Navigating Internet Neighborhoods: Reputation, Its Impact on Security, and How to Crowd-source It

Mingyan Liu

Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI

November 6, 2013

Acknowledgment

Collaborators:

- Parinaz Naghizadeh Ardabili
- Yang Liu, Jing Zhang, Michael Bailey, Manish Karir

Funding from:

Department of Homeland Security (DHS)

Threats to Internet security and availability

From unintentional to intentional, random maliciousness to economic driven:

- misconfiguration
- mismanagement
- botnets, worms, SPAM, DoS attacks, . . .

Typical operators' countermeasures: filtering/blocking

- within specific network services (e.g., e-mail)
- with the domain name system (DNS)
- based on source and destination (e.g., firewalls)
- within the control plane (e.g., through routing policies)

Host Reputation Block Lists (RBLs)

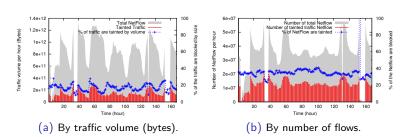
Commonly used RBLs:

 daily average volume (unique entries) ranging from 146M (BRBL) to 2K (PhishTank)

RBL Type	RBL Name
Spam	BRBL, CBL, SpamCop,
	WPBL, UCEPROTECT
Phishing/Malware	SURBL, PhishTank, hpHosts
Active attack	Darknet scanners list. Dshield

5 / 52

Potential impact of RBLs



NetFlow records of all traffic flows at Merit Network

- at all peering edges of the network from 6/20/2012-6/26/2012
- sampling ratio 1:1
- 118.4TB traffic: 5.7B flows, 175B packets.

As much as 17% (30%) of overall traffic (flows) "tainted"

How reputation lists should be/are used

Strengthen defense:

• filter configuration, blocking mechanisms, etc.

Strengthen security posture:

- get hosts off the list
- install security patches, update software, etc.

Retaliation for being listed:

- lost revenue for spammers
- example: recent DDoS attacks against Spamhaus by Cyberbunker

Aggressive outbound filtering:

- fixing the symptom rather than the cause
- example: the country of Mexico

Host identities can be highly transient:

- dynamic IP address assignment
- policies inevitably reactive, leading to significant false positives and misses
- potential scalability issues

RBLs are application specific:

• a host listed for spamming can initiate a different attack

Lack of standard and transparency in how they are generated

• not publicly available: subscription based, query enabled

Liu (Michigan) Network Reputation November 6, 2013 7 / 52

An alternative: network reputation

Define the notion of "reputation" for a network (suitably defined) rather than for hosts

A network is typically governed by consistent policies

- changes in system administration on a much larger time scale
- changes in resource and expertise on a larger time scale

Policies based on network reputation is proactive

 reputation reflects the security posture of the entire network, across all applications, slow changing over time

Enables risk-analytical approaches to security; tradeoff between benefits in and risks from communication

acts as a proxy for metrics/parameters otherwise unobservable

An illustration

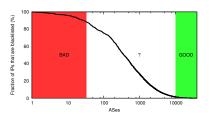


Figure: Spatial aggregation of reputation

- Taking the union of 9 RBLs
- % Addrs blacklisted within an autonomous system (est. total of 35-40K)

Many challenges to address

- What is the appropriate level of aggregation
- How to obtain such aggregated reputation measure, over time, space, and applications
- How to use these to design reputation-aware policies
- What effect does it have on the network's behavior toward others and itself
- How to make the reputation measure accurate representation of the quality of a network

Network Reputation November 6, 2013 10 / 52

Outline of the talk

Impact of reputation on network behavior

- Can the desire for good reputation (or the worry over bad reputation) positively alter a network's decision in investment
- Within the context of an inter-dependent security (IDS) game: positive externality

Incentivizing input - crowd-sourcing reputation

- Assume a certain level of aggregation
- Each network possesses information about itself and others
- Can we incentivize networks to participate in a collective effort to achieve accurate estimates/reputation assessment, while observing privacy and self interest

Liu (Michigan) Network Reputation November 6, 2013 11 / 52

Interdependent Security Risks

- Security investments of a network have positive externalities on other networks
- Networks' preferences are in general heterogeneous:
 - Heterogeneous costs.
 - Different valuations of security risks.
- Heterogeneity leads to under-investment and free-riding.

