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Modeling in Software and Systems Engineering 

When modeling software in systems we have capture following aspects: 
•  interaction – exchange of information/material 
•  distribution – structuring systems in architectures with elements  related to 

locations 
•  context – operational system’s environment 
•  real time 
•  probability 
•  physicality  
•  … 
To do that we have to use concepts 
•  interfaces – scope and interaction 
•  state – state transition 
•  architecture – (de-)composition  
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What is seamless development? 

•  Development by a chain of models 
◊  High expressive power 
◊  Clear structure of role of models 
◊  All aspects in the development captured by models 
◊  Tight integration in the artifact models 

•  Development steps by well-defined relationship between 
modes 
◊  Refinement 
◊  Decomposition 
◊  Change of scope 

•  Extended tool support 
◊  High automation 
◊  All artifacts in tools and comprehensive data base (development back 

bone) 
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Basic System Modeling Concepts 



                             Manfred Broy 5 University of Maryland September 2013  

System and its context 
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Basic System Notion: What is a discrete system (model) 

A system has 
•  a system boundary that determines  

◊  what is part of the systems and  
◊  what lies outside (called its context) 

•  an interface (determined by the system boundary), which determines,  
◊  what ways of interaction (actions) between the system und its context are 

possible (static or syntactic interface) 
◊  which behavior the system shows from view of the context (interface behavior, 

dynamic interface, interaction view) 

•  a structure and distribution addressing internal structure, given 
◊  by its structuring in sub-systems (sub-system architecture) 
◊  by its states und state transitions (state view, state machines) 

•  quality profile 
•  the views use a data model 
•  the views may be documented by adequate models 
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Discrete systems: the modeling theory – interface behaviour as key concept 

System x1 : T1 

y4 : T’4 

x4 : T4 

x3 : T3 x2 : T2 

x5 : T5 

y1 : T’1 

y2 : T’2 

y3 : T’3 

See: M. Broy: A Logical Basis for Component-
Oriented Software and Systems Engineering. The 
Computer Journal: Vol. 53, No. 10, 2010, S. 
1758-1782  
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System class: distributed, reactive systems 

Towards a uniform model: Basic system model 

lc 

cl LM Control RM 
cr 

rc 

kc 
component 

channel 

System consists of 
•  named components (with local state) 
•  named channels 

driven by a global, discrete clock 

channel 
name 

component name 
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Basic system model 

E 

eq 

qe 
Q 

t t+1 t+2 t+3 

〈a,d,a,b〉 〈〉 

Timed Streams: Semantic Model for Black-Box-Behavior 

Messages transmitted 
at time t 

infinite channel 
history 

Message set: 

M = {a, b, c, ...} 
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Modeling Interface Behavior 
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The Basic Behaviour Model: Timed Streams and Channels 

 

 
C     set of channels 
 
Type: C → TYPE  type assignment 
 
x : C → (IN\{0} → Μ∗) channel history for messages of type M 
 
    

€ 

 
C  or IH[C]   set of channel histories for channels in C 
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System interface model 

Channel: Identifier of Type stream 
 
I = { x1 : D1, x2 : D2, ... } set of typed input channels 
O = { y1 : T1, y2 : T2, ... }  set of typed output channels 
 
Syntactic interface:             (I ! O) 
 
Interface behavior 
 
 
 
Set of interface behaviours with input channels I and 
output channels O:  

IF[I ! O] 
  

Set of all interface behaviours: IF 

F :   
 
I  → ℘(  

 
O ) 
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I O
Component interface

System interface behaviour - causality 

 (I ! O)                    syntactic interface with set of  
 input channels I and of output channels O 
 
 F :   
 
I  → ℘(  

 
O )         semantic interface for (I ! O)  

 with timing property addressing strong  causality 
  (let x, z ∈   

 
I , y ∈   

 
O , t ∈ IN):  

x↓t = z↓t ⇒ {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)} 

          x↓t        pref ix  of history x of length t              

A system shows a total behavior 
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Continuous systems: the model 

Sets  of typed channels 

 I = {x1 : T1, x2 : T2, ... } 

 O = {y1 : T’1, y2 : T’2, ... } 

syntactic interface 

(I ! O) 

continuous data stream of continuous type M 

ConSTREAM[T] = {IR+ → M}  

valuation of channel set C 

CIH[C] = {C → ConSTREAM[T]} 

interface behaviour for syn. interface (I ! O) 

