
Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Model-Based Software and Systems

 Engineering

Elements of Seamless Development

Manfred Broy

 Manfred Broy 2 University of Maryland September 2013

Modeling in Software and Systems Engineering

When modeling software in systems we have capture following aspects:
•  interaction – exchange of information/material
•  distribution – structuring systems in architectures with elements related to

locations
•  context – operational system’s environment
•  real time
•  probability
•  physicality
•  …
To do that we have to use concepts
•  interfaces – scope and interaction
•  state – state transition
•  architecture – (de-)composition

 Manfred Broy 3 University of Maryland September 2013

What is seamless development?

•  Development by a chain of models
◊  High expressive power
◊  Clear structure of role of models
◊  All aspects in the development captured by models
◊  Tight integration in the artifact models

•  Development steps by well-defined relationship between
modes
◊  Refinement
◊  Decomposition
◊  Change of scope

•  Extended tool support
◊  High automation
◊  All artifacts in tools and comprehensive data base (development back

bone)

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Basic System Modeling Concepts

 Manfred Broy 5 University of Maryland September 2013

System and its context

 Manfred Broy 6 University of Maryland September 2013

Basic System Notion: What is a discrete system (model)

A system has
•  a system boundary that determines

◊  what is part of the systems and
◊  what lies outside (called its context)

•  an interface (determined by the system boundary), which determines,
◊  what ways of interaction (actions) between the system und its context are

possible (static or syntactic interface)
◊  which behavior the system shows from view of the context (interface behavior,

dynamic interface, interaction view)

•  a structure and distribution addressing internal structure, given
◊  by its structuring in sub-systems (sub-system architecture)
◊  by its states und state transitions (state view, state machines)

•  quality profile
•  the views use a data model
•  the views may be documented by adequate models

 Manfred Broy 7 University of Maryland September 2013

Discrete systems: the modeling theory – interface behaviour as key concept

System x1 : T1

y4 : T’4

x4 : T4

x3 : T3 x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

See: M. Broy: A Logical Basis for Component-
Oriented Software and Systems Engineering. The
Computer Journal: Vol. 53, No. 10, 2010, S.
1758-1782

 Manfred Broy 8 University of Maryland September 2013

System class: distributed, reactive systems

Towards a uniform model: Basic system model

lc

cl LM Control RM
cr

rc

kc
component

channel

System consists of
•  named components (with local state)
•  named channels

driven by a global, discrete clock

channel
name

component name

 Manfred Broy 9 University of Maryland September 2013

Basic system model

E

eq

qe
Q

t t+1 t+2 t+3

〈a,d,a,b〉 〈〉

Timed Streams: Semantic Model for Black-Box-Behavior

Messages transmitted
at time t

infinite channel
history

Message set:

M = {a, b, c, ...}

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Modeling Interface Behavior

 Manfred Broy 11 University of Maryland September 2013

The Basic Behaviour Model: Timed Streams and Channels

C set of channels

Type: C → TYPE type assignment

x : C → (IN\{0} → Μ∗) channel history for messages of type M

€


C or IH[C] set of channel histories for channels in C

 Manfred Broy 12 University of Maryland September 2013

System interface model

Channel: Identifier of Type stream

I = { x1 : D1, x2 : D2, ... } set of typed input channels
O = { y1 : T1, y2 : T2, ... } set of typed output channels

Syntactic interface: (I ! O)

Interface behavior

Set of interface behaviours with input channels I and
output channels O:

IF[I ! O]

Set of all interface behaviours: IF

F :

I → ℘(


O)

 Manfred Broy 13 University of Maryland September 2013

I O
Component interface

System interface behaviour - causality

 (I ! O) syntactic interface with set of
 input channels I and of output channels O

 F :

I → ℘(


O) semantic interface for (I ! O)

 with timing property addressing strong causality
 (let x, z ∈


I , y ∈


O , t ∈ IN):

x↓t = z↓t ⇒ {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)}

 x↓t pref ix of history x of length t

A system shows a total behavior

 Manfred Broy 14 University of Maryland September 2013

Continuous systems: the model

Sets of typed channels

 I = {x1 : T1, x2 : T2, ... }

 O = {y1 : T’1, y2 : T’2, ... }

syntactic interface

(I ! O)

continuous data stream of continuous type M

ConSTREAM[T] = {IR+ → M}

valuation of channel set C

CIH[C] = {C → ConSTREAM[T]}

interface behaviour for syn. interface (I ! O)

