q x(k) + \sum_{k=0}^{\infty} u(k)^{T} R u(k)$$

Q and R are block-diagonal positive definite matrices.

Performance Metric

The $\boldsymbol{competitive\ ratio}$ of a control design method Γ is defined as

$$r_P(\Gamma) = \sup_{P \in \mathcal{P}} \frac{J_P(\Gamma(A, B))}{J_P(K^*(P))}$$

A control design method Γ' is said to $\boldsymbol{dominate}$ another control design method Γ if

$$J_P(\Gamma'(A,B)) \le J_P(\Gamma(A,B)), \quad \text{for all } P = (A,B,x_0) \in \mathcal{P}$$

with strict inequality holding for at least one plant.

When no such Γ' exists, we say that Γ is **undominated**.

$$J_{P}(K) = \sum_{k=1}^{\infty} x(k)^{T} Q x(k) + \sum_{k=0}^{\infty} u(k)^{T} R u(k)$$

 $\it Q$ and $\it R$ are block-diagonal positive definite matrices.

Remark: When G_K is a complete graph

$$K^{*}(P) = -(R + B^{T}XB)^{-1}B^{T}XA$$

$$A^{T}XA - A^{T}XB(R + B^{T}XB)^{-1}B^{T}XA - X + Q = 0$$

Problem Formulation

Find the best control design strategy with limited model information:

Characterize the influence from

- Plant structure (G_P)
- Controller communication (G_K)
- Model limitation (G_C)

Farokhi et al., 2013

Assumptions

All subsystems are fully actuated:

$$B \in \mathbb{R}^{n \times n}$$
 and $\underline{\sigma}(B) \ge \epsilon > 0$.

• G_P contains no isolated node.

• G_C contains all self-loops.

ullet To simplify the presentation, fix $\epsilon=1$ and Q=R=I.

Deadbeat Control Design

$$\Gamma^{\Delta}\left(A,B\right) = -B^{-1}A$$

Subcontroller i depends only on subsystem i's model:

$$\begin{bmatrix} \Gamma_{i1}^{\Delta}(A,B) & \cdots & \Gamma_{iq}^{\Delta}(A,B) \end{bmatrix} = -B_{ii}^{-1} \begin{bmatrix} A_{i1} & \cdots & A_{iq} \end{bmatrix}$$

$$x(k+1) = Ax(k) + Bu(k)$$
; $x(0) = x_0$,

Deadbeat Control Design

Lemma: $G_K \supseteq G_P \implies r_P(\Gamma^{\Delta}) = 2$

Farokhi et al., 2013

Deadbeat Control Design

Lemma: $G_K \supseteq G_P \implies r_P(\Gamma^{\Delta}) = 2$

• $G_K\supseteq G_P$ means $E_K\supseteq E_P$, so more controller communications than plant interactions

Farokhi et al., 2013

Deadbeat Control Design

Lemma: $G_K \supseteq G_P \implies r_P(\Gamma^{\Delta}) = 2$

- $G_K \supseteq G_P$ means $E_K \supseteq E_P$
- $J_P(\Gamma^{\Delta}(A,B)) \le 2J_P(K^*(P))$, so deadbeat never worse than twice the optimal controller

Farokhi et al., 2013

Deadbeat Control Design

Lemma: $G_K \supseteq G_P \implies r_P(\Gamma^{\Delta}) = 2$

- $G_K \supseteq G_P$ means $E_K \supseteq E_P$
- $J_P(\Gamma^{\Delta}(A,B)) \leq 2J_P(K^*(P))$

If enough controller communication, then a simple (deadbeat) controller is quiet good

Farokhi et al., 2013

Design Strategies with Local Model Info

Theorem:

 G_P has no sink $G_K \supseteq G_P$ G_C is fully disconnected

$$\Rightarrow r_P(\Gamma) \ge r_P(\Gamma^{\Delta}) = 2 \ \forall \ \Gamma \in \mathcal{C}$$

When G_P has no sink, there is no control design strategy Γ with a better competitive ratio $r_P(\Gamma) = \sup_{P \in \mathcal{P}} J_P(\Gamma(A,B))/J_P(K^*(P))$ than deadbeat Γ^{Δ}

Farokhi et al., 2013

Example

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1(k) \\ u_2(k) \end{bmatrix},$$

$$\begin{bmatrix} u_1(k) \\ u_2(k) \end{bmatrix} = \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

•
$$K^*(P) = -(I + X)^{-1}XA$$

$$A^{T}XA - A^{T}X(I + X)^{-1}XA + I = X$$

•
$$\Gamma^{\Delta}(A,B) = -\begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix}$$

$$J_P(\Gamma^{\Delta}(A,B)) \leq 2J_P(K^*(P))$$

•
$$\Gamma^{\Theta}(A, B) = -\begin{bmatrix} wa_{11} & wa_{12} \\ 0 & a_{22} \end{bmatrix}$$

$$w = \frac{a_{11}^2 - 2 + \sqrt{a_{11}^4 + 4}}{2a_{11}^2}$$

$$J_P(\Gamma^{\Theta}(A,B)) \leq J_P(\Gamma^{\Delta}(A,B)) \leq 2J_P(K^*(P))$$

and undominated

Motivating Example Revisited

ullet Regulating inter-vehicle distances d_{12} and d_{23}

$$z(t) = \begin{bmatrix} d_{12}(t) & d_{23}(t) & u_1(t) & u_2(t) & u_3(t) \end{bmatrix}^{\mathsf{T}}$$

• Find a saddle point of $J(\Gamma,\alpha) = \|T_{zw}\left(s;\Gamma,\alpha\right)\|_{\infty}$ when $\alpha = [m_1\,m_2\,m_3]^{\mathsf{T}} \in [0.5,1.0]^3$ and Γ belongs to the set of polynomials of α_i , i=1,2,3, up to the second order.

 $\inf_{\Gamma \in \mathcal{C}} \sup_{\alpha \in \mathcal{A}} J(\Gamma, \alpha) = \inf_{\Gamma \in \mathcal{C}} \sup_{\alpha \in \mathcal{A}} \|T_{zw}(s; \Gamma, \alpha)\|_{\infty}$

Farokhi & J, 2013

Motivating Example Revisited

Control Design with Local Model Information

$$\max_{\alpha \in \mathcal{A}} \ \left\| T_{zw} \left(s; \Gamma^{\text{local}}, \alpha \right) \right\|_{\infty} = 4.7905$$

Farokhi & J, 2013

Motivating Example Revisited

Control Design with Local Model Information

$$\max_{\alpha \in \mathcal{A}} \ \left\| T_{zw} \left(s; \Gamma^{\text{local}}, \alpha \right) \right\|_{\infty} = 4.7905$$

5.8%

Control Design with Limited Model Information

$$\max_{\alpha \in \mathcal{A}} \|T_{zw}\left(s; \Gamma^{\text{limited}}, \alpha\right)\|_{\infty} = 3.5533$$

Farokhi & J, 2013

Outline

- Introduction
- Case study I: Goods transportation
- Case study II: Building management
- Cross-cutting scientific challenges
- Conclusions

Conclusions

- CPS architectures for large-scale control and optimization
- Applications to transportation and building management
- Influence of local plant models on global performance
- Testbed developments

http://www.ee.kth.se/~kallej

VW and Scania management visiting the student testbed of KTH Smart Mobility Lab

Finland's, Sweden's, and Denmark's Prime Ministers visiting the "Active House" in the Stockholm Royal Seaport