Model-Based Software and Systems
Engineering

Elements of Seamless Development

Manfred Broy

Technische Universitat Miinchen EZ2yyy
Institut fir Informatik g g g g
D-80290 Munich, Germany

Modeling in Software and Systems Engineering

When modeling software in systems we have capture following aspects:
* interaction — exchange of information/material

* distribution — structuring systems in architectures with elements related to
locations

* context — operational system’s environment
* real time

* probability

* physicality

To do that we have to use concepts

* interfaces — scope and interaction

* state — state transition

* architecture — (de-)composition

University of Maryland September 2013 Manfred Broy TUTI |

What is seamless development?

* Development by a chain of models
¢ High expressive power
¢ Clear structure of role of models
¢ All aspects in the development captured by models
¢ Tight integration in the artifact models

* Development steps by well-defined relationship between
modes
¢ Refinement
& Decomposition
¢ Change of scope

* Extended tool support

¢ High automation

¢ All artifacts in tools and comprehensive data base (development back
bone)

University of Maryland September 2013 Manfred Broy TUTI |

Basic System Modeling Concepts

Technische Universitat Miinchen EZ2yyy
Institut fir Informatik é g g g
D-80290 Munich, Germany

System and its context

operational B
i HMm| context

Cyberspace
Services
&

BEIE]

University of Maryland September 2013 Manfred Broy TI.I'I'I |

Basic System Notion: What is a discrete system (model)

A system has
* a system boundary that determines
¢ what is part of the systems and
¢ what lies outside (called its context)
* an interface (determined by the system boundary), which determines,

¢ what ways of interaction (actions) between the system und its context are
possible (static or syntactic interface)

¢ which behavior the system shows from view of the context (interface behavior,
dynamic interface, interaction view)

* a structure and distribution addressing internal structure, given
¢ by its structuring in sub-systems (sub-system architecture)
¢ by its states und state transitions (state view, state machines)

* quality profile
* the views use a data model
* the views may be documented by adequate models

University of Maryland September 2013 Manfred Broy TUTI |

Discrete systems: the modeling theory —

interface behaviour as key concept

Sets of typed channels

I ={X;: Ty, X: Ty ... }

O={y1:T,y>,:T, ... }
syntactic interface

(I » O)
data stream of type T

STREAMI[T] = {IN\{0} — T*}
valuation of channel set C

IH[C] = {C — STREAM[T]}
interface behaviour for syn. interface (I » O)

[I » O] = {IH[I] = @ (IH[O])}
interface specification

p: IUO — IB

represented as interface assertion S

x2:Tzl x3:T31\y1:T’1

x;: T, | System i T
e —
Xq: Ty
—

y3: T3

See: M. Broy: A Logical Basis for Component-
Oriented Software and Systems Engineering. The
Computer Journal: Vol. 53, No. 10, 2010, S.
1758-1782

logical formula with channel names as variables for streams

University of Maryland September 2013

Manfred Broy T|_|T| |

Towards a uniform model: Basic system model

System class: distributed, reactive systems

/ component nan
l kc
IC cr
LM | ¢ Control | (7c)

- Nt
l / l
channel channel

Name

component }\

\ 4
v

System consists of

* named components (with local state)
* named channels

driven by a global, discrete clock

University of Maryland September 2013 Manfred Broy T|_|T| | 8

Basic system model

Timed Streams: Semantic Model for Black-Box-Behavior

Message set: e AN

e N infinite channel
—_— 7 > -
M=4{a,b,c ..} el w2 w3 s history

P

Messages transmitted
at time t

University of Maryland September 2013 Manfred Broy TI.ITI |

Modeling Interface Behavior

Technische Universitat Miinchen EZ2yyy
Institut fir Informatik g g g g
D-80290 Munich, Germany

The Basic Behaviour Model: Timed Streams and Channels

C set of channels

Type: C — TYPE type assignment

X : C —= (N0} — M*) channel history for messages of type M
C or IH[C] set of channel histories for channels in C

University of Maryland September 2013 Manfred Broy TI_lTI | 11

System interface model

Channel: Identifier of Type stream

I={x,:D,,Xx,:D,, ... } set of typed input channels
O={y,:T,,y,: T,, ...} setof typed output channels

Syntactic interface: aI» o)

Interface behavior

F: 1 — p(0)