[I ! O] = {CIH[I] → ℘(CIH[O])} 

interface specification 

p: I∪O   → IB 

represented as interface assertion S  
logical formula with channel names as variables for 
continuous streams 

System x1 : T1 

y4 : T’4 

x4 : T4 

x3 : T3 x2 : T2 

x5 : T5 

y1 : T’1 

y2 : T’2 

y3 : T’3 

See: M. Broy: System Behavior Models with Discrete 
and Dense Time. To appear in: Advances in Real-
Time Systems. Springer 
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Discrete systems: the modeling theory - probability 

Sets  of typed channels 

 I = {x1 : T1, x2 : T2, ... } 

 O = {y1 : T’1, y2 : T’2, ... } 

syntactic interface 

(I  O) 

data stream of type T 

STREAM[T] = {IN\{0} → T*}  

valuation of channel set C 

IH[C] = {C → STREAM[T]} 

interface behaviour for syn. interface (I  O) 

[I  O] = {IH[I] → PD[℘(IH[O]) ] } 

interface specification 

p: I∪O   → IB 

represented as interface assertion S  
logical formula with channel names as variables for streams 

System x1 : T1 

y4 : T’4 

x4 : T4 

x3 : T3 x2 : T2 

x5 : T5 

y1 : T’1 

y2 : T’2 

y3 : T’3 

See: P. Neubeck: A Probabilitistic Theory of Interactive 
Systems. PH. D. Dissertation, Technische Universität 
München, Fakultät für Informatik, December 2012  

Set of all probability 
distributions over sets of 
output histories 
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Extensions of the model 

•  Physical Aspects & Properties: Rich Models 
◊  Space 
◊  Geometry 
◊  Temperature 
◊  … See: B. Hummel: Integrated Behavior Modeling 

of Space-Intensive Mechatronic Systems, Technische 
Universität München, Fakultät für Informatik, December 
2010  
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Evolution and Development: 
Specification, Refinement, Compatibility 
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Interface Specification 

•  An interface model describes in a particular abstraction the 
interface behavior of a system 
◊  interface behavior for syn. interface (I u O) 

[I u O] = {IH[I] → ℘(IH[O])} 
◊  interface specification by a predicate 

p: I ∪ O   → IB 
   written by an interface assertion 

See: M. Broy: Software and System Modeling: 
Structured Multi-view Modeling, Specification, Design 
and Implementation. In: Conquering Complexity, 
edited by Mike Hinchey and Lorcan Coyle, Springer 
Verlag, Januar 2012, S. 309-372  
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Example: System interface specification 

  

 A transmission component TMC 
 

TMC 
  in    x: T 
  out  y: T 
  x ~ y 

 
x ~ y ≡ (∀ m ∈ T: m#x = m#y) 

TMC 
x ~ y  

x:T y:T 

Input channel 

Output channel 

Specifying interface assertion 

Spec name 

See: M. Broy, K. Stølen: Specification and 
Development of Interactive Systems: Focus 
on Streams, Interfaces, and Refinement. 
Springer 2001  
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Verification: Proving properties about specified components 

From the interface assertions we can prove 
 
•  Safety properties 

m#y > 0 ∧ y ∈ TMC(x) ⇒ m#x > 0  
 

•  Liveness properties 

m#x > 0 ∧ y ∈ TMC(x) ⇒ m#y > 0  
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Structure: 
Composition and Decomposition 
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Composing Interfaces 

•  Composition is an operation on syntactically compatible system 
interfaces 

⊗ : [I1uO1] ×  [I2uO2] →  [IuO]  
•  The operation ⊗ induces a composition operation on 

specifications 

See: M. Broy: A Theory for Requirements 
Specification and Architecture Design of Multi-
Functional Software Systems. Series on Component-
Based Software Development – Vol. 2. Mathematical 
Frameworks for Component Software. Models for 
Analysis and Synthesis, 2006, S. 119–154  
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F1⊗F2 
  in    x1, x2: T 
  out  y1, y2: T 
∃ z12, z21: S1 ∧ S2 

 

Modularity: Rules of compositions for interface specs 

   
F1 
  in    x1, z21: T 
  out  y1, z12: T 
  S1 

 