Network Security Investment Game

Originally proposed by [Jiang, Anantharam & Walrand, 2011]

- A set of N networks.
- N_i 's action: invest $x_i \ge 0$ in security, with increasing effectiveness.
- Cost $c_i > 0$ per unit of investment (heterogeneous).
- $f_i(\mathbf{x})$ security risk/cost of N_i where:
 - x vector of investments of all users.
 - $f_i(\cdot)$ decreasing in each x_i and convex.
- N_i chooses x_i to minimize the cost function

$$h_i(x) := f_i(\mathbf{x}) + c_i x_i$$
.

Analyzed the suboptimality of this game.

Example: a total effort model

A 2-player total effort model: $f_1(\mathbf{x}) = f_2(\mathbf{x}) = f(x_1 + x_2)$, with $c_1 = c_2 = 1$.

$$h_1(\mathbf{x}) = f_1(x_1 + x_2) + x_1, \ h_2(\mathbf{x}) = f_2(x_1 + x_2) + x_2$$
:

- Let \mathbf{x}^o be the Nash Equilibrium, and \mathbf{x}^* be the Social Optimum.
- At NE: $\partial h_i/\partial x_i = f'(x_1^o + x_2^o) + 1 = 0$.
- At SO: $\partial (h_1 + h_2)/\partial x_i = 2f'(x_1^* + x_2^*) + 1 = 0.$
 - By convexity of $f(\cdot)$, $x_1^o + x_2^o < x_1^* + x_2^* \Rightarrow$ under-investment.

An illustration

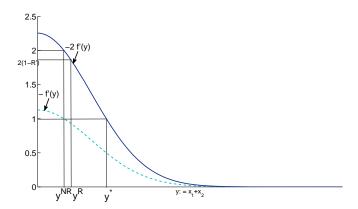


Figure: Suboptimality gap

15 / 52

The same game with reputation

The same model, with the addition:

- N_i will be assigned a reputation based on its investment.
- Valuation of reputation given by $R_i(\mathbf{x})$: increasing and concave.
- N_i chooses x_i to minimize the cost function

$$h_i(\mathbf{x}) := f_i(\mathbf{x}) + c_i x_i - R_i(\mathbf{x})$$
.

The effect of reputation: the same example

One's reputation only depends on one's own investment:

$$R_i(\mathbf{x}) = R_i(x_i)$$

- $R_1(x) = kR_2(x)$, k > 1: N_1 values reputation more than N_2 .
- $h_1(\mathbf{x}) = f(x_1 + x_2) + x_1 R_1(x_1)$ $h_2(\mathbf{x}) = f(x_1 + x_2) + x_2 - R_2(x_2).$
- At NE: $\partial h_i/\partial x_i = f'(x_1^R + x_2^R) + 1 R'_i(x_i^R) = 0$.
 - $R'_1(x_1^R) = R'_2(x_2^R)$ and thus $x_1^R > x_2^R \Rightarrow$ The one who values reputation more, invests more.
 - By convexity of $f(\cdot)$, $x_1^o + x_2^o < x_1^R + x_2^R \Rightarrow$ Collectively invest more in security and decrease suboptimality gap.

Network Reputation Liu (Michigan)

An illustration

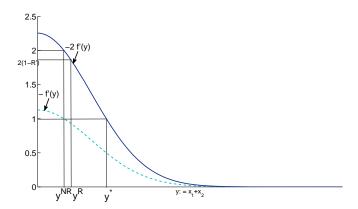


Figure: Driving equilibrium investments towards the social optimum

Digress for a moment: can we completely close the gap?

Short answer: Yes, through mechanism design. However:

- No voluntary participation
 - An individual may be better off opting out than participating in the mechanism, given all others participate.

Key information in similar models missing in reality:

- For instance: risk function f_i().
- Another example: how to monitor/enforce the investment levels.
- Information asymmetry in the security eco-system.

Challenge and goal: have network reputation serve as a proxy for the unobservable

19 / 52 Liu (Michigan) Network Reputation November 6, 2013

20 / 52

Outline of the talk

Impact of reputation on network behavior

- Can the desire for good reputation (or the worry over bad reputation) positively alter a network's decision in investment
- Within the context of an inter-dependent security (IDS) game: positive externality

Incentivizing input - crowd sourcing reputation

- Assume a certain level of aggregation
- Each network possesses information about itself and others
- Can we incentivize networks to participate in a collective effort to achieve accurate estimates/reputation assessment, while observing privacy and self interest

21 / 52

Crowd-sourcing reputation

- Basic setting
 - A distributed multi-agent system.
 - Each agent has perceptions or beliefs about other agents.
 - The truth about each agent known only to itself.
 - Each agent wishes to obtain the truth about others.
- Goal: construct mechanisms that incentivize agents to participate in a collective effort to arrive at correct perceptions.
- · Key design challenges:
 - Participation must be voluntary.
 - Individuals may not report truthfully even if they participate.
 - Individuals may collude.