Set of interface behaviours with input channels I and
output channels O:

IF[I » O]

Set of all interface behaviours: IF

University of Maryland September 2013 Manfred Broy

Tm |

12

System interface behaviour - causality

I » O) syntactic interface with set of
input channels I and of output channels O

F: 1 — 19, ((3) semantic interface for (I » O)
with timing property addressing strong causality

(letx,z € 1, yEO t IN):

xjt=z|t={ylt+l: yEFX)} ={y|t+l: yEF(2)}

X |t prefix of history x of length t

g 1o
Component interface

University of Maryland September 2013 Manfred Broy TI_lTI | 13

Continuous systems: the model

Sets of typed channels
I ={X;: Ty, X3: Ty, ... }
O={y:: T, y2:Th ... } XZ:TZI X3:T31\Y1:T'1

syntactic interface X T, System v, T,
(I »O) -
Xg +
continuous data stream of continuous type M N
ConSTREAM[T] = {IR, — M}

y3:T5
valuation of channel set C Va Tr4\ [Xe T
CIH[C] = {C — ConSTREAM[T]}

interface behaviour for syn. interface (I » O)

See: M. Broy: System Behavior Models with Discrete
[I » O] = {CIH[I] — @ (CIH[O])} and Dense Time. To appear in: Advances in Real-

interface specification Time Systems. Springer

p: IUO — IB

represented as interface assertion S
logical formula with channel names as variables for
continuous streams

University of Maryland September 2013 Manfred Broy TI_ITI | 14

Discrete systems: the modeling theory - probability

Sets of typed channels
I = {X1 . T1, X7 . T2, }

O={yl :Tll, YZ:TIZI } X2:Tzl X3:T31\3I1:T’1
syntactic interface v, : T,

I »

(©) Xq: Ty
data stream of type T

STREAM[T] = {IN\{0} — T*} Set of all probability T

distributions over sets of

valuation of channel set C output histories

IH[C] = {C — STREAMIT]}
interface behaviour for syn. interfac
[I » O] ={IH[I] — PD[o (IH[O])] }

interface specification See: P. Neubeck: A Probabilitistic Theory of Interactive
Systems. PH. D. Dissertation, Technische Universitat
p: [lUO — IB y

Mlnchen, Fakultat fur Informatik, December 2012
represented as interface assertion S

logical formula with channel names as variables for streams

University of Maryland September 2013 Manfred Broy TUTI |

15

Extensions of the model

* Physical Aspects & Properties: Rich Models
¢ Space
& Geometry
¢ Temperature
O ...

See: B. Hummel: Integrated Behavior Modeling

of Space-Intensive Mechatronic Systems, Technische
Universitat Minchen, Fakultat fur Informatik, December
2010

University of Maryland September 2013 Manfred Broy TI.ITI |

16

Evolution and Development:
Specification, Refinement, Compatibility

Technische Universitat Miinchen EZyyy
Institut fir Informatik g g £
D-80290 Munich, Germany

Interface Specification

* An interface model describes in a particular abstraction the
interface behavior of a system
¢ interface behavior for syn. interface (I P O)
[I » O] ={IH[I] = @ (IH[O])}
¢ interface specification by a predicate
ppIUO —IB
written by an interface assertion

See: M. Broy: Software and System Modeling:
Structured Multi-view Modeling, Specification, Design
and Implementation. In: Conquering Complexity,
edited by Mike Hinchey and Lorcan Coyle, Springer
Verlag, Januar 2012, S. 309-372

University of Maryland September 2013 Manfred Broy TUTI |

18

Example: System interface specification

A t#'ansmission component TMC

-ee: M. Broy, K. Stglen: Specification and

Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement.
Springer 2001

University of Maryland September 2013 Manfred Broy T|_|T| | 19

Verification: Proving properties about specified components

From the interface assertions we can prove
* Safety properties

m#y >0 Ay € TMC(X) = m#x >0
* Liveness properties

Mm#X >0 Ay € TMC(X) = m#y >0

University of Maryland September 2013 Manfred Broy TUTI |

20

Structure:
Composition and Decomposition

Technische Universitat Miinchen EZ2yyy
Institut fir Informatik g g g g
D-80290 Munich, Germany

Composing Interfaces

* Composition is an operation on syntactically compatible system

interfaces
® : [I;»0,] x [I,»0,] — [IrO]