[I ! O] = {CIH[I] → ℘(CIH[O])}

interface specification

p: I∪O → IB

represented as interface assertion S
logical formula with channel names as variables for
continuous streams

System x1 : T1

y4 : T’4

x4 : T4

x3 : T3 x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

See: M. Broy: System Behavior Models with Discrete
and Dense Time. To appear in: Advances in Real-
Time Systems. Springer

 Manfred Broy 15 University of Maryland September 2013

Discrete systems: the modeling theory - probability

Sets of typed channels

 I = {x1 : T1, x2 : T2, ... }

 O = {y1 : T’1, y2 : T’2, ... }

syntactic interface

(I  O)

data stream of type T

STREAM[T] = {IN\{0} → T*}

valuation of channel set C

IH[C] = {C → STREAM[T]}

interface behaviour for syn. interface (I  O)

[I  O] = {IH[I] → PD[℘(IH[O])] }

interface specification

p: I∪O → IB

represented as interface assertion S
logical formula with channel names as variables for streams

System x1 : T1

y4 : T’4

x4 : T4

x3 : T3 x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

See: P. Neubeck: A Probabilitistic Theory of Interactive
Systems. PH. D. Dissertation, Technische Universität
München, Fakultät für Informatik, December 2012

Set of all probability
distributions over sets of
output histories

 Manfred Broy 16 University of Maryland September 2013

Extensions of the model

•  Physical Aspects & Properties: Rich Models
◊  Space
◊  Geometry
◊  Temperature
◊  … See: B. Hummel: Integrated Behavior Modeling

of Space-Intensive Mechatronic Systems, Technische
Universität München, Fakultät für Informatik, December
2010

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Evolution and Development:
Specification, Refinement, Compatibility

 Manfred Broy 18 University of Maryland September 2013

Interface Specification

•  An interface model describes in a particular abstraction the
interface behavior of a system
◊  interface behavior for syn. interface (I u O)

[I u O] = {IH[I] → ℘(IH[O])}
◊  interface specification by a predicate

p: I ∪ O → IB
 written by an interface assertion

See: M. Broy: Software and System Modeling:
Structured Multi-view Modeling, Specification, Design
and Implementation. In: Conquering Complexity,
edited by Mike Hinchey and Lorcan Coyle, Springer
Verlag, Januar 2012, S. 309-372

 Manfred Broy 19 University of Maryland September 2013

Example: System interface specification

 A transmission component TMC

TMC
 in x: T
 out y: T
 x ~ y

x ~ y ≡ (∀ m ∈ T: m#x = m#y)

TMC
x ~ y

x:T y:T

Input channel

Output channel

Specifying interface assertion

Spec name

See: M. Broy, K. Stølen: Specification and
Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement.
Springer 2001

 Manfred Broy 20 University of Maryland September 2013

Verification: Proving properties about specified components

From the interface assertions we can prove

•  Safety properties

m#y > 0 ∧ y ∈ TMC(x) ⇒ m#x > 0

•  Liveness properties

m#x > 0 ∧ y ∈ TMC(x) ⇒ m#y > 0

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Structure:
Composition and Decomposition

 Manfred Broy 22 University of Maryland September 2013

Composing Interfaces

•  Composition is an operation on syntactically compatible system
interfaces

⊗ : [I1uO1] × [I2uO2] → [IuO]
•  The operation ⊗ induces a composition operation on

specifications

See: M. Broy: A Theory for Requirements
Specification and Architecture Design of Multi-
Functional Software Systems. Series on Component-
Based Software Development – Vol. 2. Mathematical
Frameworks for Component Software. Models for
Analysis and Synthesis, 2006, S. 119–154