Other applicable contexts and related work

Online review/recommendation systems:

- Example: Amazon, EBay
- Users (e.g., sellers and buyers) rate each other

Reputation in P2P systems

- Sustaining cooperative behavior among self-interested individuals.
- User participation is a given; usually perfect observation.

Elicitation and prediction mechanisms

- Used to quantify the performance of forecasters; rely on observable objective ground truth.
- Users do not attach value to realization of event or the outcome built by elicitor.

Liu (Michigan) Network Reputation November 6, 2013 22 / 52

The Model

- K inter-connected networks, N_1, N_2, \cdots, N_K .
- Network N_i 's overall quality or health condition described by a $r_{ii} \in [0,1]$: true or real quality of N_i .
- A central reputation system collects input from each N_i and computes a reputation index \hat{r}_i , the estimated quality.

24 / 52

Main Assumptions

- N_i knows r_{ii} precisely, but this is its private information.
- N_i can sufficiently monitor inbound traffic from N_i to form an estimate R_{ii} of r_{ii} .
- N_i's observation is in general incomplete and may contain noise/errors: $R_{ii} \sim \mathcal{N}(\mu_{ii}, \sigma_{ii}^2)$.
- This distribution is known to network N_i , while N_i itself may or may not be aware of it.
- The reputation system may have independent observations R_{0i} for $\forall i$.
- The reputation mechanism is common knowledge.

Designing the mechanism

- Goal: solution to the *centralized* problem in an *informationally decentralized* system.
- Choice parameters of the mechanism are:
 - Message space \mathcal{M} : inputs requested from agents.
 - Outcome function h(·): a rule according to which the input messages are mapped to outcomes.
- Other desirable features: budget balance, and individual rationality.

The centralized problem

Systems' Objective

Minimize estimation error for all networks.

Two possible ways of defining a reputation index:

- Absolute index \hat{r}_i^A : an estimate of r_{ii} .
- Relative index \hat{r}_i^R : given true qualities r_{ii} , $\hat{r}_i^R = \frac{r_{ii}}{\sum_k r_{kk}}$.

$$\min \sum_{i} |\hat{r}_{i}^{A} - r_{ii}| \quad \text{or} \quad \min \sum_{i} |\hat{r}_{i}^{R} - \frac{r_{ii}}{\sum_{k} r_{kk}}|$$

If the system had full information about all parameters:

$$\hat{r}_i^A = r_{ii}$$
 and $\hat{r}_i^R = \frac{r_{ii}}{\sum_k r_{kk}}$

In a decentralized system Ni's Objective

The truth element: security

Accurate estimate \hat{r}_i on networks N_i other than itself.

$$I_i = -\sum_{j \neq i} f_i(|\hat{r}_j^A - r_{jj}|) \quad \text{or} \quad I_i = -\sum_{j \neq i} f_i(|\hat{r}_j^R - rac{r_{jj}}{\sum_k r_{kk}}|) \; .$$

 $f_i()$'s are increasing and convex.

The image element: reachability

High reputation \hat{r}_i for itself.

$$H_i = g_i(\hat{r}_i^A)$$
 or $H_i = g_i(\hat{r}_i^R)$.

 $g_i()$'s are increasing and concave.

Different types of networks

- *Truth type:* dominated by security concerns, e.g., DoD networks, a buyer on Amazon.
- *Image type:* dominated by reachability/traffic attraction concerns: a blog hosting site, a phishing site, a seller on Amazon.
- Mixed type: legitimate, non-malicious network; preference in general increasing in the accuracy of others' and its own quality estimates.

$$u_i = -\lambda \sum_{i \neq i} f_i(|\hat{r}_j^A - r_{jj}|) + (1 - \lambda)g_i(\hat{r}_i^A)$$

• A homogeneous vs. a heterogeneous environment

Reputation mechanisms

Design a simple mechanism for each type of environment and investigate its incentive feature.