* The operation ® induces a composition operation on
specifications

See: M. Broy: A Theory for Requirements
Specification and Architecture Design of Multi-
Functional Software Systems. Series on Component-
Based Software Development — Vol. 2. Mathematical
Frameworks for Component Software. Models for
Analysis and Synthesis, 2006, S. 119-154

University of Maryland September 2013 Manfred Broy TUTI |

22

Modularity: Rules of compositions for interface specs

x1
FI®F2 z12 y2
> F1 I F2 >
yl S1 z21 | S2 X2
< <+t <
F1 F2
in x1,z21:T n x2,z12: T
out yl,z12: T out y2,7z21: T
S1 S2
FI1®F2
in x1,x2:T
out yl,y2: T

dz12,2z21: S1 A S2

University of Maryland September 2013 Manfred Broy TUTI |

Refining Interfaces

Technische Universitat Miinchen 2y Yy
Institut fur Informatik g % g g
D-80290 Munich, Germany '

Refinement

* The idea of system refinement is that systems are developed
¢ by a sequence of development steps
¢ each step produces a more refined system description

¢ there is a refinement relation between the current system description and the
produced system description

* The refinement relation
¢ is a relation between systems descriptions

* The relation can be used as an idealized relationship between

¢ specifications to formalize the steps of gathering requirements in requirements
engineering

¢ specifications and architectures to formalize the steps in design of going from
requirements to architecture

system specifications and implementations (e.g. by state machines)

levels of abstraction

N O

University of Maryland September 2013 Manfred Broy T|_|T| | 25

Refinement

* Given systems/specifications S and S’ we write
Sis_refined_toS" (andalso S => S')
to express that S’ is a refinement of S.

* Horizontal Refinement: Property Refinement
¢ Adding properties to a specification — reducing the non-determinism of
a system description
* Vertical Refinement: Interaction granularity refinement
¢ Changing the granularity of the interaction
¢ Interesting case: Refinements between continuous and discrete models

See: M. Broy: Compositional Refinement of
Interactive Systems. Journal of the ACM, Volume 44,
No. 6 (Nov. 1997), 850-891

Remark: Both refinement notions can be applied not only to
interface models but to all kinds of models

University of Maryland September 2013 Manfred Broy TUT | 26

Horizontal Refinement

F: fe 9, (6)
, , Compositionality of refinement:
1s refined by a b niodularity

F:1— g Vk:F =~ F,

if Q{F kEK}=>r®{F kE K}
VXe1:r.xwr.x

we write

F~> F

University of Maryland September 2013 Manfred Broy TUTI |

27

Verification of refinement steps

* A system F with behaviour assertion Q is refined by a system F
with behaviour assertion Q' if and only if

Q<=Q
In other words: F’ is a refinement of F if all properties of F are
also properties of F

* The implication Q <« Q' shows also how to verify the
refinement relation

University of Maryland September 2013 Manfred Broy TUT | 28

Vertical refinement: Levels of abstraction

I, Theorems

* Property refinement implies interaction
refinement

 Compositionality of interaction refinement

e Interaction refinement distributes over
[composition

e Abstractions of interaction refinements of
Implementations are interaction refinements
of abstractions

e Time abstraction iIs interaction abstraction
e Interaction abstraction is a Galois connection

University of Maryland September 2013 Manfred Broy TUT | 29

Compatibility

* A system S’is called (replacement) compatible for system S if
S’ can be used instead of S" in every system M without
violating the correctness of the system M

* Compatibility coincides with refinement in case of modular
refinement

University of Maryland September 2013 Manfred Broy TUM | 30

A flexible model of time

* Time is a key issue in embedded systems:
* Dealing with timing properties
¢ Specification
¢ Analysis
¢ Verification
e Analysis
e Testing
e Model checking
e Deduction based verification

* Transforming time
* Dedicated models of time
¢ Micro/Macro Step

¢ Perfect synchrony
¢ Scheduling

* Abstractions

University of Maryland September 2013 Manfred Broy

31

Example: TMC with Timing Restrictions

x:T

TMC

in x:T

out y: T
VteIN:VmeT:
m#(x | t) = m#(y | t+delay)

m#(x | t) < m#(y | t+delay+deadline)