 Manfred Broy 23 University of Maryland September 2013

F1⊗F2
 in x1, x2: T
 out y1, y2: T
∃ z12, z21: S1 ∧ S2

Modularity: Rules of compositions for interface specs

F1
 in x1, z21: T
 out y1, z12: T
 S1

F2
 in x2, z12: T
 out y2, z21: T
 S2

F1⊗F2

x2

y2 z12

z21 y1

x1
F1

S1

F2

S2

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Refining Interfaces

 Manfred Broy 25 University of Maryland September 2013

Refinement

•  The idea of system refinement is that systems are developed
◊  by a sequence of development steps
◊  each step produces a more refined system description
◊  there is a refinement relation between the current system description and the

produced system description

•  The refinement relation
◊  is a relation between systems descriptions

•  The relation can be used as an idealized relationship between
◊  specifications to formalize the steps of gathering requirements in requirements

engineering
◊  specifications and architectures to formalize the steps in design of going from

requirements to architecture
◊  system specifications and implementations (e.g. by state machines)
◊  levels of abstraction

 Manfred Broy 26 University of Maryland September 2013

Refinement

•  Given systems/specifications S and S’ we write
S is_refined_to S’ (and also S ≈> S’)

 to express that S’ is a refinement of S.
•  Horizontal Refinement: Property Refinement
◊  Adding properties to a specification – reducing the non-determinism of

a system description

•  Vertical Refinement: Interaction granularity refinement
◊  Changing the granularity of the interaction
◊  Interesting case: Refinements between continuous and discrete models

Remark: Both refinement notions can be applied not only to

interface models but to all kinds of models

See: M. Broy: Compositional Refinement of
Interactive Systems. Journal of the ACM, Volume 44,
No. 6 (Nov. 1997), 850-891

 Manfred Broy 27 University of Maryland September 2013

Horizontal Refinement

 F:


I → ℘(


O)

is refined by a behavior

 ˆ F :

I → ℘(


O)

if

 ∀ x ∈

I : ˆ F .x ⊆ F.x

we write

F ≈> IF

€

ˆ F

Compositionality of refinement:
Modularity

∀ k: Fk ≈> IF

€

ˆ F k

⊗{Fk: k ∈ IK } ≈> IF ⊗{

€

ˆ F k: k ∈ IK }

 Manfred Broy 28 University of Maryland September 2013

Verification of refinement steps

•  A system F with behaviour assertion Q is refined by a system F’
with behaviour assertion Q’ if and only if

Q ⇐ Q’
 In other words: F’ is a refinement of F if all properties of F are
also properties of F’

•  The implication Q ⇐ Q’ shows also how to verify the
refinement relation

 Manfred Broy 29 University of Maryland September 2013

Vertical refinement: Levels of abstraction

 abstract level

 concrete level

F

ˆ F
 I2 O2

I1 O1

AI

. . .

. . .

RO

. . .

. . .

Given refinement pairs

 ΑΙ:

I 2 → ℘(


I 1) RI:


I 1 → ℘(


I 2)

 ΑΟ:

O 2 → ℘(


O 1) RO:


O 1 → ℘(


O 2)

with
RI ˚ ΑΙ = Id RO ˚ ΑO = Id

we call
 ˆ F :


I 2 → ℘(


O 2)

an interaction refinement of

 F:

I 1 → ℘(


O 1)

and write F ~>IF

€

ˆ F if:

 ˆ F ⊆ AI ˚ F ˚ RO U-1-simulation

Theorems
• Property refinement implies interaction

refinement
• Compositionality of interaction refinement
• Interaction refinement distributes over

composition
• Abstractions of interaction refinements of

implementations are interaction refinements
of abstractions
• Time abstraction is interaction abstraction
• Interaction abstraction is a Galois connection

 Manfred Broy 30 University of Maryland September 2013

Compatibility

•  A system S’ is called (replacement) compatible for system S if
S’ can be used instead of S’ in every system M without
violating the correctness of the system M

•  Compatibility coincides with refinement in case of modular
refinement

 Manfred Broy 31 University of Maryland September 2013

A flexible model of time

•  Time is a key issue in embedded systems:
•  Dealing with timing properties
◊  Specification
◊  Analysis
◊  Verification