- Possible forms of input:
 - cross-reports X_{ij} , $j \neq i$: N_i 's assessment of N_j 's quality
 - self-reports Xii: networks' self-advertised quality measure
- The qualitative features (increasing in truth and increasing in image) of the preference are public knowledge; the functions f_i(), g_i() are private information.
- N_i is an expected utility maximizer due to incomplete information.
- Assume external observations are unbiased.
- If taxation is needed, aggregate utility of N_i defined as $v_i := u_i t_i$.

Setting I: Truth types, absolute reputation

$$(\mathsf{Model}\;\mathsf{I}) \qquad u_i = -\sum_{j \neq i} f_i(|\hat{r}_j^A - r_{jj}|)$$

The absolute scoring (AS) mechanism:

- Message space \mathcal{M} : each user reports $x_{ii} \in [0,1]$.
- Outcome function $h(\cdot)$:
 - The reputation system chooses $\hat{r}_i^A = x_{ii}$.
 - N_i is charged a tax term t_i given by:

$$t_i = |x_{ii} - R_{0i}|^2 - \frac{1}{K-1} \sum_{i \neq i} |x_{jj} - R_{0j}|^2 \ .$$

31 / 52

Properties of the AS mechanism

Rationale: assign reputation indices assuming truthful reports, ensure truthful reports by choosing the appropriate t_i .

- Truth-telling is a dominant strategy in the induced game
 ⇒ Achieves centralized solution.
- $\sum_i t_i = 0$ \Rightarrow Budget balanced.
- The mechanism is individually rational
 ⇒ Voluntary participation.

Truth-telling is a dominant strategy in the game induced by the AS mechanism

$$E[v_i(x_{ii}, \{X_{jj}\}_{j\neq i})] = -\sum_{j\neq i} E[f_i(|\hat{r}_j^A - r_{jj}|)]$$
$$-E[|x_{ii} - R_{01}|^2] + \frac{1}{K-1} \sum_{j\neq i} E[|X_{jj} - R_{0j}|^2]$$

- x_{ii} can only adjust the 2nd term, thus chosen to minimize the 2nd term.
- By assumption, N_i knows $R_{0i} \sim \mathcal{N}(r_{ii}, \sigma_{0i}^2)$, thus optimal choice $x_{ii} = r_{ii}$.

Liu (Michigan)

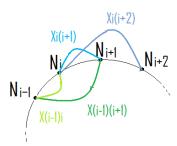
Individual rationality under AS

The AS mechanism is individually rational.

- Staying out: reserved utility given by $-\sum_{j\neq i} E(f_i(|R_{ij}-r_{jj}|))$.
- Participating: expected utility $-\sum_{i\neq i} f_i(0)$ at equilibrium.
- $f_i(\cdot)$ is increasing and convex, thus $E[f_i(|R_{ij}-r_{jj}|)] \ge f_i(E(|R_{ij}-r_{jj}|)) = f_i(\sqrt{\frac{2}{\pi}}\sigma_{ij}) > f_i(0), \ \forall j \neq i.$
- The AS mechanism is individually rational.

Extended-A5 Mechanism

- What if the system does not possess independent observations?
- Use a random ring to gather cross-observations and assess taxes.
- N_i is asked to report X_{ii} , as well as $X_{i(i+1)}$ and $X_{i(i+2)}$.



35 / 52

Extended-AS Mechanism

- N_i is charged two taxes:
 - ullet on the inaccuracy of its self-report wrt what N_{i-1} says about N_i
 - ullet on the inaccuracy of its cross-report on N_{i+1} wrt what N_{i-1} says

$$t_{i} = |x_{ii} - X_{(i-1)i}|^{2} - \frac{1}{K-2} \sum_{j \neq i, i+1} |X_{jj} - X_{(j-1)j}|^{2}$$

$$+ |x_{i(i+1)} - X_{(i-1)(i+1)}|^{2} - \frac{1}{K-2} \sum_{j \neq i, i+1} |X_{j(j+1)} - X_{(j-1)(j+1)}|^{2}$$

- Truthful self-reports achieved by the 1st taxation term.
- Truthful cross-reports achieved by the 2nd taxation term.
- Other associations also possible: e.g., random sets.

Extended-AS results in the centralized solution

Setting II: Truth types, relative reputation

(Model II)
$$u_i = -\sum_{j \neq i} f_i(|\hat{r}_j^R - \frac{r_{jj}}{\sum_k r_{kk}}|)$$

The fair ranking (FR) mechanism:

- Message space \mathcal{M} : each user reports $x_{ii} \in [0,1]$.
- Outcome function $h(\cdot)$:
 - the system assigns $\hat{r}_i^R = \frac{x_{ii}}{\sum_k x_{kk}}$.
 - No taxation is used.

