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Ayfer Özgür

Stanford University

Advanced Networks Colloquia Series
University of Maryland, March 2017

Joint work with Xiugang Wu and Leighton Pate Barnes.
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Father of the Information Age

Claude Shannon (1916-2001)
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IXTRODUCTION

T HE recent development of various methods of modulation such as reM
and PPM which exchange bandwidth for signal-to-noise ratio has in-

tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley"
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the sta tistiral structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:
1. It is practically more useful. Parameters of engineering importance

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Belt System Tectmical J OUT-

nal, April 1924, p, 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E.
TI aIlS., v. 47, April 1928, p. 617.

2 Hartley. R. V. L.. "Transmission oi Information.' Belt System Technical Journal, July
1928, p. .'US.
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“A method is developed for representing any communication system
geometrically...”
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Converse: Sphere Packing
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Achievability: Geometric Random Coding
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The story goes...
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Cover’s Open Problem
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Gaussian case

In = f(Zn)
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Achievability: C ∗0 =∞.

Cutset-bound (Cover and El Gamal’79):
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Potentially, C ∗0 → 0 as P/N → 0.
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Main Result

In = f(Zn)
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Upper Bound on the Capacity
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Cutset Bound

In = f(Zn)
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Cutset Bound
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If H(In|X n) = 0, then H(In|Y n) = 0.
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Ayfer Özgür (Stanford) “The Capacity of the Relay Channel” March’17 14 / 26



p
nN

Xn

Typical set of Zn/Y n

✓ In-th bin

Zn

Y n

If H(In|X n) = 0, then H(In|Y n) = 0.
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In = f(Zn)
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From n- to nB- Dimensional Space

X,Y,Z, I : B-length i.i.d. from {(X n(b),Y n(b),Zn(b), In(b))}Bb=1.

If H(In|X n) = −n log sin θn, then for any typical (x, i)
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Isoperimetric Inequalities

Isoperimetric Inequality in the Plane (Steiner 1838)

Among all closed curves in the plane with a given enclosed area, the
circle has the smallest perimeter.
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Isoperimetric Inequalities

Isoperimetric Inequality on the Sphere (Levy 1919)

Among all sets on the sphere with a given volume, the spherical cap
has the smallest boundary, or the smallest volume of ω-neighborhood
for any ω > 0.
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Blowing-up Lemma

|Ax(i)| .
= 2nB( 1

2 log 2⇡eN sin2 ✓n)

Isoperimetric Inequality on the Sphere + Measure Concentration:

P(Z ∈ blow-up of Ax(i)|x) ≈ 1.

⇓
P(Y ∈ blow-up of Ax(i)|x) ≈ 1.
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Geometry of Typical Sets

n-dimensional space:
Almost all (X n,Y n,Zn, In)
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Information Inequality: (Wu and Ozgur, 2015)

H(In|Y n) ≤ n(2 log sin θn +
√

2 log sin θn ln 2 log e).
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A new approach
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and Ax(i).
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Easy if Ax(i) is a spherical cap
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Strengthening of the Isoperimetric Inequality

Strengthening of the Isoperimetric Inequality:

Among all sets on the sphere with a given volume, the spherical cap has
minimal intersection volume at distance ω for almost all points on the sphere
for any ω > π/2− θ.

Proof: builds on the Riesz rearrangement inequality.
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A Packing Argument
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Ayfer Özgür (Stanford) “The Capacity of the Relay Channel” March’17 25 / 26



Summary

Solved an problem posed by Cover and named “The Capacity of
Relay Channel” in Open Problems in Communication and
Computation, Springer-Verlag, 1987.

Developed a converse technique that significantly deviates from
standard converse techniques based on single-letterization and has
some new ingredients:

I Typicality
I Measure Concentration
I Isoperimetric Inequality
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