

Electricity Market for Distribution Networks

Na (Lina) Li

Electrical Engineering & Applied Mathematics
Harvard University

University of Maryland, College Park Oct. 17th, 2016

Electricity Grid 1.0

Supply = Demand

Unresponsive Predictable

Electricity Grid 1.0

Supply = Demand

Controllable Unresponsive Predictable

Transmission market

= Demand Supply

Trans. Market

Controllable Unresponsive **Predictable**

A Monthly

Forward Energy Market

e.g., Day-ahead market (one day forward);

Real-time Energy Market

e.g., Every five minutes in PJM;

Ancillary service market

e.g., Spinning reserve market; (short-term, unexpected changes)

Transmission market

Real-time Energy Market

e.g., Every five minutes in PJM;

Ancillary service market

e.g., Spinning reserve market; (short-term, unexpected changes)

Renewable energy

Renewable portfolio standard

Renewable portfolio goal

www.dsireusa.org/

March2015

Extra credit for solar or customer-sited renewables

Includes non-renewable alternative resources

Random and intermittent

Source: Rosa Yang, EPRI

Denmark's progress over the past decades

Tomorrow's Grid 2.0

Supply = Demand

Less controllable
Highly uncertain
Distributed
Large scale

Less controllable Responsive — Unresponsive

Tomorrow's Grid 2.0

Transforming Electricity Grid: DER

NYSERDA	Business	Communities	Residents	Partners	Cleantech
	& Industry	& Governments	& Homeowners	& Investors	& Innovation
MAIL PRINT FACEBOOK TWITTER	Prog	rams & Services	Find a Contractor	About NYSERDA	Contact Us

Combined Heat and Power Systems

Geothermal Heat Pumps

Net Metering/Remote Net Metering and Interconnection

Solar Technologies

Wind Energy

Net Metering/Remote Net Metering and Interconnection

Subsides Policies

i-connected (connected to the utility electrical grid), or they can city distribution system (off-grid). Only grid-connected renewable in the customer's side of the electric meter are eligible for NYSERDA's

between customer and the utility company. The interconnection agreement sets the terms and conditions under which a renewable energy system can be safely connected to the utility grid and outlines metering arrangements for the system.

Debate over solar rates simmers in the Nevada desert

February 27, 2016

The future of home-based solar power is on the line in Nevada, as solar advocates and utility companies debate how to regulate so-called 'net energy metering' rates for customers using solar panels connected to the grid.

Sources: PBS

Electricity Market for Distribution Networks: Challenges

Power Engineering:

Power flow, system dynamics, operation constraints

Human Incentive:

Strategic behavior, self-interested, market power

Uncertainties:

Renewable energy, user's behavior, emergency

Electricity Market for Distribution Networks: Challenges

Power Engineering:

Power flow, system dynamics, operation constraints

Human Incentive:

Strategic behavior, self-interested, market power

Uncertainties:

Renewable energy, user's behavior, emergency

Transmit and Distribute Power

$$i_1 - i_2 - i_3 + i_4 = 0$$

$$i_1 - i_2 - i_3 + i_4 = 0$$
 $v_1 + v_2 + v_3 - v_4 = 0$

Transmit and Distribute Power: Kirchhoff's Law

Capacity constraint on any line or node limit the entire flow

Challenges: An Example

Line 1-2 capacity: 25

Transaction 2→3 alleviates congestions on line 1-2

1, 2: generation nodes/buses; 3: load bus (two users)

How much to pay for public distribution service?

Social Welfare

$$egin{array}{ll} \max & B(d) - C(g) \ { ext{Benefit Cost}} \ { ext{s.t.}} & d - g = y \ L(y,u) = l \ f(y,u) \leq 0 \end{array}
ightharpoonup ext{Physical Constraints}$$

d: demand;

g: generation;

y: net power injection

u: other physical variables

l: power losses;

How much to pay for public distribution service?

Social Welfare

 $egin{array}{ll} \max & B(d) - C(g) \ & ext{s.t.} & d - g = y \ & L(y,u) = l \ & f(y,u) \leq 0 \end{array}$

Individual

How to set the price?

How to choose the prices?