   
F2 
  in    x2, z12: T 
  out  y2, z21: T 
  S2 

 

  
F1⊗F2 

x2 

y2 z12 

z21 y1 

x1 
F1 

 
 

S1 

F2 
 
 

S2 
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Refining Interfaces 
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Refinement 

•  The idea of system refinement is that systems are developed  
◊  by a  sequence of development steps 
◊  each step produces a more refined system description 
◊  there is a refinement relation between the current system description and the 

produced system description 

•  The refinement relation 
◊  is a relation between systems descriptions 

•  The relation can be used as an idealized relationship between 
◊  specifications to formalize the steps of gathering requirements in requirements 

engineering 
◊  specifications and architectures to formalize the steps in design of going from 

requirements to architecture 
◊  system specifications and implementations (e.g. by state machines) 
◊  levels of abstraction  
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Refinement 

•  Given systems/specifications S and S’ we write 
S is_refined_to S’  (and also  S  ≈> S’) 

    to express that S’ is a refinement of S. 
•  Horizontal Refinement: Property Refinement 
◊  Adding properties to a specification – reducing the non-determinism of 

a system description 

•  Vertical Refinement: Interaction granularity refinement 
◊  Changing the granularity of the interaction 
◊  Interesting case: Refinements between continuous and discrete models 

 
 
Remark: Both refinement notions can be applied not only to 

interface models but to all kinds of models 

See: M. Broy: Compositional Refinement of 
Interactive Systems. Journal of the ACM, Volume 44, 
No. 6 (Nov. 1997), 850-891  
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Horizontal Refinement 

  
 F:   

 
I → ℘(  

 
O ) 

is refined by a behavior 

 ˆ F :   
 
I → ℘(  

 
O ) 

if 

  ∀ x ∈   
 
I : ˆ F .x ⊆ F.x 

we write 

F ≈> IF 

€ 

ˆ F  

 
Compositionality of refinement: 
Modularity 

∀ k: Fk ≈> IF 

€ 

ˆ F k  

⊗{Fk: k ∈  IK } ≈> IF ⊗{

€ 

ˆ F k: k ∈  IK } 
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Verification of refinement steps 

•  A system F with behaviour assertion Q is refined by a system F’ 
with behaviour assertion Q’ if and only if 

Q ⇐ Q’ 
 In other words: F’ is a refinement of F if all properties of F are 
also properties of F’ 

•  The implication Q ⇐ Q’ shows also how to verify the 
refinement relation 
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Vertical refinement: Levels of abstraction 

   

 abstract level 

 concrete level 

F 

ˆ F 
 I2 O2 

I1 O1 

AI 

. . . 

. . . 

RO 

. . . 

. . . 

  
Given refinement pairs 

 ΑΙ:   
 
I 2 → ℘(  

 
I 1) RI:   

 
I 1 → ℘(  

 
I 2) 

 ΑΟ:   
 
O 2 → ℘(  

 
O 1) RO:   

 
O 1 → ℘(  

 
O 2) 

with 
RI ˚ ΑΙ = Id       RO ˚ ΑO = Id 

we call  
 ˆ F :   

 
I 2 → ℘(  

 
O 2)  

an interaction refinement of  

 F:   
 
I 1 → ℘(  

 
O 1)  

and write  F  ~>IF 

€ 

ˆ F   if: 

 ˆ F  ⊆ AI ˚ F ˚ RO U-1-simulation 

 

Theorems
• Property refinement implies interaction

refinement
• Compositionality of interaction refinement
• Interaction refinement distributes over

composition
• Abstractions of interaction refinements of

implementations are interaction refinements
of abstractions
• Time abstraction is interaction abstraction
• Interaction abstraction is a Galois connection
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Compatibility 

•  A system S’ is called (replacement) compatible for system S  if 
S’ can be used instead of S’ in every system M without 
violating the correctness of the system M 

•  Compatibility coincides with refinement in case of modular 
refinement 
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A flexible model of time 

•  Time is a key issue in embedded systems: 
•  Dealing with timing properties 
◊  Specification  
◊  Analysis 
◊  Verification  

•  Analysis 
•  Testing 
•  Model checking 
•  Deduction based verification 

•  Transforming time 
•  Dedicated models of time 
◊  Micro/Macro Step 
◊  Perfect synchrony 
◊  Scheduling 