•  Analysis
•  Testing
•  Model checking
•  Deduction based verification

•  Transforming time
•  Dedicated models of time
◊  Micro/Macro Step
◊  Perfect synchrony
◊  Scheduling

•  Abstractions

 Manfred Broy 32 University of Maryland September 2013

Example: TMC with Timing Restrictions

TMC
 in x: T
 out y: T
∀ t ∈ IN: ∀ m ∈ T:
m#(x↓t) ≥ m#(y↓t+delay)
m#(x↓t) ≤ m#(y↓t+delay+deadline)

TMC x:T y:T

 Manfred Broy 33 University of Maryland September 2013

Conclusion Refinement

•  Refinement formalises development steps
•  Going from
◊  an interface specification to an architecture (design step)
◊  an interface specification to a state machine (implementation)

 can be understood as special steps of refinement
•  Compatibility is defined by refinement, too
•  The change of time granularity is a refinement

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Implementation: Systems as State Machines

The State View

 Manfred Broy 35 University of Maryland September 2013

System and States

•  Systems have states
•  A state is an element of a state space
•  We characterize state spaces by
◊  a set of state attributes together with their types

•  The behaviour of a system with states can be described by its
state transitions

 Manfred Broy 36 University of Maryland September 2013

A system can be implemented by a state – a generalized Mealy
Machine

Σ set of states, initial state σ ⊆ Σ

State transition function:

State transition diagram:

Δ: (Σ × (I → M*)) → ℘(Σ × (O → M*))

State model for systems/components

 x: d / - {q' = qˆ‹d›}
 x: d / - {q' = qˆ‹d›}

 {q = ‹d›} x: ® / y: d {q' = ‹›}

 Nonempty
q ≠ ‹›

 x: ® / y: ® {q' = ‹›}
 {d = ft.q} x: ® / y: d {rt.q = q'}

Empty
 q = ‹›

M. Broy: From States to Histories: Relating
States and History Views onto Systems. In:
T. Hoare, M. Broy, R Steinbrüggen (eds.):
Engineering Theories of Software
Construction. Springer NATO ASI Series,
Series F: Computer and System Sciences,
Vol. 180, IOS 2001, 149-186

 Manfred Broy 37 University of Maryland September 2013

State Machines in general

A state machine (Δ, Λ) consists of
•  a set Σ of states - the state space
•  a set Λ ⊆ Σ of initial states
•  a state transition function or relation Δ
◊  in case of a state machine with input/output:

 events (inputs E) trigger the transitions and events (outputs A) are
produced by them respectively:

Δ : Σ × Ε → Σ × Α	

 in the case of nondeterministic machines:

Δ : Σ × Ε → ℘(Σ × Α)	

•  Given a syntactic interface with sets I and O of input and output channels:
E = I → M*

A = O → M*	

 Manfred Broy 38 University of Maryland September 2013

Computations of a State Machine with Input/Output

A state machine (Δ, Λ) defines for each initial state
σ0 ∈ Λ

and each sequence of inputs
e1, e2, e3, ... ∈ E

a sequence of states
σ1, σ2, σ3, ... ∈ Σ

and a sequence of outputs
a1, a2, a3, ... ∈ A

through
(σi+1, ai+1) ∈ Δ(σi, ei+1)

 Manfred Broy 39 University of Maryland September 2013

Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

For each initial state σ0 ∈ Σ we define a function

with

Fσ0(x) = {y: ∃ σi: σ0 = σ0 ∧ ∀ i ∈ IN: (σi+1, yi+1) = Δ(σi, xi+1)}
Fσ0 denotes the interface behavior of the transition function Δ for the initial
state σ0.
Furthermore we define

Abs((Δ, Λ)) = FΛ
where:

FΛ(x) = {y ∈ Fσ(x) : y ∈ Fσ(x) ∧ σ ∈ Λ}
FΛ is called the interface behavior of the state machine (Δ, Λ) .

€

σ0
a1 / b1# → # # σ1

a2 / b2# → # # σ2
a3 / b3# → # # σ3 ...