University of Maryland September 2013 Manfred Broy TUM | 32

Conclusion Refinement

* Refinement formalises development steps

* Going from
¢ an interface specification to an architecture (design step)
¢ an interface specification to a state machine (implementation)

can be understood as special steps of refinement
* Compatibility is defined by refinement, too
* The change of time granularity is a refinement

University of Maryland September 2013 Manfred Broy TUTI |

Implementation: Systems as State Machines

The State View

Technische Universitat Miinchen LT
Institut fir Informatik g g E
D-80290 Munich, Germany

System and States

* Systems have states
* A state is an element of a state space

* We characterize state spaces by
¢ a set of state attributes together with their types

* The behaviour of a system with states can be described by its
state transitions

University of Maryland September 2013 Manfred Broy TUTI |

State model for systems/components

. M. Broy: From States to Histories: Relating
A system can be implemented by a state g% pistory views onto Systers. In:
Machine T. Hoare, M. Broy, R Steinbriiggen (eds.):
Engineering Theories of Software

T Construction. Springer NATO ASI Series,
2 set Of States, |n|t|a| state o g 2 Series F: Computer and System Sciences,

Vol. 180, IOS 2001, 149-186
State transition function:

ACx(I—=M)) — 9 x(0—=M)
State transition diagram:

x:d/-4{q' =q«d} {d=ftq} x:®/y:d {rt.gq=q'}
@y =l x:d/-{q' =q«d}

Nonempty
q= <

{g=«db}x:®/y:d{q' =<}

University of Maryland September 2013 Manfred Broy TUM | 36

State Machines in general

A state machine (A, A) consists of

* a set X of states - the state space

* aset A CX of initial states

* a state transition function or relation A

¢ in case of a state machine with input/output:
events (inputs E) trigger the transitions and events (outputs A) are
produced by them respectively:

A:2Z2xE—=2XxA
in the case of nondeterministic machines:

A:ZxE— p(ZxA)
* Given a syntactic interface with sets I and O of input and output channels:
E=1— M*
A=0— M*

University of Maryland September 2013 Manfred Broy TUTI |

37

Computations of a State Machine with Input/Output

A state machine (A, A) defines for each initial state
Og €EA

and each sequence of inputs

e, 6, e ...€E
a sequence of states

Oy, Oy, O3, «.. E X
and a sequence of outputs

ay, @y, a3, ... EA
through

(Cis1s Qis1) € A(0y, €141)

University of Maryland September 2013 Manfred Broy TUTI |

Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

a4/b a»n /b aa /b
O —1 s, —2%2 55, 2303 L5,

For each initial state 0 € X we define a function

F,:1— pO)
with
Foo(X) ={y: 3 6;: 60 = 65 A Vi€ IN: (0i41, Yie1) = A(C, Xis1)}

F., denotes the interface behavior of the transition function A for the initial
state o0.

Furthermore we define
Abs((A, A)) = F,
where:
F.(X) ={yeF,(X):yeF,(x) A cE A}
F, is called the interface behavior of the state machine (A, A) .

University of Maryland September 2013 Manfred Broy TUM | 39

Moore Machines

* A Mealy machine (A, A) with
A:ZXxE— p(ZxA)
is called Moore machine if for all states o € X and inputs e € E the set
out(o, e) ={a€A: (0,a) = Ao, e) }
does not depend on the input e but only on state o.

* Formally: then for all ¢, €’ € E we have
out(o, e) = out(o, €)

Theorem: If is (A, A) a Moore machine the F, is strong causal.

University of Maryland September 2013 Manfred Broy TUTI |

40

Interface Abstraction for State Machines

* For a given state machine with input and output we define the interface
through

¢ its syntactical interface (signature)
¢ its interface behavior

* We call the transition of the state machine to its interface the interface
abstraction.

Verification/derivation of interface assertions for state machines
* similar to program verification (find an invariant)
* needs sophisticated techniques

University of Maryland September 2013 Manfred Broy TUTI |

41

Observable Equivalence

* Two systems modelled by state machines
(A1, Al) and (A2, A2)
are observably equivalent iff they fulfil the equation

Abs((A1, A1)) = Abs((A2, A2))

University of Maryland September 2013 Manfred Broy TI.ITI |

42

Composition of the two state machines

Consider Moore machines M, = (A, Ay) (k =1, 2):
A: 2 x (I, = M) = o (2, x (0, = M"))

We define the composed state machine
AZIx(I—=M)— p(Ex(0—=M))

as follows
> =3 x3,

forx €I and (s;, s,) € = we define:

A((S1, S5), X) = {((s{’) s,7), z|0): x =z|I A V ki (s, 2|O)) € A(sy, ZIT,) }

This definition is based on the fact that we consider Moore machines.
We write

A=Al A,
M=M, [| My=(A; || Ay, Ay xAy)

University of Maryland September 2013 Manfred Broy TI.ITI |

43

An example of an essential property ...