Social Welfare

$$egin{array}{ll} \max \ d,g,y,u,l & B(d)-C(g) \ & ext{s.t.} & d-g=y \ & L(y,u)=l \ & f(y,u)\leq 0 \end{array}$$

Given an convex problem, duality of the optimization provide efficient prices, p*

Challenges: Nonconvexity

Nonconvex Optimal Power Flow

min
$$C\left(\sum_{(0,j)}P_{0j}\right) - \sum_{i}U_{i}\left(p_{i}\right) + \sum_{i,j}r_{i,j}\left|I_{i,j}\right|^{2}$$
 V_{i}

over $x := (S, \ell, v, p, q)$
 $s. t.$
 $V_{ij} = \left|S_{ij}\right|^{2}/v_{i}$,

Nonconvex $\left(l_{ij} := \left|S_{ij}\right|^{2}/v_{i}\right)$
 $V_{ij} := \left(l_{ij}\right)^{2}$
 $V_{ij} := \left(l_{ij}\right)^{2}$
 $V_{ij} := \left(l_{ij}\right)^{2}$

Branch flow model
$$\sum_{i \to j} \left(S_{ij} - z_{ij}\ell_{ij}\right) - \sum_{j \to k} S_{jk} = s_{j},$$

$$V_{ij} \le V_{i} \le \overline{V_{i}},$$

$$V_{ij} \le V_{ij} \le \overline{V_{i}},$$

$$V_{ij} = \left(l_{ij}\right)^{2}$$

$$V_{ij} := \left(l_{ij}\right)$$

Baran & Wu 1989, Chiang & Baran 1990

Efficient Prices: Market Equilibrium (d*, g*, p*)

Social Welfare

$egin{array}{ll} \max & B(d) - C(g) \ & ext{s.t.} & d - g = y \ & L(y,u) = l \ & f(y,u) \leq 0 \end{array}$

Individual

$$(d^*, g^*) \qquad \max_{d} B(d) - p^* \cdot d$$

$$\max_{g} p^* \cdot g - C(g)$$

A Distributed Algorithm to Reach the Equilibrium

Theorem [Li et al. 2012, 2014]: The distributed algorithm converges to market equilibrium over a radial distribution network.

Recent work: Distributed algorithms with **limited communication**. [2015, 2016]

Case studies

Schematic Diagram of a South California Edison distribution System

How about decentralized market?

Challenge: Externality:

Any local change induces a (complicated) global change!

Delivery Service (in distribution networks)

- Voltage support (constraint): $\underline{v}_i \leq v_i \leq \overline{v}_i$
- Power loss

Market rule

Each Bilateral Transaction

- Buy voltage right (constraint) at each bus
- Pays for line loss rent of each line

Q: Budget balance on the voltage right and also the power loss?

Voltage right at each bus = Σ_i voltage right bought by transaction i Power losses at each line = Σ_i Losses paid by transaction i

Market Prices and Equilibrium

Each user/generator maximizes net benefit/profit given elec. prices

$$\max_{d} B(d) - p \cdot d \qquad \max_{g} p \cdot g - C(g)$$

Market Prices and Equilibrium

- Each user/generator maximizes net benefit/profit given elec. price
- For each unit transaction between any two node i and k

Voltage right price is 0 if there is excess voltage capacity supply

Question: How to determine Quantity₁, Quantity₂?

How to determine the quantities?

Duality of the Social Welfare Maximization

$$egin{array}{ll} \max _{d,g,y,u,l} & B(d)-C(g) \ & ext{s.t.} & d-g=y \ & L(y,u)=l \ & f(y,u)\leq 0 \end{array}$$

Quantity₁ Quantity₂ Prices

Budget Balance Constraints on Voltage Right and Line Losses

For each unit transaction between any two node i and k

Price i = Price j + Sum(Voltage right price*Quantity₁) + Sum (Line loss rent * Quantity₂)

How to determine the quantities?

One Allocation Rule for Voltage Right and Line Losses

Quantity₁:
$$\bar{\beta}_i^k = \frac{(v_k - v_k^{nom}) \, R_{ki}}{\sum_{j=1}^n R_{kj} p_j}; \quad \underline{\beta}_i^k = -\frac{(v_k - v_k^{nom}) \, R_{ki}}{\sum_{j=1}^n R_{kj} p_j}.$$

Quantity₂:
$$\phi_i^k = \frac{L_k L_{k,i}}{\sum_{j=1}^n L_{k,j} p_j}$$
 V: voltage p: power injection

