Using model checking to improve the quality of cyber-physical systems

Jeroen Keiren Open University of the Netherlands & Radboud Universiteit Nijmegen 11 July 2016

jeroenkeiren.nl

Cyber-Physical Systems

Cyber-Physical Systems or "smart" systems are co-engineered interacting networks of physical and computational components. – NIST

Examples

- Smart grid
- Autonomous automotive systems
- Medical monitoring
- Robotics

Networks of embedded systems with physical input and output open Universite

Modelling and analysis of cyber-physical systems

Two types of behaviour in CPS:

- Continuous dynamics
- Discrete dynamics

This talk: discrete dynamics

Case study 1: IEEE 11073-20601

INTERNATIONAL ISO/IEEE STANDARD 11073-20601

> First edition 2010-05-01

Health informatics — Personal health device communication —

Part 20601: Application profile — Optimized exchange protocol

Informatique de santé — Communication entre dispositifs de santé personnels — Partie 20601: Profil d'application — Protocole d'échange optimisé

and many more

Reference number ISO/IEEE 11073-20601.2010(E) © ISO 2010

torized licensed use limited to: Eindhowen University of Technology, Downloaded on May 16,2012 at 13.31.50 UTC from IEEE Xplane. Restrictions apply

What are personal health devices?

Agent devices

Manager devices

What is the purpose of IEEE 11073-20601?

"[...] define[...] a common framework for making an abstract model of personal health data available in transport-independent transfer syntax required to establish logical connections between systems and to provide presentation capabilities and services needed to perform communication tasks." [IEEE std 11073-20601]

Protocol (sketch)

Agent and manager cycle through states:

- Unassociated
- Associating
- Sending configuration
- Waiting approval
- OperatingOperating
- Disassociating

Objectives & Approach

Assess understandability, consistency, and completeness

- Formalise protocol in mCRL2 (ACP-like process algebra)
- Based on standards document
- Establish correctness
 - Formulate desired properties in temporal logic (µ-calculus)
 - Use model checker to verify the properties
- Fix bugs

Observations on the standard

Understandability, consistency and completeness

- Requirements are not explicit
- Formalisms not introduced
- Information inconsistently duplicated between representations
 - Inconsistent terminology/abbreviations
 - Different state changes for same event
- Unexpected messages not fully treated

Deadlocks caused by incompleteness

Correctness

Data shall not be transmitted in inconsistent operating states.

Observations

- Omissions and inconsistencies cause easy to fix bugs
- Session setup contains a severe bug
- Agent and manager devices can transfer data in inconsistent configurations
- Rest of the protocol should be verified

Lessons learned

- Formal modelling allows detection of problems in short timespan
- Standards should provide clear requirements
- Bugs cannot be fixed without breaking standard conformance
- Formal verification should be part of the development process of every communication standard

Unverified standards contain subtle, hard to find errors!

Case study 2: CERN

Large Hadron Collider

Large Hadron Collider

CMS

CMS detector: Scale

Control software

Control software: Global structure

Control software: Local structure

Control software: Complexity

Problem: Unresponsive subsystems

Methodology

- 1. Understand/define semantics SML
- 2. Identify desirable properties
- 3. Verify properties
- 4. Automate verification
- 5. Optimise verification (dedicated tooling)
- 6. Integrate tooling into IDE


```
State manager language
Example (SML)
```

class: \$FWPART_\$TOP\$RPC_Chamber_CLASS state: OFF when ((\$ANY\$FwCHILDREN in_state ERROR) or (\$ANY\$FwCHILDREN in_state TRIPPED)) move_to ERROR

```
action: STANDBY
do STANDBY $ALL$RPC_HV
do ON $ALL$RPC_LV
```


Processing in a state machine

Stabilisation: Livelocks

```
state: ANALOG_ON_RED
 . . .
 when ( $ANY$TkPowerGroup not_in_state
        DIGITAL_ON_RED )
      move_to LVMIXED
state: LVMIXED
 . . .
 when ( $ALL$FwCaenChannelCtrl in state ON and
        $ALL$TkPowerGroup in_state ANALOG_ON_RED )
      move_to ANALOG_ON_RED
```


. . .