•  Abstractions 
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Example: TMC with Timing Restrictions 

  

  
TMC  
  in    x: T 
  out  y: T 
∀ t ∈ IN: ∀ m ∈ T:  
m#(x↓t) ≥ m#(y↓t+delay)  
m#(x↓t) ≤ m#(y↓t+delay+deadline) 

 

TMC x:T y:T 
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Conclusion Refinement 

•  Refinement formalises development steps 
•  Going from 
◊  an interface specification to an architecture (design step) 
◊  an interface specification to a state machine (implementation) 

 can be understood as special steps of refinement 
•  Compatibility is defined by refinement, too 
•  The change of time granularity is a refinement 
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Implementation: Systems as State Machines 
 

The State View 
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System and States 

•  Systems have states 
•  A state is an element of a state space 
•  We characterize state spaces by  
◊  a set of state attributes together with their types 

•  The behaviour of a system with states can be described by its 
state transitions 
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A system can be implemented by a state – a generalized Mealy 
Machine 

Σ  set of states, initial state σ ⊆ Σ 

State transition function: 

 

State transition diagram:  

 

 

 

 

Δ: (Σ × (I → M*)) → ℘(Σ × (O → M*)) 

State model for systems/components 

 

 x: d / - {q' = qˆ‹d›} 
 x: d / - {q' = qˆ‹d›} 

 {q = ‹d›} x: ® / y: d {q' = ‹›} 

 Nonempty 
q ≠ ‹› 

 x: ® / y: ® {q' = ‹›} 
 {d = ft.q}   x: ® / y: d    {rt.q = q'} 

Empty 
 q = ‹› 

M. Broy: From States to Histories: Relating 
States and History Views onto Systems. In: 
T. Hoare, M. Broy, R Steinbrüggen (eds.): 
Engineering Theories of Software 
Construction. Springer NATO ASI Series, 
Series F: Computer and System Sciences, 
Vol. 180, IOS 2001, 149-186  
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State Machines in general 

A state machine (Δ, Λ)  consists of 
•  a set Σ of states - the state space 
•  a set Λ ⊆ Σ of initial states 
•  a state transition function or relation Δ 
◊  in case of a state machine with input/output:  

 events (inputs E) trigger the transitions and events (outputs A) are 
produced by them respectively: 

Δ : Σ × Ε → Σ × Α	



 in the case of nondeterministic machines: 

Δ : Σ × Ε → ℘(Σ × Α)	



•  Given a syntactic interface with sets I and O of input and output channels: 
E = I → M* 

A = O → M*	
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Computations of a State Machine with Input/Output 

A state machine (Δ, Λ) defines for each initial state 
σ0 ∈ Λ  

and each sequence of inputs 
e1, e2, e3, ... ∈ E 

a sequence of states 
σ1, σ2, σ3, ... ∈ Σ 

and a sequence of outputs 
a1, a2, a3, ... ∈ A 

through 
(σi+1, ai+1) ∈ Δ(σi, ei+1) 
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Computations of a State Machine with Input/Output 

In this manner we obtain computations of the form 
 
 

For each initial state σ0 ∈ Σ we define a function  
 
  
with 

Fσ0(x) = {y: ∃ σi: σ0 = σ0 ∧ ∀ i ∈ IN: (σi+1, yi+1) = Δ(σi, xi+1)} 
Fσ0 denotes the interface behavior of the transition function Δ for the initial 
state σ0. 
Furthermore we define  

Abs((Δ, Λ)) = FΛ  
where: 

FΛ(x) = {y ∈ Fσ(x) : y ∈ Fσ(x) ∧ σ ∈ Λ} 
FΛ is called the interface behavior of the state machine (Δ, Λ) . 

  

€ 

σ0
a1 / b1# → # # σ1

a2 / b2# → # # σ2
a3 / b3# → # # σ3 ...

    

€ 

Fσ0 :
 
I →℘(

 
O )
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Moore Machines 

•  A Mealy machine (Δ, Λ) with  
Δ : Σ × Ε → ℘(Σ × Α) 

 is called Moore machine if for all states σ ∈ Σ and inputs e ∈ E the set 
out(σ, e) = {a ∈ A: (σ, a) = Δ(σ, e) } 

 does not depend on the input e but only on state σ. 
 