R: resistance

P,Q: real/reactive power flow

L: line losses

 L_k denote the line losses on $(k, \pi(k))$

$$L_{k,i} = r_k \begin{cases} \frac{2P_k}{v_k} - \frac{P_k^2 + Q_k^2}{v_k^2} R_{ki}, & \text{if } k \in \mathcal{P}_i, \\ -\frac{P_k^2 + Q_k^2}{v_k^2} R_{ki}, & \text{otherwise.} \end{cases}$$

For each unit transaction between any two node i and k

Price i = Price j + Sum(Voltage right price*Quantity₁) + Sum (Line loss rent * Quantity₂)

Competitive Market Equilibrium

Theorem (Li 2015):

Under the designed market rule, there exists a competitive market equilibrium that is socially optimal.

So far...

Scheme 1:

Markets are efficient

Scheme 2:

Electricity Market for Distribution Networks:

Power Engineering:

Power flow, system dynamics, operation constraints

Markets efficiently allocate delivery costs to individuals (transactions)

Human Incentive:

Strategic behavior, self-interested, market power

Uncertainties:

Renewable energy, user's behavior, emergency

Electricity Market for Distribution Networks:

Power Engineering:

Power flow, system dynamics, operation constraints

Markets efficiently allocate delivery costs to individuals (transactions)

Human Incentive:

Strategic behavior, self-interested, market power

Uncertainties:

Renewable energy, user's behavior, emergency

Recall...

Social Welfare

$$\max_{d,g,y,u,l}$$

$$B(d)-C(g)$$

Individuals need to report info.

s.t.
$$d-g=y$$

$$L(y,u)=l$$

$$f(y,u) \leq 0$$

What if they **DON'T** report **true** info.?

Supply Function Bidding for Demand Response

- Supply deficit (or surplus) on electricity: *d* weather change, unexpected events, ...
- Supply is inelastic

<u>Problem</u>: How to allocate the deficit among customers? load (demand) as a resource to allocate

Supply function bidding

- \triangleright Customer *i* load to shed: q_i
- \triangleright Customer *i* reports a supply function (SF):

$$q_i(b_i, p) = b_i p$$

- > p : price for load shedding
- ➤ b_i: price sensitivity
- \triangleright Market-clearing pricing p:

$$\sum_{i} q_{i}(b_{i}, p) = d$$

$$p = p(b) \triangleq d / \sum_{i} b_{i}$$

utility company: deficit d

 $q_1 = b_1 p$

customer n:

Load Shedding Cost

Customer i cost (or disutility) function:

$$C_i(q_i)$$

> Social welfare: Optimal Global Cost

$$\min_{q_i} \sum_i C_i(q_i)$$

s.t.
$$\sum_{i} q_{i} = d$$

Question:

Can the supply function bidding achieves the optimal global cost?

Strategic demand response

- \triangleright Customer i's net revenue: $u_i = p q_i C_i(q_i)$
- ➤ Note: Price p is a function of bidding b
- > Price-anticipating, strategic customer

$$\max_{b_i} \ u_i(b_i, b_{-i})$$
 with

$$u_i(b_i, b_{-i}) = p(b)q_i(b_i, p(b)) - C_i(q_i(b_i, p(b)))$$

Definition: A supply function profile b^* is a Nash equilibrium if, for all customers i,

$$u_i(b_i^*, b_{-i}^*) \ge u_i(b_i, b_{-i}^*), \ \forall b_i \ge 0$$

utility company: deficit d

customer i: $\max_{b_i} u_i(b_i, b_{-i})$

Nash equilibrium

Theorem (Li, Chen, Dahleh, 2015)

Assume $|N| \geq 3$. The demand response game has a unique Nash equilibrium. Moreover, the equilibrium solves the following convex optimization problem:

$$egin{array}{ll} \min_{0 \leq q_i < d/2} & \sum_i D_i(q_i) \ s.t. & \sum_i q_i = d, \end{array}$$

with

$$D_i(q_i)=C_i(q_i)+\Delta C_i(q_i)$$
—False cost $\Delta C_i(q_i):=rac{q_i}{d-2q_i}C_i(q_i)-\int_0^{q_i}rac{d}{(d-2x_i)^2}C_i(x_i)dx_i\geq 0$

Efficiency Loss

Question:

Is there a way to make individuals report truthful information?