• Truth-telling is a Bayesian Nash equilibrium in the induced game

$$u_i(x_{ii}, \{r_{kk}\}_{k\neq i}) = -\sum_{j\neq i} f_i(|\frac{r_{jj}(x_{ii} - r_{ii})}{(x_{ii} + \sum_{k\neq i} r_{kk})(\sum_k r_{kk})}|)$$

- \Rightarrow Achieves centralized solution $x_{ii} = r_{ii}$.
- The mechanism is individually rational
 ⇒ Voluntary participation.
- Achievable without cross-observations from other networks, direct observations by the system, or taxation.

Setting III: Mixed types, relative reputation

(Model III)
$$u_i = -\sum_{j \neq i} f_i(|\hat{r}_j^R - \frac{r_{jj}}{\sum_k r_{kk}}|) + g_i(\hat{r}_i^R)$$

- The individual's objective is no longer aligned with the system objective
- Direct mechanism possible depending on the specific forms of f_i() and g_i().

Setting IV: Mixed types, absolute reputation

$$(\mathsf{Model} \; \mathsf{IV}) \quad u_i = \; \; - \sum_{j \neq i} f_i(|\hat{r}_j^A - r_{jj}|) + g_i(\hat{r}_i^A)$$

An Impossibility result:

centralized solution cannot be implemented in BNE.

Consider suboptimal solution:

- use both self- and cross-reports
- forgo the use of taxation

A simple averaging mechanism

$$(\mathsf{Model} \; \mathsf{IV}) \quad u_i = \; \; - \sum_{j \neq i} f_i(|\hat{r}_j^{\mathcal{A}} - r_{jj}|) + g_i(\hat{r}_i^{\mathcal{A}})$$

- Solicit only cross-reports.
- Take \hat{r}_i^A to be the average of all x_{ji} , $j \neq i$, and R_{0i} .
- Used in many existing online system: Amazon and Epinions.
- Truthful revelation of Rii is a BNE.
 - N_i has no influence on its own estimate \hat{r}_i^A .
 - N_i 's effective objective is to minimize the first term.
 - The simple averaging mechanism results in $\hat{r}_i^A \sim \mathcal{N}(r_{ii}, \sigma^2/K)$.
- \hat{r}_i^A can be made arbitrarily close to r_{ii} as K increases.
- (Under this mechanism, if asked, N_i will always report $x_{ii} = 1$)

Liu (Michigan) Network Reputation November 6, 2013 40 / 52

Can we do better?

Instead of ignoring N_i 's self-report, incentivize N_i to provide useful information.

- Convince N_i that it can contribute to a higher estimated \hat{r}_i^A by supplying input X_{ii} ,
- Use cross-reports to assess N_i 's self-report, and threaten with punishment if it is judged to be overly misleading.

Truthful cross-reports

A mechanism in which N_i 's cross-reports are not used in calculating its own reputation estimate. Then:

- N_i can only increase its utility by altering \hat{r}_i^A when submitting X_{ij} ,
- N_i doesn't know r_{jj} , can't use a specific utility function to strategically choose X_{ij} ,
- N_i 's best estimate of r_{ij} is R_{ij} ,
- \Rightarrow Truthful cross-reports!

Questions:

- Can N_i make itself look better by degrading N_i ?
- Is it in N_i 's interest to degrade N_i ?

A punish-reward (PR) mechanism

Denote the output of the simple averaging mechanism by $ar{X}_{0i}$.

$$\hat{r}_{i}^{A}(X_{ii}, \bar{X}_{0i}) = \begin{cases} \frac{\bar{X}_{0i} + X_{ii}}{2} & \text{if } X_{ii} \in [\bar{X}_{0i} - \epsilon, \bar{X}_{0i} + \epsilon] \\ \bar{X}_{0i} - |X_{ii} - \bar{X}_{0i}| & \text{if } X_{ii} \notin [\bar{X}_{0i} - \epsilon, \bar{X}_{0i} + \epsilon] \end{cases}$$

- ε is a fixed and known constant.
- Take the average of X_{ii} and \bar{X}_{0i} if the two are sufficiently close; else punish N_i for reporting significantly differently.

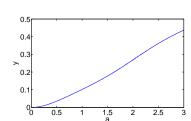
 \Rightarrow Each network only gets to optimize its self-report, knowing all cross-reports are truthful.

