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CSR @ UT Austin

ISR @ UMD College Park, February 24, 2016



Opening

Model Predictive Control of the Day Before Yesterday

Model Predictive Control Synthesis

Model Predictive Control Lower–Synthesis

Model Predictive Control Upper–Synthesis

Model Predictive Control Generalized Synthesis

Closing
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Abstract

A framework, developed in
collaboration with William S. Levine

and Behçet Açikmeşe, for generalized
MPC is outlined.

W. S. Levine B. Açikmeşe

S.V. Raković, W.S. Levine

Model Predictive Control with Generalized Terminal Conditions

Saša V. Raković (1), William S. Levine (2),

(1) Independent Researcher, London, UK (2) Institute for Systems Research, The Univer-
sity of Maryland, College Park, USA

Model predictive control (MPC) is best summarized as a repetitive decision making
process in which the underlying decision making takes the form of an open–loop, finite
horizon, optimal control (OC). MPC induces positive invariance and stability under rela-
tively mild conditions on the problem setup. The chief components of these conditions are
either the introduction of terminal constraint set and cost function, or the utilization of a
sufficiently long horizon length. In either case, MPC provides a sensible approximation to
a highly desirable infinite horizon OC. However, the conditions on terminal constraint set
and cost function, or on horizon length, are global in their nature and, thus, independent
of the current state. These facts highlight crucial weaknesses of the MPC approaches.

We offer MPC with generalized terminal conditions. In particular, we propose the
utilization of a terminal constraint set and cost function that are allowed to depend on
the current state. In turn, this leads to an improved MPC with the potential to provide
strictly finer approximation and, from a theoretical point of view, even the exact solution
to infinite horizon OC problem. We also propose the use of terminal constraint sets
and cost functions generated by a suitably defined set and functional dynamics. For the
latter proposal, we discuss set and functional dynamics of terminal constraint sets and
cost functions, respectively, in a general setting. Furthermore, motivated by underlying
intricate numerical aspects, we also explore restrictions of these dynamics to particular
families of terminal constraint sets and cost functions. Finally, we demonstrate that for
some special, but frequently encountered, instances our proposal allows for an improved
MPC at a negligibly increased computational cost.
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Discretely Generalized Model Predictive Control Synthesis

Saša V. Raković, William S. Levine and Behçet Açıkmeşe

Abstract— This paper introduces a discretely generalized
model predictive control (MPC) synthesis that allows terminal
constraint sets, control laws and cost functions to depend on the
current state. The constituents of the classical MPC terminal
conditions are no longer fixed offline and, in fact, can be
chosen online in an optimal manner. This advantage is further
amplified by utilizing the dynamics of the terminal constraint
sets, control laws and cost functions in order to relax the
usual MPC terminal conditions. These novel features result in
a substantially improved MPC synthesis that yields an exact, or
a strictly finer approximate, solution to infinite horizon optimal
control (OC). The conceptual framework is complemented with
a generic discussion of the associated computations.

I. INTRODUCTION

MPC has found itself a centre of focus of both the
theoretical and practical control communities due to its in-
herent ability to simultaneously handle constraints, guarantee
stability and optimize performance in a systematic way. MPC
has become a highly active research field that has seen
advances addressing a broad range of underlying conceptual
and implementational issues [1]–[3]. MPC’s role in control
engineering practise is best evidenced by the large number
and versatility of its real life implementations [4].

MPC has strong links with a theoretically highly desirable
infinite horizon open loop OC (OLOC) that provides an
ideal approach to synthesis of optimal, stabilizing controllers
for constrained systems [5]. When the model of the system
is absolutely exact, constraints perfectly capture underlying
limitations and restrictions and no uncertainty is present, the
open loop and closed loop OC yield the same outcome. Thus,
in an ideal scenario, the infinite horizon OLOC (IHOLOC)
can be solved only once as the obtained optimal infinite hori-
zon control actions and controlled state sequences completely
determine the underlying control process. Unfortunately,
perfect exactness is seldom available and many unaccounted
for discrepancies affect the actual control process so that
closed loop OC is a theoretically and practically preferable
option that, however, carries a considerable increase in com-
putational effort. A natural way to alleviate the associated
numerical complexity and to generate closed loop solutions
from OLOC is to recompute OLOC at the states encountered
in the actual control process. The continual repetition of
OLOC provides feedback by accounting for the mismatch
between actual states and previously assumed optimal future
states. However, the repetitive utilization of IHOLOC is
usually computationally prohibitively demanding.