Interface abstraction distributes for state machines
over composition

Abs((A1, ol1) || (A2, 62)) =
Abs((Al, ol1)) ® Abs((A2, 02))

University of Maryland September 2013 Manfred Broy TI.ITI |

44

Conclusion Systems as State Machines

* Each state machines defines an interface behaviour
* Each interface behaviour represents a state machine

* State machines can be described
¢ mathematically by their state transition function
¢ graphically by state machine diagrams
¢ structured by state transition tables
¢ by programs

* State machines define a kind of operational semantics
e Systems given by state machines can be simulated

* From state machines we can generate code
¢ state machines can represent implementations

* From state machines we can generate test cases

University of Maryland September 2013 Manfred Broy TUTI |

Functional View: Functional Decomposition

Technische Universitat Miinchen EZ2yyy
Institut fir Informatik g g g g
D-80290 Munich, Germany

Combining Functions

Given two functions F, and F, in isolation

L

F, F

O, O,

\ 4

We want to combine them into a function F;, ® F,

University of Maryland September 2013 Manfred Broy TUTI |

47

Combining Functions

Their isolated combination

Il 12
4 v
F F .)
1O F,
o} 0,
4 \ 4

University of Maryland September 2013

Manfred Broy

Tm |

48

Combining Functions

If services F, and F, have feature interaction we get:

F| ® F, s o=
F =, B
<_
0, 0,
4 v

We explain the functional combination F; ® F, as a

refinement step

University of Maryland September 2013

Manfred Broy

Tm |

49

The steps of function combination

lh Given the isolated function F,

F
! ill We construct a refinement F,

F*y

And combine F’; with a refinement F’, of F,

Fi ® F,

See: M. Broy: Multifunctional Software
Systems: Structured Modeling and <
Specification of Functional Requirements.
Science of Computer Programming 75

(2010), S. 1193-1214
O, O,

4 \ 4

University of Maryland September 2013 Manfred Broy T|_|T| | 50

Functional architecture: functional decomposition

* The system interface behaviour F
as specified by the system requirements
specification A={A:1<i=<n}
is structured
¢ into a set of sub-interfaces for sub-functions Fy, ..., F

¢ that are specified independently by introducing a number
of mode channels to capture their feature interactions

¢ each F; sub-function is described by
e 3 syntactic interface and
e an interface assertion B, such that
A{B:1<i<k}=A

University of Maryland September 2013 Manfred Broy T|_|T| | 51

Function Hierarchy

<—b Subservice relation

T

channels of mode types

University of Maryland September 2013

Manfred Broy

52

Model Integration

Technische Universitat Miinchen 2y Yy
Institut fur Informatik g % g g
D-80290 Munich, Germany '

Integrating modeling concepts

* An architecture can be abstracted into an interface behavior
¢ Proof techniques for architecture verification

* A state machine can be abstracted into an interface behavior
¢ Proof techniques for implementation verification

interface l lf
Xy : T X3:T3| |ys: T3
X1t Ty F
interface “W{P““ interface
abstraction abstraction
, M. Broy: The Semantic and Methodological
! Xs'“”“'“ Essence of Message Sequence Charts.
x:iTi G LERKN xd-@oqay =t xe/vd ma=q ScCience of Computer Programming, SCP
; xX®/y:®{q =0 . —a
Xa : Te yot=el xd/-Ad=d) 54:2-3, 2004, 213-256
Ye: T T y7: T T
C Ya: Ty
Xq: Ty
{q=d}x:®/y d{q =0}
x5:T51{y T
architecture state

machine

University of Maryland September 2013 Manfred Broy T|_|T| | 54

Extensions of the model: Probability

* Probabilistic views

¢ Interface behavior: a probability distribution is given for the set of
possible histories