This Talk: Electricity Market in Distribution Networks

Power Engineering:

Power flow, system dynamics, operation constraints

Markets efficiently allocate delivery costs to individuals (transactions)

Human Incentive:

Strategic behavior, self-interested, market power Supply function bidding: Efficiency loss from strategic behavior

Uncertainties:

Renewable energy, user's behavior, emergency

This Talk: Electricity Market in Distribution Networks

Power Engineering:

Power flow, system dynamics, operation constraints

Markets efficiently allocate delivery costs to individuals (transactions)

Human Incentive:

Strategic behavior, self-interested, market power Supply function bidding: Efficiency loss from strategic behavior

Uncertainties:

Renewable energy, user's behavior, emergency

Recall: Supply Function Bidding

- ➤ A supply deficit *d*
- \triangleright Customer *i* reduced load: q_i
- Customer i reports a supply function (SF)
- Cost function of load shedding

 $C_i(q_i)$

Recall: Supply Function Bidding

- > A **forecasted** supply deficit *d* **in the future**
- \triangleright Customer *i* reduced load: q_i
- \triangleright Customer *i* reports a supply function (SF)
- Cost function of load shedding in the future

 $C_i(q_i)$

Caution: The information is uncertain! Challenge: How to guarantee reliability?

Incentivizing Reliability in Demand Response

A group of customers:

> are able to reduce loads, e.g., 2-4pm in the next day

A reliability target:

> e.g. 1000 kW can be reduced with probability 99%

Challenges:

- > Costly to reduce loads
- Uncertainty in the cost and ability to respond

Current practice (e.g., PJM, Con Edison, SCE, etc):

- Enlisting large number of consumers,
- Offering rewards in an order based on experience
- Unguaranteed reliability as customers opt out in the process

Two Period Mechanism

Time 0

Agents report with knowledge of type (C_i)

Mechanism selects agents to prepare for reducing loads and determines rewards R_i, penalty Q_i

Uncertain, Random Cost

Time 1

Agents resolve uncertainty in ability to respond

Agents decide on responses, if possible

Mechanism pays rewards and collects penalties

Fixed Reward R Mechanism

Direct Mechanism

- Mechanism computes agent maximum acceptable penalty M_i
- > Select customers in decreasing order of M_i until reliability target is met
- Calculate critical payment Q_i as penalty for non-response

Indirect Mechanism

Agents reports their maximum acceptable penalty M_i

Theorem [Ma, Robu, Li, Parkes, 2016]:

If the reward R is large enough, both direct and indirect mechanism guarantee truthful telling, individual rationality, and the reliability target.

Direct, Indirect Vs. First Best

- ➤ First Best: suppose individual uncertainty is available; select to optimize the reliability
- \triangleright n = 500, M = 100, fix R = 10 or reliability τ = 98%

Conclusion and Discussion

Power Engineering:

Power flow, System dynamics, operation constraints

Markets efficiently allocate delivery costs to individuals (transactions)

Human Incentive:

Strategic behavior, self-interested, market power Supply function bidding: Efficiency loss from strategic behavior

Uncertainties:

Renewable energy, user's behavior, emergency Mechanism design to ensure reliability

Challenge and future work:

A market: takes account of engineering and human factors, achieves (sub)-optimal efficiency, and ensures reliability

Research Interest Network Optimization, Control, Economics

Power Systems

Data Center

Transportation
Internet network
Parallel computing
Social network
Etc...

Design general theories and tools for:

Distributed/Local
Control Laws

Desired **Global** System Behavior

Research Interest Network Optimization, Control, Economics

Power Systems

Data Center

Sensor Network

Transportation
Internet network
Parallel computing
Social network
Etc...

Foundational Theories

- Comm./Comp. complexity
- Tradeoff between efficiency, robustness, computation, and communication

Practical Algorithms

- Optimal first-order distributed methods
- Regularized methods
- Physical measurement-aid algorithms

Real Implementation

- Distributed power capping in data center
- Microgrid energy management

Acknowledgment:

Caltech: Steven Low MIT: Munther Dahleh

Univ. of Colorado, Boulder: Lijun Chen

KTH: Sindri Magnusson, Carlo Fishchione

Energy Trading Analytics: Hung-po Chao

Harvard Univ: Vahid Tarokh, David Parkes, Guannan

Qu, Masoud Badiei, Yingying Li, Ariana Minot, Xuan

Zhang, Chinwendu Enyioha, Hongyao Ma

Funding Agencies: NSF, ARPA-E