Saša V. Raković and Behçet Açıkmeşe are with the University of Texas
at Austin, USA. William S. Levine is with the University of Maryland at
College Park, USA.

MPC adapts the repetitive OLOC paradigm and it refines
its numerical aspects by deploying a finite horizon OLOC
(FHOLOC). The employed FHOLOC represents a suitable
alteration of the corresponding IHOLOC. There are two
prevalent approaches for replacing the IHOLOC by a com-
putationally more tractable FHOLOC; The first one is based
on truncation, while the second one is based on modification.

The truncation approach discards the terms of the infi-
nite horizon control actions and controlled state sequences
beyond the horizon length and it also forgo the stage costs
associated with these terms. This leads to a FHOLOC, for
which the constraints are relaxed and the cost is reduced so
that it provides a lower approximation of the IHOLOC. MPC
based on truncation, henceforth referred to as the lower MPC
synthesis, has received a notable attention [6]–[9] (see also
references therein) and it has recently been refined [9].

The modification approach takes into account the relin-
quished terms of the infinite horizon control actions and
controlled state sequences by invoking constricted terminal
constraints, while the sum of neglected stage costs is upper
bounded via a terminal penalty. The terminal constraints and
penalty are specified by a terminal constraint set and terminal
cost function, respectively. This also leads to a FHOLOC, for
which the constraints are stringent and the cost is increased
so that it results in an upper approximation of the IHOLOC.
MPC based on modification, henceforth referred to as the
upper MPC synthesis, has also been thoroughly investigated;
See, e.g., [1]–[3], [5], [10], [11] and references therein.

Under mild and natural assumptions, MPC is well–posed,
it is approximately infinite horizon optimal, it is consistently
improving and it also induces positive invariance and stabil-
ity. These desirable structural properties can be all ensured
for both lower and upper MPC syntheses by invoking a
relatively natural sets of assumptions [1]–[3], [5]–[11]. In the
case of the lower MPC synthesis, the chief ingredient of these
conditions is the utilization of a sufficiently long horizon
length [6]–[9]. In the case of the upper MPC synthesis, the
major components of these requirements are the use of (i) a
terminal constraint set that is positively invariant for terminal
dynamics induced by a given terminal control law, and (ii)
a terminal cost function that is Lyapunov certificate w.r.t.
the desired controlled equilibrium for the terminal dynamics
over the terminal constraint set [1]–[3], [5], [10], [11].

A closer inspection of the relevant literature reveals that
the horizon length, or terminal constraint set, control law
and cost function, are almost always selected offline and
prior to MPC implementation and, thus, have a global nature
and are independent of the current state. This insensitiv-
ity to the current state is de–facto a fundamental bottle

ACC 2016.

Continuously Generalized Model Predictive Control

Saša V. Raković, William S. Levine and Behçet Açıkmeşe

Abstract— This paper expands recently proposed discretely
generalized model predictive control (MPC) by introducing a
continuously generalized MPC synthesis. The terminal con-
straint sets, control laws and cost functions are permitted to
depend on, and to be optimized online at, the current state of
the control process. These self–evident advantages are further
amplified by utilizing the dynamics of the terminal constraint
sets, control laws and cost functions and developing consider-
ably relaxed MPC stabilizing terminal conditions. Continuously
generalized MPC represents a substantially improved MPC
synthesis with ability to reproduce an exact, or a strictly
finer approximate, solution to infinite horizon optimal control
(OC). The conceptual considerations are complemented with a
computationally relevant discussion.

I. INTRODUCTION – TO BE MODIFIED

MPC has found itself a centre of focus of both the
theoretical and practical control communities due to its in-
herent ability to simultaneously handle constraints, guarantee
stability and optimize performance in a systematic way. MPC
has become a highly active research field that has seen
advances addressing a broad range of underlying conceptual
and implementational issues [1]–[3]. MPC’s role in control
engineering practise is best evidenced by the large number
and versatility of its real life implementations [4].