¢ Architectural view: probability distributions for the sub-systems of the
architecture

¢ State view: a probability distribution is given for the set of possible

state transitions See: P. Neubeck: A Probabilitistic Theory of Interactive
Systems. PH. D. Dissertation, Technische Universitat
e Then the model covers Miinchen, Fakultit fir Informatik, December 2012

¢ certain “non-functional properties” (safety, reliability, ...)
¢ Example: integrated fault trees

University of Maryland September 2013 Manfred Broy T|_|T| | 55

A full System Perspective

Requirements
« Observations
Context
Properties
Interface

Architecture

Sub-systems
Connections
Interaction
Interfaces

Operational Context
OoC

— -

SoC

A

Context/system
observations I

Architecture

System development proceeds in working out a sequence of
perspectives at several levels of abstraction that are related

« by refinement

« by decomposition
* by changing the scope/system boundary

« by embedding

University of Maryland September 2013

Manfred Broy

Tm |

56

Modular Model Based System Development

Technische Universitat Miinchen 2y Yy
Institut fur Informatik g g g g
D-80290 Munich, Germany

% S /System delivery % Tzl =X Bl T =T \
x,: T, R ' Y, T,
—_— e ——2
— Xq: Ty
— C ,
2 = Y3:T3
X1 T, A /
X 1Ty S < - ~ I
£ < 1T
“J—_r"/‘ﬁ-/% > =
y3: T3
Y4:T'4l Ixssz O'@ \ e T ‘X6:T6 oo T ‘x7:T7
S/g A A
/ 0 R3 &»
architecture | il
i n RN —_ X5 ! Ts 51T’
desig | / R = R,®R,®R; 5.\0«\\ [
- - Plem, DA
)G YoiTs Nation S N
B NS B w componen, & fementation
Ve: T's| IXe: Ts y7: T X7 Ty X1 T2 X3 (T3 ye T sz 1T y7: T TX7 Ty
. C & x: T | R, ys: T's . ys: T's IR, R Y v it
architecture [— o o
Ve r|f|Cat|0n . T Ye: T's TXG 1 Te y7 : T TX7 Ty Xs:Ts| |ys: T’
Xs: Ts| |ys:T's v v 4
\\S = C,0GRC; v / _ Verification R = C; R, =C, Ry= G)

University of Maryland September 2013 Manfred Broy

Tm |

58

Comprehensive System Architecture
Levels of Abstraction

Technische Universitat Miinchen LT
Institut fir Informatik g g E 2
D-80290 Munich, Germany

Structuring Systems: levels of abstraction

Anforderungen

Interface assertion Safety |Priority |Component |Function
Ry Yes high

R, No medium

Nutzungsebene
(Funktionshierarchie)

-~
1A\ <
e v e N
R, [0 [iow S~ \
LI { * / (8’7 \| Logische
\ Architekt
| I \\\ OA\% /, rchitektur
* S\ gt
See: M. Broy, M. Gleirscher, St. Merenda,
D. Wild, P. Kluge, W. Krenzer: Toward a N\
Holistic and Standardized Automotive
Architecture Description. Innovative
Technology for Computer Professionals. ECU ECU Technische
Computer, IEEE Computer Society. ECU ECU Architektur

December 2009, S. 98-103

<...> Beziehungen zwischen

Ebenen

Goals and Requirements
and Functional Specification

Technische Universitat Miinchen LT
Institut fir Informatik g g E 2
D-80290 Munich, Germany

Relational view: Tracing — The power of logics

FunctiondSafety |Priority Component Function
Ay Yes high
A ... No medium N
A, no low

See: M. Broy: The Logic
of Requirements —
Formalizing Tracing, In:
Forms/Format 2012,
Technische Universitat
Braunschweig, edited by
Eckehard Schnieder und
Géza Tarnai, Beyrich
Digital Servide GmbH &

Co. KG, S. 2-4 —T

X1IT1

University of Maryland September 2013 Manfred Broy TUT | 62

Glass Box Specification of a Car s Architecture

Car
Y t: = doors_closed(t) = act_speed(t) = 0

act_speed :

Motor WatchDog

act_speed : Real

o

A

ready : Boo

Watch-Dog
assumption:
|V t: = ready(t) = act_speed(t) = 0

doors_closed : Bool
act_speed : Real

commitment:

V t: - doors. dlosed(t) — act_speed(t) = 0 See: M. Broy: Towards a Theory of Architectural

Contracts: - Schemes and Patterns of Assumption/
ready : Bool Promise Based System Specification. In: M. Broy, Ch.