TkControlGroup (ANALOG_ON_RED) **TkPowerGroup** FwCaenChannelCtrl (ANALOG_ON_RED) (ON)

state: ANALOG_ON_RED

when (\$ANY\$TkPowerGroup not_in_state DIGITAL_ON_RED) move_to LVMIXED

state: LVMIXED

. . .

state: ANALOG_ON_RED

when (\$ANY\$TkPowerGroup not_in_state DIGITAL_ON_RED) move_to LVMIXED

state: LVMIXED

. . .

Livelocks

 $\mathcal{F} + children \rightarrow \mathcal{M}$

Lemma

 \mathcal{F} contains a loop of move_to actions iff \mathcal{M} contains loops

Livelocks

Translation to SAT

Existence of loop in \mathcal{F} as satisfiability formula $\varphi_{\mathcal{F}}$:

- 1. state constraints
 - each FSM is always in exactly one state
 - children do not change state in when-phase
- 2. transition relation
 - move-to steps parents can take
- 3. loop condition
 - parent must be able to return to its starting state

Livelocks Translation to SAT

> Theorem There is a loop in \mathcal{F} iff $\varphi_{\mathcal{F}}$ is satisfiable

SAT encoding will find child states if loop exists!

Results: Livelocks

- Full system checking in 79 seconds
- ▶ 1302 FSMs have looping potential
- Most not observed/short lived
- Outages of control system traced back to detected problems:

```
...

6/11/2011 15:23:57 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

6/11/2011 15:23:57 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

6/11/2011 15:23:57 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

...

6/11/2011 15:38:08 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

6/11/2011 15:38:08 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

6/11/2011 15:38:08 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

6/11/2011 15:38:08 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

6/11/2011 15:38:08 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

6/11/2011 15:38:08 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

6/11/2011 15:38:08 - [PIXELBARREL_BMI_S7] in state [LVMIXED]
```


Unreachable states

Results: Reachability

- Full system checked in 18 minutes
- ▶ 903 FSMs have reachability issues
- Partly due to clever programmer tricks
- Real problems typically due to copy/paste

Implementation

- ► Full automated translation to mCRL2
- Dedicated translations to SMT for described problems
- Integration of dedicated tools in IDE

Q Vision, 3: FSM validator	
Module Panel Scale Help	a second s
000000000000000000000000000000000000000	G A R 11 01 15 40003591 .
Dreck al types for errors Oreck alcoal types for errors	
Check one type for errors	1
Check local rodes for local loops Check one node for local loops CMS_BRM	
The following possible local loop was found: Permit CinatemoUnity (1) local tough states DHOR, STAHOPT and DHO ChardmaticCurringe (1) in state CPF Constitution(Curringe (2) in state STAHOPT CinatemoCurringe (2) in state STAHOPT Constitution(Curringe (2) in state STAHOPT Constitution(Curringe (2) in state STAHOPT	R If its children are in the configuration:
When deuses involved in this loop: State ERROR: Inhen ((SALL \$ChebmBon3CUType in_state (STANDBY) STANDBY State STANDBY:) and (\$4LL\$CmoBmidSCCuilyon in_state (OPP))) move_to
when (SAVITS*wO+BLOREN in_state (BRROR)) move_to	BROR

Lessons learned

- Generic tools needed to develop understanding
- Huge system, yet verifiable due to careful analysis
- Specialised tools needed for effective verification
- Real-life problems detected
- Diagnostics ensure quick fixing

"We should have had these tools at the start of the LHC project" — CMS engineer

Verification of Cyber Physical Systems

Cyber physical systems Networks of embedded systems with physical input and output

- Modelling and verification well-understood
- Possible for huge systems
- Modelling and verification using differential equations
- Well-studied
- Combining discrete- and continuous dynamics in single formalism
- Modelling and verification using: hybrid automata
- Currently studying this with Prof. Cleaveland

Thank you

Joint work with:

- Martijn Klabbers (LaQuSo)
- Yi Ling Hwong (CERN)
- Vincent Kusters (TU/e, CERN, ETH-Z)
- Sander Leemans (TU/e, CERN)
- Tim Willemse (TU/e)