MPC has strong links with a theoretically highly desirable
infinite horizon open loop OC (OLOC) that provides an
ideal approach to synthesis of optimal, stabilizing controllers
for constrained systems [5]. When the model of the system
is absolutely exact, constraints perfectly capture underlying
limitations and restrictions and no uncertainty is present, the
open loop and closed loop OC yield the same outcome. Thus,
in an ideal scenario, the infinite horizon OLOC (IHOLOC)
can be solved only once as the obtained optimal infinite hori-
zon control actions and controlled state sequences completely
determine the underlying control process. Unfortunately,
perfect exactness is seldom available and many unaccounted
for discrepancies affect the actual control process so that
closed loop OC is a theoretically and practically preferable
option that, however, carries a considerable increase in com-
putational effort. A natural way to alleviate the associated
numerical complexity and to generate closed loop solutions
from OLOC is to recompute OLOC at the states encountered
in the actual control process. The continual repetition of
OLOC provides feedback by accounting for the mismatch
between actual states and previously assumed optimal future
states. However, the repetitive utilization of IHOLOC is
usually computationally prohibitively demanding.

Saša V. Raković is with the University of Texas at Austin, USA. Behçet
Açıkmeşe is with the University of Washington at Seattle, USA. William
S. Levine is with the University of Maryland at College Park, USA.

MPC adapts the repetitive OLOC paradigm and it refines
its numerical aspects by deploying a finite horizon OLOC
(FHOLOC). The employed FHOLOC represents a suitable
alteration of the corresponding IHOLOC. There are two
prevalent approaches for replacing the IHOLOC by a com-
putationally more tractable FHOLOC; The first one is based
on truncation, while the second one is based on modification.

The truncation approach discards the terms of the infi-
nite horizon control actions and controlled state sequences
beyond the horizon length and it also forgo the stage costs
associated with these terms. This leads to a FHOLOC, for
which the constraints are relaxed and the cost is reduced so
that it provides a lower approximation of the IHOLOC. MPC
based on truncation, henceforth referred to as the lower MPC
synthesis, has received a notable attention [6]–[9] (see also
references therein) and it has recently been refined [9].

The modification approach takes into account the relin-
quished terms of the infinite horizon control actions and
controlled state sequences by invoking constricted terminal
constraints, while the sum of neglected stage costs is upper
bounded via a terminal penalty. The terminal constraints and
penalty are specified by a terminal constraint set and terminal
cost function, respectively. This also leads to a FHOLOC, for
which the constraints are stringent and the cost is increased
so that it results in an upper approximation of the IHOLOC.
MPC based on modification, henceforth referred to as the
upper MPC synthesis, has also been thoroughly investigated;
See, e.g., [1]–[3], [5], [10], [11] and references therein.

Under mild and natural assumptions, MPC is well–posed,
it is approximately infinite horizon optimal, it is consistently
improving and it also induces positive invariance and stabil-
ity. These desirable structural properties can be all ensured
for both lower and upper MPC syntheses by invoking a
relatively natural sets of assumptions [1]–[3], [5]–[11]. In the
case of the lower MPC synthesis, the chief ingredient of these
conditions is the utilization of a sufficiently long horizon
length [6]–[9]. In the case of the upper MPC synthesis, the
major components of these requirements are the use of (i) a
terminal constraint set that is positively invariant for terminal
dynamics induced by a given terminal control law, and (ii)
a terminal cost function that is Lyapunov certificate w.r.t.
the desired controlled equilibrium for the terminal dynamics
over the terminal constraint set [1]–[3], [5], [10], [11].

A closer inspection of the relevant literature reveals that
the horizon length, or terminal constraint set, control law
and cost function, are almost always selected offline and
prior to MPC implementation and, thus, have a global nature
and are independent of the current state. This insensitiv-
ity to the current state is de–facto a fundamental bottle

CDC 2016. In Progress.

Generalized Model Predictive Control
Saša V. Raković, William S. Levine and Behçet Açikmeşe

Abstract—This paper introduces model predictive control
(MPC) generalized synthesis that allows terminal constraint
sets, control laws and cost functions to depend on the current
state. The classical MPC terminal ingredients are no longer
fixed offline and, in fact, can be chosen online in an optimal
manner. This advantage is further amplified by utilizing the
dynamics of the terminal constraint sets, control laws and
cost functions in order to considerably relax the traditionally
accepted MPC terminal conditions. These novel features result
in a substantially improved MPC synthesis that yields an exact, or
a strictly finer approximate, solution to infinite horizon optimal
control (OC). The proposed framework is complemented with a
generic discussion of the associated computations, which are also
specialized for a frequently encountered class of MPC problems.