•  Formally: then for all e, e’ ∈ E we have 

out(σ, e) = out(σ, e’) 
 

Theorem: If is (Δ, Λ) a Moore machine the FΛ is strong causal. 
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Interface Abstraction for State Machines 

•  For a given state machine with input and output we define the interface 
through 
◊  its syntactical interface (signature) 
◊  its interface behavior 

•  We call the transition of the state machine to its interface the interface 
abstraction. 

Verification/derivation of interface assertions for state machines 
•  similar to program verification (find an invariant) 
•  needs sophisticated techniques 
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Observable Equivalence 

•  Two systems modelled by state machines  
(Δ1, Λ1) and (Δ2, Λ2)  

 are observably equivalent iff they fulfil the equation 

Abs((Δ1, Λ1)) = Abs((Δ2, Λ2))   
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Composition of the two state machines 

Consider Moore  machines Mk = (Δk, Λk) (k = 1, 2): 
 Δk: Σk × (Ik → M*) → ℘(Σk × (Ok → M*) ) 

We define the composed state machine 
 Δ: Σ × (I → M*) → ℘(Σ × (O → M*) ) 

as follows 
 Σ = Σ1 × Σ2 

for x ∈ I and (s1, s2) ∈ Σ we define:  
 

 Δ((s1, s2), x) = {((s1’, s2’), z|O):  x = z|I ∧ ∀ k: (sk’, z|Ok) ∈ Δk(sk, z|Ik) } 
 
This definition is based on the fact that we consider Moore machines. 
We write 
 

 Δ = Δ1 || Δ2 
 M = M1 || M2 = (Δ1 || Δ2 , Λ1 × Λ2)   



                             Manfred Broy 44 University of Maryland September 2013  

An example of an essential property ... 

Interface abstraction distributes for state machines 
over composition 

 

Abs((Δ1, σ1) || (Δ2, σ2) ) = 

         Abs((Δ1, σ1)) ⊗ Abs((Δ2, σ2)) 
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Conclusion Systems as State Machines 

•  Each state machines defines an interface behaviour 
•  Each interface behaviour represents a state machine 
•  State machines can be described 
◊  mathematically by their state transition function 
◊  graphically by state machine diagrams 
◊  structured by state transition tables 
◊  by programs 

•  State machines define a kind of operational semantics 
•  Systems given by state machines can be simulated 
•  From state machines we can generate code 
◊  state machines can represent implementations 

•  From state machines we can generate test cases 
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Functional View: Functional Decomposition 
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Combining Functions 

Given two functions F1 and F2  in isolation 
 
 
 
 
 
 
 
 
 
 
We want to combine them into a function F1 ⊗  F2  
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Combining Functions 

Their isolated combination 
 
 
 
 
 
 
 
 
 
 
 

  

O2 O1 

I2 I1 

F1 F2 
F1 ⊗ F2 
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Combining Functions 

If services F1 and F2  have feature interaction we get: 
 
 
 
 
 
 
 
 
 
 
We explain the functional combination F1 ⊗ F2  as a 
refinement step 
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The steps of function combination 

Given the isolated function F1 

We construct a refinement F’1  

And combine F’1 with a refinement F’2 of F2  

  

F1 ⊗ F2 

O2 O1 

I2 I1 

F´1 F´2 

See: M. Broy: Multifunctional Software 
Systems: Structured Modeling and 
Specification of Functional Requirements. 
Science of Computer Programming 75 
(2010), S. 1193–1214 
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Functional architecture: functional decomposition 

•  The system interface behaviour F  
as specified by the system requirements 
specification  A = {Ai: 1 ≤ i ≤ n}  
is structured 
◊  into a set of sub-interfaces for sub-functions F1, ... , Fk 
◊ that are specified independently by introducing a number 

of mode channels to capture their feature interactions 
◊ each Fi sub-function is described by  

• a syntactic interface and  
• an interface assertion Bi such that 

∧ {Bi: 1 ≤ i ≤ k} ⇒ A 
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Function Hierarchy 
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Model Integration 
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Integrating modeling concepts 

•  An architecture can be abstracted into an interface behavior 
◊  Proof techniques for architecture verification 

•  A state machine can be abstracted into an interface behavior 
◊  Proof techniques for implementation verification 

•  Integration of further modeling concepts 
◊  Scenarios and interaction diagrams (MSCs) 
◊  Processes and process diagrams 
◊  Services 
◊  … 

!