€

Fσ0 :

I →℘(


O)

 Manfred Broy 40 University of Maryland September 2013

Moore Machines

•  A Mealy machine (Δ, Λ) with
Δ : Σ × Ε → ℘(Σ × Α)

 is called Moore machine if for all states σ ∈ Σ and inputs e ∈ E the set
out(σ, e) = {a ∈ A: (σ, a) = Δ(σ, e) }

 does not depend on the input e but only on state σ.

•  Formally: then for all e, e’ ∈ E we have

out(σ, e) = out(σ, e’)

Theorem: If is (Δ, Λ) a Moore machine the FΛ is strong causal.

 Manfred Broy 41 University of Maryland September 2013

Interface Abstraction for State Machines

•  For a given state machine with input and output we define the interface
through
◊  its syntactical interface (signature)
◊  its interface behavior

•  We call the transition of the state machine to its interface the interface
abstraction.

Verification/derivation of interface assertions for state machines
•  similar to program verification (find an invariant)
•  needs sophisticated techniques

 Manfred Broy 42 University of Maryland September 2013

Observable Equivalence

•  Two systems modelled by state machines
(Δ1, Λ1) and (Δ2, Λ2)

 are observably equivalent iff they fulfil the equation

Abs((Δ1, Λ1)) = Abs((Δ2, Λ2))

 Manfred Broy 43 University of Maryland September 2013

Composition of the two state machines

Consider Moore machines Mk = (Δk, Λk) (k = 1, 2):
 Δk: Σk × (Ik → M*) → ℘(Σk × (Ok → M*))

We define the composed state machine
 Δ: Σ × (I → M*) → ℘(Σ × (O → M*))

as follows
 Σ = Σ1 × Σ2

for x ∈ I and (s1, s2) ∈ Σ we define:

 Δ((s1, s2), x) = {((s1’, s2’), z|O): x = z|I ∧ ∀ k: (sk’, z|Ok) ∈ Δk(sk, z|Ik) }

This definition is based on the fact that we consider Moore machines.
We write

 Δ = Δ1 || Δ2
 M = M1 || M2 = (Δ1 || Δ2 , Λ1 × Λ2)

 Manfred Broy 44 University of Maryland September 2013

An example of an essential property ...

Interface abstraction distributes for state machines
over composition

Abs((Δ1, σ1) || (Δ2, σ2)) =

 Abs((Δ1, σ1)) ⊗ Abs((Δ2, σ2))

 Manfred Broy 45 University of Maryland September 2013

Conclusion Systems as State Machines

•  Each state machines defines an interface behaviour
•  Each interface behaviour represents a state machine
•  State machines can be described
◊  mathematically by their state transition function
◊  graphically by state machine diagrams
◊  structured by state transition tables
◊  by programs

•  State machines define a kind of operational semantics
•  Systems given by state machines can be simulated
•  From state machines we can generate code
◊  state machines can represent implementations

•  From state machines we can generate test cases

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Functional View: Functional Decomposition

 Manfred Broy 47 University of Maryland September 2013

Combining Functions

Given two functions F1 and F2 in isolation

We want to combine them into a function F1 ⊗ F2

 Manfred Broy 48 University of Maryland September 2013

Combining Functions

Their isolated combination

O2 O1

I2 I1

F1 F2
F1 ⊗ F2

 Manfred Broy 49 University of Maryland September 2013

Combining Functions

If services F1 and F2 have feature interaction we get:

We explain the functional combination F1 ⊗ F2 as a
refinement step

 Manfred Broy 50 University of Maryland September 2013

The steps of function combination

Given the isolated function F1

We construct a refinement F’1

And combine F’1 with a refinement F’2 of F2

F1 ⊗ F2

O2 O1

I2 I1

F´1 F´2

See: M. Broy: Multifunctional Software
Systems: Structured Modeling and
Specification of Functional Requirements.
Science of Computer Programming 75
(2010), S. 1193–1214

 Manfred Broy 51 University of Maryland September 2013

Functional architecture: functional decomposition

•  The system interface behaviour F
as specified by the system requirements
specification A = {Ai: 1 ≤ i ≤ n}
is structured
◊  into a set of sub-interfaces for sub-functions F1, ... , Fk
◊ that are specified independently by introducing a number

of mode channels to capture their feature interactions
◊ each Fi sub-function is described by