Choice of self-report

Self-report x_{ii} determined by $\max_{x_{ii}} E[\hat{r}_i^A(x_{ii}, \bar{X}_{0i})]$, where $\bar{X}_{0i} \sim \mathcal{N}(r_{ii}, \frac{\sigma^2}{K})$ assuming common and known σ . Optimal x_{ii} , when $\epsilon = a\sigma' = a\frac{\sigma^2}{K}$, is given by:

$$x_{ii}^* = r_{ii} + a\sigma' y$$

 $0 < y < 1 \implies$ self-report is positively biased and within expected acceptable range.



How close is \hat{r}_i^A to the real quality r_{ii} : $e_m := E(|\hat{r}_i^A - r_{ii}|)$

- For a large range of a values, N_i 's self-report benefits the system as well as all networks other than N_i .
- Optimal choice of a does not depend on r_{ii} and σ' .

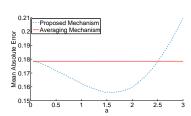
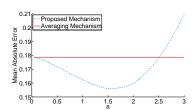
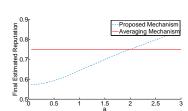


Figure: MAE for $r_{ii} = 0.75$, $\sigma^2 = 0.1$

There is a mutually beneficial region $a \in [2, 2.5]$: the self-report helps N_i obtain a higher estimated reputation, while helping the system reduce its estimation error on N_i .





A heterogenous environment

Example: A mix of T truth types and K-T image types, using the AS mechanism

- Additional conditions needed to ensure individual rationality
 - The higher the percentage of image types, the less likely is a truth type to participate
 - The higher a truth type's own accuracy, the less interested it is to participate
 - An image type may participate if r_{ii} is small.
- The benefit of the mechanism decreases in the fraction of image types.

47 / 52 Liu (Michigan) Network Reputation November 6, 2013

Handling collusion/cliques

- Absolute Scoring and Fair Ranking are naturally collusion-proof.
- PR remains functional using only the cross-observations from a subset of trusted entities, or even a single observation by the reputation system.
- If the system lacks independent observations, introducing randomness can reduce the impact of cliques.
 - E.g. extended-AS mechanism: tax determined by random matching with peers.
 - Increased likelihood of being matched with non-colluding users reduces benefit of cliques.

Network Reputation November 6, 2013 48 / 52

Other aspects

- Other mechanisms, e.g., weighted mean of the cross-report, etc.
- Other heterogeneous environments
- Presence of malicious networks.

50 / 52

Conclusion

Network reputation as a way to capture, encourage, and inform the security quality of policies

Impact of reputation on network behavior

- A reputation-augmented security investment game.
- Reputation can increase the level of investment and drive the system closer to social optimum.
- Many interesting open questions.

Incentivizing input – crowd sourcing reputation

- A number of preference models and environments
- Incentive mechanisms in each case

References

- P. N. Ardabilli and M. Liu, "Perceptions and Truth: A Mechanism Design Approach to Crowd- Sourcing Reputation," under submission. arXiv:1306.0173.
 - "Establishing Network Reputation via Mechanism Design," GameNets, May 2012.
 - "Collective revelation through mechanism design," ITA, February 2012.
- J. Zhang, A. Chivukula, M. Bailey, M. Karir, and M. Liu, "Characterization of Blacklists and Tainted Network Traffic," the 14th Passive and Active Measurement Conference (PAM), Hong Kong, March 2013.
- P. N. Ardabilli and M. Liu, "Closing the Price of Anarchy Gap in the Interdependent Security Game," under submission. arXiv:1308.0979v1.

Closing the PoA gap in the IDS game

- All participants propose an investment profile and a price profile, (\mathbf{x}_i, π_i) from i; user utility: $u_i(\mathbf{x}) = -f_i(\mathbf{x}) c_i x_i t_i$.
- The regulator/mechanism computes:

$$\hat{\mathbf{x}} = \sum_{i=1}^{N} \mathbf{x}_i / N;$$
 $\hat{t}_i = (\pi_{i+1} - \pi_{i+2})^T \hat{\mathbf{x}} + \text{balancing term}$

Achieves social optimality

$$\max_{(\mathbf{x},\mathbf{t})} \sum_{i=1}^{N} u_i(\mathbf{x}), \quad \text{s. t. } \sum_{i=1}^{N} t_i = 0$$

- Budget balanced, incentive compatible, NOT individually rational.
- Having the regulator act as an *insurer* may lead to individual rationality.