I. INTRODUCTION – TO BE MODIFIED
MPC is a prime advanced control approach to the optimal

design of stabilizing control laws for constrained systems. Due
to its inherent ability to handle constraints and optimize per-
formance in a systematic way, MPC has found itself in a centre
of focus of both theoretical and practical control community.
MPC has become a highly active research field that has seen
tremendous advances addressing a broad scope of underlying
conceptual and implementational issues. MPC’s role in control
engineering practise is best evidenced by an overwhelming
number and versatility of its real–life implementations.

MPC has strong links with a theoretically highly desirable
infinite horizon open loop OC (OLOC) that provides an ulti-
mate approach to synthesis of optimal, stabilizing controllers
for constrained systems. In an ideal world, in which the model
of the system is absolutely exact, constraints perfectly capture
underlying limitations and restrictions and no uncertainty is
present, the open loop and closed loop OC yield the same
outcome. Thus, in a quintessential scenario, the infinite horizon
OLOC (IHOLOC) can be solved only once as the obtained
optimal infinite horizon control actions and controlled state se-
quences completely determine the underlying control process.
Unfortunately, perfect exactness is seldom available and many
unaccounted for discrepancies affect the actual control process
so that closed loop OC is a theoretically preferable option
that, however, carries a considerable increase in computational
effort. A natural way to alleviate the associated numerical
complexity and to generate closed loop solutions from OLOC
is to recompute OLOC at the states encountered in the actual
control process and, thus, provide feedback and account for
the mismatch between actual states and previously assumed
optimal future states. However, the repetitive utilization of
IHOLOC is computationally prohibitively demanding.

Saša V. Raković and Behçet Açikmeşe are with the Center for Space
Research of the University of Texas at Austin, USA. William S. Levine is
with the Institute for Systems Research of the University of Maryland at
College Park, USA.

MPC adapts the repetitive OLOC paradigm and it refines
its numerical aspects by deploying a finite horizon OLOC
(FHOLOC). The employed FHOLOC represents a suitable
alteration of the corresponding IHOLOC. There are two preva-
lent approaches for replacing the IHOLOC by a computation-
ally more tractable FHOLOC. The first procedure is based
on the truncation, while the second method is based on the
modification.

The truncation approach discards the terms of the infinite
horizon control actions and controlled state sequences beyond
the horizon length and it also forgo the stage costs associated
with these terms. This leads to a FHOLOC, for which the
constraints are relaxed and the cost is reduced so that it
provides a lower–approximation of the IHOLOC. MPC based
on the truncation approach is henceforth referred to as the
MPC lower–synthesis.

The modification approach takes into account the relin-
quished terms of the infinite horizon control actions and
controlled state sequences by invoking constricted terminal
constraints, while the sum of neglected stage costs is upper
bounded via a terminal penalty. The terminal constraints and
penalty are specified by a terminal constraint set and terminal
cost function, respectively. This construction also leads to a
FHOLOC, for which the constraints are stringent and the cost
is increased so that it results in an upper–approximation of
the IHOLOC. MPC based on the modification approach is
henceforth referred to as the MPC upper–synthesis.

Under mild and natural assumptions, MPC is well–posed,
it is approximately infinite horizon optimal, it is consistently
improving and it also induces positive invariance and stabil-
ity. These desirable properties (well–posedness, approximate
infinite horizon optimality, consistent improvements, positive
invariance and stability) can be all ensured for both MPC
lower– and upper– syntheses by invoking a relatively natural
sets of assumptions. In the case of MPC lower–synthesis,
the chief ingredient of these conditions is the utilization of
a sufficiently long horizon length. In the case of MPC upper–
synthesis, the major components of these requirements are
the use of (i) a terminal constraint set that is positively
invariant for terminal dynamics induced by a given terminal
control law, and (ii) a terminal cost function that is Lyapunov
certificate w.r.t. the desired controlled equilibrium for the
terminal dynamics over the terminal constraint set.

A closer inspection of the relevant literature reveals that
the horizon length, or terminal constraint set, control law and
cost function, are almost always selected offline and prior
to MPC implementation and, thus, have a global nature and
are independent of the current state. This insensitivity to the
current state is de–facto a fundamental bottle neck of existing
MPC design methods. This major issue is a main driver for our
proposal that addresses it in systematic and effective manner.

Journal. In Progress.
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MPC Analogy

Jean Piaget (1896 – 1980)

Cognitive Psychology

Children learning and environment controlling

1. Image 2. Aim 3. Action 4. Collation
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MPC Analogy

Jacques Richalet (1936 – )

Predictive Functional Control

Credits for Brilliant Analogy

1. Image 2. Aim 3. Action 4. Collation

1. Model 2. Reference 3. Control 4. Feedback
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MPC Paradigm

Goals:

Constraint satisfaction,

Stability, and

Optimized performance.