< Leuxner, T. Hoare (Eds.): Software and Systems Safety

- Specification and Verification. NATO Science for Peace

and Security Series - D: Information and

Communication Security 30, IOS Press 2011, 33-87

doors_closed : Bool

University of Maryland September 2013 Manfred Broy TUM | 63

Example: how A/P-specifications can be formulated

The specification
V t: - doors_closed(t) = act_speed(t) = 0

can only be guaranteed if the two inner components work together. This
requires

V t: - ready(t) = act_speed(t) = 0

Then the system specification holds if
V t: - doors_closed(t) = - ready(t)

This is logically equivalent to the A/P-specification for the WatchDog
assumption: V t: - ready(t) = act_speed(t) = 0
commitment: V t: - doors_closed(t) = act_speed(t) = 0

In other words,
¢ the overall system specification can be guaranteed by the watchdog
¢ only if the assumption about the behaviour of the component motor holds.

University of Maryland September 2013 Manfred Broy TI.ITI |

64

Assumption/Promise to define Architectural Design Patterns

* A/P-specification
assumption: V t: - ready(t) = act_speed(t) = 0
commitment: V t: - doors_closed(t) = act_speed(t) = 0
is logically guaranteed by the simple specification
V t: - doors_closed(t) = - ready(t)

* This assertion no longer speaks about the specification of the
environment, but is a pure interface specification.

* The example shows the simplification of an A/P-specification to
a plain interface assertion.

University of Maryland September 2013 Manfred Broy T|_|T| | 65

Conclusion A/C

* A/C specs address the logic of the architecture rather than
separated interface specifications

* From A/C specs we may derive simplified component specs
* This gives a methodology towards a modular decomposition

University of Maryland September 2013 Manfred Broy TUTI |

66

Key Principles in Engineering CPSs

* Abstraction

¢ Interfaces

¢ Changing levels of abstractions
* Modularity

¢ Of composition

¢ Of refinement

* Semantic coherence
¢ From state machines to interfaces
¢ From architectures to interfaces
¢ From architectures of state machines to state machines of architectures
¢ Probabilistic extension of logical (deterministic) models
* EXpressiveness
¢ Set theoretic and logical: discrete system models
¢ Continuous models: control theory
¢ Probabilistic: probability distributions on behavior

University of Maryland September 2013 Manfred Broy TUTI |

67

The Triad of Modeling

* Denotational:

¢ mathematical models (of behavior)
* Logical — system properties:

¢ specification

¢ deduction

¢ verification

¢ transformation

* Notational:
¢ Graphical: diagrams

¢ Tables
¢ Formulas

University of Maryland September 2013 Manfred Broy TUTI |

Concluding Remarks

* The modelling framework Focus
¢ originally worked out for model based development

¢ specification
& verification See: https://af3.fortiss.org/projects/autofocus3

¢ tool support
* Tool: Autofocus 3
* Also useful for semantic foundation following the same approach

& SDL
¢ Bus Systems: CAN, FLEXRAY
See: K. Pohl, H. Honninger, R. Achatz, M.
¢ UML/SysML Broy: The SPES 2020 Methodology.
¢ SOA Springer Verlag 2012

University of Maryland September 2013 Manfred Broy TUM | 69

Concluding Remarks

* Today software & systems engineering is too much
orientated towards the technical architecture and solutions/
implementation in the beginning

* We need a comprehensive “architectural” model-based view
onto systems including requirements for dealing with
complex multi-functional systems

* The models allow for

¢ Separation of concerns
¢ Separation of technical aspects from application aspects

* Technical architectures are modelled along the same theory
* Code and test cases can be generated from the models

III

University of Maryland September 2013 Manfred Broy TI_ITI | 70

The power of generalizing ideas, of
drawing comprehensive conclusions
from individual observations, is the
only acquirement, for an immortal
being, that really deserves the name
of knowledge.

“Mary Wollstonecraft (1759-1797),
British feminist. A Vindication of the
Rights of Woman, ch. 4 (1792)

University of Maryland September 2013

Manfred Broy T|_|T| | 71