• a syntactic interface and
• an interface assertion Bi such that

∧ {Bi: 1 ≤ i ≤ k} ⇒ A

 Manfred Broy 52 University of Maryland September 2013

Function Hierarchy

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Model Integration

 Manfred Broy 54 University of Maryland September 2013

Integrating modeling concepts

•  An architecture can be abstracted into an interface behavior
◊  Proof techniques for architecture verification

•  A state machine can be abstracted into an interface behavior
◊  Proof techniques for implementation verification

•  Integration of further modeling concepts
◊  Scenarios and interaction diagrams (MSCs)
◊  Processes and process diagrams
◊  Services
◊  …

!

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

 x: d / - {q' = qˆ‹d›}
 x: d / - {q' = qˆ‹d›}

 {q = ‹d›} x: ® / y: d {q' = ‹›}

 Nonempty
q ≠ ‹›

 x: ® / y: ® {q' = ‹›}
 {d = ft.q} x: ® / y: d {rt.q = q'}

Empty
 q = ‹›

interface

architecture state
machine

interface
abstraction

interface
abstraction

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
F

x5 : T5 y5 : T’5

M. Broy: The Semantic and Methodological
Essence of Message Sequence Charts.
Science of Computer Programming, SCP
54:2-3, 2004, 213-256

 Manfred Broy 55 University of Maryland September 2013

Extensions of the model: Probability

•  Probabilistic views
◊  Interface behavior: a probability distribution is given for the set of

possible histories
◊  Architectural view: probability distributions for the sub-systems of the

architecture
◊  State view: a probability distribution is given for the set of possible

state transitions

•  Then the model covers
◊  certain “non-functional properties” (safety, reliability, …)
◊  Example: integrated fault trees

See: P. Neubeck: A Probabilitistic Theory of Interactive
Systems. PH. D. Dissertation, Technische Universität
München, Fakultät für Informatik, December 2012

 Manfred Broy 56 University of Maryland September 2013

System under Consideration
SoC

Operational Context
OC

Context/system
observations

Requirements
•  Observations
•  Context

•  Properties
•  Interface

•  Architecture
Sub-systems

•  Connections
•  Interaction
•  Interfaces

Architecture

A full System Perspective

System development proceeds in working out a sequence of
perspectives at several levels of abstraction that are related
•  by refinement
•  by decomposition
•  by changing the scope/system boundary
•  by embedding

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Modular Model Based System Development

 Manfred Broy 58 University of Maryland September 2013

System Specification

S x1 : T1

y4 : T’4

x4 : T4

x3 : T3 x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

 Validation

Informal
requirements

System delivery

System verification
 R ⇒ S

R x1 : T1

y4 : T’4

x4 : T4

x3 : T3 x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Integration

R = R1⊗R2⊗R3
architecture
design

architecture
verification
S ⇐ C1⊗C2⊗C3

components implementation

Verification R1 ⇒ C1 R2 ⇒ C2 R3 ⇒ C3

implementation

de
liv

er
y

C1 C2 C3

S

C1 C2 C3 C2

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Comprehensive System Architecture
Levels of Abstraction

Structuring Systems: levels of abstraction

Interface assertion Safety Priority Component Function
R1 ... Yes high
R2 ... No medium

Rn ... no low

Anforderungen

See: M. Broy, M. Gleirscher, St. Merenda,
D. Wild, P. Kluge, W. Krenzer: Toward a
Holistic and Standardized Automotive
Architecture Description. Innovative
Technology for Computer Professionals.
Computer, IEEE Computer Society.
December 2009, S. 98-103

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Goals and Requirements
and Functional Specification

 Manfred Broy 62 University of Maryland September 2013

Relational view: Tracing – The power of logics

Functional RequirementSafety Priority Component Function
A1 ... Yes high
A2 ... No medium

An ... no low

See: M. Broy: The Logic
of Requirements –
Formalizing Tracing, In:
Forms/Format 2012,
Technische Universität
Braunschweig, edited by
Eckehard Schnieder und
Géza Tarnai, Beyrich
Digital Servide GmbH &
Co. KG, S. 2-4