Tool:

Model predictive control.

Model predictive control (MPC):

Repetitive decision making process (DMP).

Basic DMP is finite horizon optimal control.

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 6



Basic DMP (Finite Horizon Optimal Control)

Given an integer N ∈ N and a state x ∈ X select predicted sequences of

control actions uN−1 := {u0, u1, . . . , uN−1}, and

controlled states xN := {x0, x1, . . . , xN−1, xN},
which, for each k ∈ {0, 1, . . . ,N − 1}, satisfy

xk+1 = f (xk , uk) with x0 = x ,

xk ∈ X,

uk ∈ U, and

xN ∈ Xf ,

and which minimize VN(xN ,uN−1) :=
∑N−1

k=0 `(xk , uk)+ Vf (xN) .

(Hereafter, Xf and Vf (·) are terminal constraint set and cost function.)

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 7



Key Facts

Main properties:

MPC law u0
0 (·) is feedback implicitly evaluated at current state.

Predictions and optimized predictions are, however, open–loop.

Consistently improving and stabilizing (under mild assumptions).

Theoretical implementation:

Mathematical (nonlinear) programming in general case.

Strictly convex programming in most frequent cases.

Practical implementation:

Online optimization.

Offline parameteric optimization and online look–up tables.

Combinations of the online and offline parameteric optimization.

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 8
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Setting

The system: x+ = f (x , u)
f (·, ·) the state transition map,
x the state variable, and
u the control variable.

The constraints: x ∈ X and u ∈ U
X the state constraint set, and
U the control constraint set.

The cost: the (accumulated) sum of the stage costs.
The stage cost: ` (·, ·).

Synthesis tool: Model Predictive Control (MPC).
MPC: Repetitive Decision Making Process (DMP).
Basic DMP: Open–Loop Optimal Control (OLOC).

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 10



(Perfect) Synthesis via Infinite Horizon OLOC

Given a state x ∈ X select infinite sequences of

control actions u∞ := {u0, u1, . . . , uN−1, . . .}, and

controlled states x∞ := {x0, x1, . . . , xN−1, xN , . . .},
which, for each k ∈ {0, 1, . . . ,N − 1, . . .}, satisfy

xk+1 = f (xk , uk) with x0 = x ,

xk ∈ X, and

uk ∈ U,

and which minimize V∞(x∞,u∞) :=
∑∞

k=0 `(xk , uk).

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 11



(Actual) Synthesis via Modified Finite Horizon OLOC

Given an integer N ∈ N and a state x ∈ X select finite sequences of

control actions uN−1 := {u0, u1, . . . , uN−1}, and

controlled states xN := {x0, x1, . . . , xN−1, xN},
which, for each k ∈ {0, 1, . . . ,N − 1}, satisfy

xk+1 = f (xk , uk) with x0 = x ,

xk ∈ X,

uk ∈ U, and

xN ∈ Xf ,

and which minimize VN(xN ,uN−1) :=
∑N−1

k=0 `(xk , uk)+ Vf (xN) .

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 12



Model Predictive Control Principal Components

Control law u0
0 (·) .

([Possibly set–valued] Feedback implicitly evaluated at current state.)

Closed–loop controlled dynamics x+ = f (x , u0
0(x)) .

([Possibly set–valued] Implicitly evaluated at encountered states.)

Value function V 0
N (·) .

(Lyapunov certificate for closed–loop controlled dynamics.)

Controllability set, the domain of the value function, XN .
(Positively invariant set for closed–loop controlled dynamics.)

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 13



Synthesis Properties

Under relatively mild assumptions on problem setting
(e.g., regular continuous–compact-ls–continuous setting) design process is:

Well–posed.

Consistently improving.

Positive invariance–inducing.

Stabilizing.

Optimizing.

However, the principal components and associated properties
depend strongly on the terminal conditions!
(Terminal constraint set Xf and terminal cost function Vf (·) .)

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 14
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Lower–Synthesis via Truncated Infinite Horizon OLOC

Given an integer N ∈ N and a state x ∈ X select finite sequences of

control actions uN−1 := {u0, u1, . . . , uN−1}, and

controlled states xN := {x0, x1, . . . , xN−1, xN},
which, for each k ∈ {0, 1, . . . ,N − 1}, satisfy

xk+1 = f (xk , uk) with x0 = x ,

xk ∈ X,

uk ∈ U, and

xN ∈ X,

and which minimize VN(xN ,uN−1) :=
∑N−1

k=0 `(xk , uk).