 

C3 

x1 : T1 

y6: T’6 

x4 : T4 

x3 : T3 x2 : T2 

x6 : T6 

y3 : T’3 

y4 : T’4 

x8 : T8 

y8 : T’8 C2 
C1 

y7 : T’7 x7 : T7 

x5 : T5 y5 : T’5 

 

 x: d / - {q' = qˆ‹d›} 
 x: d / - {q' = qˆ‹d›} 

 {q = ‹d›} x: ® / y: d {q' = ‹›} 

 Nonempty 
q ≠ ‹› 

 x: ® / y: ® {q' = ‹›} 
 {d = ft.q}   x: ® / y: d    {rt.q = q'} 

Empty 
 q = ‹› 

interface 

architecture state 
machine 

interface 
abstraction 

interface 
abstraction 

 

C3 

x1 : T1 

y6: T’6 

x4 : T4 

x3 : T3 x2 : T2 

x6 : T6 

y3 : T’3 

y4 : T’4 

x8 : T8 

y8 : T’8 C2 
F 

x5 : T5 y5 : T’5 

M. Broy: The Semantic and Methodological 
Essence of Message Sequence Charts. 
Science of Computer Programming, SCP 
54:2-3, 2004, 213-256  
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Extensions of the model: Probability 

•  Probabilistic views 
◊  Interface behavior: a probability distribution is given for the set of 

possible histories 
◊  Architectural view: probability distributions for the sub-systems of the 

architecture 
◊  State view:  a probability distribution is given for the set of possible 

state transitions 

•  Then the model covers 
◊  certain “non-functional properties” (safety, reliability, …) 
◊  Example: integrated fault trees 
 

See: P. Neubeck: A Probabilitistic Theory of Interactive 
Systems. PH. D. Dissertation, Technische Universität 
München, Fakultät für Informatik, December 2012  
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System under Consideration 
SoC 

Operational Context 
OC 

Context/system 
observations 

Requirements                                  
•  Observations 
•  Context 

•  Properties 
•  Interface 

•  Architecture 
Sub-systems 

•  Connections 
•  Interaction 
•  Interfaces 

 

 
 
 
 
 
 
 

Architecture 

A full System Perspective 

System development proceeds in working out a sequence of 
perspectives at several levels of abstraction that are related  
•  by refinement 
•  by decomposition 
•  by changing the scope/system boundary 
•  by embedding 
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System Specification 

S x1 : T1 

y4 : T’4 

x4 : T4 

x3 : T3 x2 : T2 

x5 : T5 

y1 : T’1 

y2 : T’2 

y3 : T’3 

         Validation 

Informal  
requirements 

System delivery 
 
 
 
System verification 
          R ⇒ S 

R x1 : T1 

y4 : T’4 

x4 : T4 

x3 : T3 x2 : T2 

x5 : T5 

y1 : T’1 

y2 : T’2 

y3 : T’3 

Integration 

R = R1⊗R2⊗R3 
architecture   
design 

 
architecture  
verification 
S ⇐ C1⊗C2⊗C3 

components implementation 

Verification R1 ⇒ C1    R2 ⇒ C2  R3 ⇒ C3 

implementation 

de
liv

er
y 

C1 C2 C3 

S 

 
 
 

C1 C2 C3 C2 
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Structuring Systems: levels of abstraction 

Interface assertion Safety Priority Component Function
R1 ... Yes high
R2 ... No medium

Rn ... no low

Anforderungen 

See: M. Broy, M. Gleirscher, St. Merenda, 
D. Wild, P. Kluge, W. Krenzer: Toward a 
Holistic and Standardized Automotive 
Architecture Description. Innovative 
Technology for Computer Professionals. 
Computer, IEEE Computer Society. 
December 2009, S. 98-103  
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Relational view: Tracing – The power of logics 

Functional RequirementSafety Priority Component Function
A1 ... Yes high
A2 ... No medium

An ... no low

See: M. Broy: The Logic 
of Requirements – 
Formalizing Tracing, In: 
Forms/Format 2012, 
Technische Universität 
Braunschweig, edited by 
Eckehard Schnieder und 
Géza Tarnai, Beyrich 
Digital Servide GmbH & 
Co. KG, S. 2-4   
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Glass Box Specification of a Car´s Architecture 
  