 Manfred Broy 63 University of Maryland September 2013

Glass Box Specification of a Car´s Architecture

Car
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0

ready : Bool

act_speed : Real

doors_closed : Bool

Motor WatchDog
act_speed : Real

Watch-Dog
assumption:
∀ t: ¬ ready(t) ⇒ act_speed(t) = 0

commitment:
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0

ready : Bool

act_speed : Real

doors_closed : Bool

See: M. Broy: Towards a Theory of Architectural
Contracts: - Schemes and Patterns of Assumption/
Promise Based System Specification. In: M. Broy, Ch.
Leuxner, T. Hoare (Eds.): Software and Systems Safety
- Specification and Verification. NATO Science for Peace
and Security Series - D: Information and
Communication Security 30, IOS Press 2011, 33-87

 Manfred Broy 64 University of Maryland September 2013

Example: how A/P-specifications can be formulated

•  The specification
 ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0
 can only be guaranteed if the two inner components work together. This
requires
 ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0

•  Then the system specification holds if
 ∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t)

•  This is logically equivalent to the A/P-specification for the WatchDog
 assumption: ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0
 commitment: ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0

•  In other words,
◊  the overall system specification can be guaranteed by the watchdog
◊  only if the assumption about the behaviour of the component motor holds.

 Manfred Broy 65 University of Maryland September 2013

Assumption/Promise to define Architectural Design Patterns

•  A/P-specification
 assumption: ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0
 commitment: ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0
 is logically guaranteed by the simple specification
 ∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t)

•  This assertion no longer speaks about the specification of the
environment, but is a pure interface specification.

•  The example shows the simplification of an A/P-specification to
a plain interface assertion.

 Manfred Broy 66 University of Maryland September 2013

Conclusion A/C

•  A/C specs address the logic of the architecture rather than
separated interface specifications

•  From A/C specs we may derive simplified component specs
•  This gives a methodology towards a modular decomposition

 Manfred Broy 67 University of Maryland September 2013

Key Principles in Engineering CPSs

•  Abstraction
◊  Interfaces
◊  Changing levels of abstractions

•  Modularity
◊  Of composition
◊  Of refinement

•  Semantic coherence
◊  From state machines to interfaces
◊  From architectures to interfaces
◊  From architectures of state machines to state machines of architectures
◊  Probabilistic extension of logical (deterministic) models

•  Expressiveness
◊  Set theoretic and logical: discrete system models
◊  Continuous models: control theory
◊  Probabilistic: probability distributions on behavior

 Manfred Broy 68 University of Maryland September 2013

The Triad of Modeling

•  Denotational:
◊  mathematical models (of behavior)

•  Logical – system properties:
◊  specification
◊  deduction
◊  verification
◊  transformation

•  Notational:
◊  Graphical: diagrams
◊  Tables
◊  Formulas

 Manfred Broy 69 University of Maryland September 2013

Concluding Remarks

•  The modelling framework FOCUS
◊  originally worked out for model based development
◊  specification
◊  verification
◊  tool support

•  Tool: Autofocus 3
•  Also useful for semantic foundation following the same approach
◊  SDL
◊  Bus Systems: CAN, FLEXRAY
◊  UML/SysML
◊  SOA

See: K. Pohl, H. Hönninger, R. Achatz, M.
Broy: The SPES 2020 Methodology.
Springer Verlag 2012

See: https://af3.fortiss.org/projects/autofocus3

 Manfred Broy 70 University of Maryland September 2013

Concluding Remarks

•  Today software & systems engineering is too much
orientated towards the technical architecture and solutions/
implementation in the beginning

•  We need a comprehensive “architectural” model-based view
onto systems including requirements for dealing with
complex multi-functional systems

•  The models allow for
◊  Separation of concerns
◊  Separation of technical aspects from application aspects

•  Technical architectures are modelled along the same theory
•  Code and test cases can be generated from the models

 Manfred Broy 71 University of Maryland September 2013

The power of generalizing ideas, of
drawing comprehensive conclusions
from individual observations, is the
only acquirement, for an immortal
being, that really deserves the name
of knowledge.

“Mary Wollstonecraft (1759–1797),
British feminist. A Vindication of the
Rights of Woman, ch. 4 (1792)