Car 
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0 
 

ready : Bool 

act_speed : Real 

doors_closed : Bool 

Motor WatchDog 
act_speed : Real 

 

 

  
Watch-Dog 
assumption: 
∀ t: ¬ ready(t) ⇒ act_speed(t) = 0  
 
commitment: 
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0  
 

ready : Bool 

act_speed : Real 

doors_closed : Bool 

See: M. Broy: Towards a Theory of Architectural 
Contracts: - Schemes and Patterns of Assumption/
Promise Based System Specification. In: M. Broy, Ch. 
Leuxner, T. Hoare (Eds.): Software and Systems Safety 
- Specification and Verification. NATO Science for Peace 
and Security Series - D: Information and 
Communication Security 30, IOS Press 2011, 33-87  
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Example: how A/P-specifications can be formulated 

•  The specification 
  ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0  
 can only be guaranteed if the two inner components work together. This 
requires 
  ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0  

•  Then the system specification holds if 
  ∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t) 

•  This is logically equivalent to the A/P-specification for the WatchDog 
  assumption: ∀ t:  ¬ ready(t) ⇒ act_speed(t) = 0  
  commitment: ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0 

•  In other words,  
◊  the overall system specification can be guaranteed by the watchdog  
◊  only if the assumption about the behaviour of the component motor holds. 
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Assumption/Promise to define Architectural Design Patterns 

•  A/P-specification 
 assumption: ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0  
 commitment: ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0 
 is logically guaranteed by the simple specification 
  ∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t) 

•  This assertion no longer speaks about the specification of the 
environment, but is a pure interface specification.  

•  The example shows the simplification of an A/P-specification to 
a plain interface assertion. 
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Conclusion A/C 

•  A/C specs address the logic of the architecture rather than 
separated interface specifications 

•  From A/C specs we may derive simplified component specs 
•  This gives a methodology towards a modular decomposition  
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Key Principles in Engineering CPSs 

•  Abstraction 
◊  Interfaces 
◊  Changing levels of abstractions 

•  Modularity 
◊  Of composition 
◊  Of refinement 

•  Semantic coherence 
◊  From state machines to interfaces 
◊  From architectures to interfaces 
◊  From architectures of state machines to state machines of architectures 
◊  Probabilistic extension of logical (deterministic) models  

•  Expressiveness 
◊  Set theoretic and logical: discrete system models 
◊  Continuous models: control theory 
◊  Probabilistic: probability distributions on behavior 
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The Triad of Modeling 

•  Denotational:  
◊  mathematical models (of behavior) 

•  Logical – system properties:  
◊  specification  
◊  deduction 
◊  verification 
◊  transformation 

•  Notational: 
◊  Graphical: diagrams 
◊  Tables 
◊  Formulas 



                             Manfred Broy 69 University of Maryland September 2013  

Concluding Remarks 

•  The modelling framework FOCUS 
◊  originally worked out for model based development 
◊  specification 
◊  verification 
◊  tool support 

•  Tool: Autofocus 3 
•  Also useful for semantic foundation following the same approach 
◊  SDL 
◊  Bus Systems: CAN, FLEXRAY 
◊  UML/SysML 
◊  SOA 

See: K. Pohl, H. Hönninger, R. Achatz, M. 
Broy: The SPES 2020 Methodology. 
Springer Verlag 2012  

See: https://af3.fortiss.org/projects/autofocus3 
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Concluding Remarks 

•  Today software & systems engineering is too much 
orientated towards the technical architecture and solutions/
implementation in the beginning 

•  We need a comprehensive “architectural” model-based view 
onto systems including requirements for dealing with 
complex multi-functional systems 

•  The models allow for  
◊  Separation of concerns 
◊  Separation of technical aspects from application aspects 

•  Technical architectures are modelled along the same theory 
•  Code and test cases can be generated from the models 
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The power of generalizing ideas, of 
drawing comprehensive conclusions 
from individual observations, is the 
only acquirement, for an immortal 
being, that really deserves the name 
of knowledge.  
 
“Mary Wollstonecraft  (1759–1797), 
British feminist. A Vindication of the 
Rights of Woman, ch. 4 (1792)  