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 16



Terminal Ingredients and Assumptions

Constant (induced) terminal
constraint set Xf = X and cost function Vf (·) ≡ 0

Assumptions (key parts only):

Xf = X is control invariant.
(Very strong assumption.)

Prediction horizon N is sufficiently large.
(Controllability through ` (·, ·) assumption.)

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 17
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Upper–Synthesis via Modified Finite Horizon OLOC

Given an integer N ∈ N and a state x ∈ X select finite sequences of

control actions uN−1 := {u0, u1, . . . , uN−1}, and

controlled states xN := {x0, x1, . . . , xN−1, xN},
which, for each k ∈ {0, 1, . . . ,N − 1}, satisfy

xk+1 = f (xk , uk) with x0 = x ,

xk ∈ X,

uk ∈ U, and

xN ∈ Xf ,

and which minimize VN(xN ,uN−1) :=
∑N−1

k=0 `(xk , uk)+ Vf (xN) .

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 19



Terminal Ingredients and Assumptions

Constant (designed) terminal
constraint set Xf ⊆ X and cost function Vf (·) � 0

Assumptions (key parts only):

Local positive invariance of Xf :
Xf ⊆ X, ∀x ∈ Xf , κf (x) ∈ U and f (x , κf (x)) ∈ Xf

Local Lyapunov stability with certificate Vf (·):
∀x ∈ Xf , Vf (f (x , κf (x))) ≤ Vf (x)− `(x , κf (x))

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 20
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Lower– and Upper–Syntheses Bottle-neck

Lower–synthesis:
Prediction horizon N Large enough.
Terminal ingredients Xf and Vf (·) Induced (state independent).
The estimate for large enough N Global (state independent).

Upper–synthesis:
Prediction horizon N Any (non–negative).
Terminal ingredients Xf and Vf (·) Global (state independent).
The estimate for large enough N Not needed.

There is no reason for above induced hypothesis!

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 22



Visiting a Friend and MPC

1. Can go from R to H.

2. Can go from R to C,
then from C to S,
then from S to H.

3. Can go from R to S,
from S to H.

4. Can do many other things.
(e.g., fail to visit a friend :-(.)

How to make some maths of this for MPC (and increase its value)?

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 23



Revisiting MPC Synthesis Process

Take an infinite horizon OC process

0 1 2 . . . N − 1 N N + 1 . . .

x0
0 x0

1 x0
2 . . . x0

N−1 x0
N x0

N+1 . . .

u0
0 u0

1 u0
2 . . . u0

N−1 u0
N u0

N+1 . . .

and rewrite it via finite horizon OC
processes as shown on right.

Reconsider and revise traditionally
employed terminal conditions.

A/P 0 1 2 . . . N − 1 N

x0
0 x0

1 x0
2 . . . x0

N−1 x0
N

0 u0
0 u0

1 u0
2 . . . u0

N−1

x0
1 x0

2 x0
3 . . . x0

N x0
N+1

1 u0
1 u0

2 u0
3 . . . u0

N

x0
2 x0

3 x0
4 . . . x0

N+1 x0
N+2

2 u0
2 u0

3 u0
4 . . . u0

N+1

...
...

...
... . . .

...
...

x0
k x0

1+k x0
2+k . . . x0

N+k−1 x0
N+k

k u0
k u0

1+k u0
2+k . . . u0

N+k−1

...
...

...
... . . .

...
...
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Revisiting MPC Synthesis Process

A/P 0 1 2 . . . N − 1 N

x0
0 x0

1 x0
2 . . . x0

N−1 x0
N

0 u0
0 u0

1 u0
2 . . . u0

N−1

x0
1 x0

2 x0
3 . . . x0

N x0
N+1

1 u0
1 u0

2 u0
3 . . . u0

N

x0
2 x0

3 x0
4 . . . x0

N+1 x0
N+2

2 u0
2 u0

3 u0
4 . . . u0

N+1

...
...

...
... . . .

...
...

x0
k x0

1+k x0
2+k . . . x0

N+k−1 x0
N+k

k u0
k u0

1+k u0
2+k . . . u0

N+k−1

...
...

...
... . . .

...
...

Simple (semi–group like) observation:

x0
N+k(x0

0 ) = x0
N(x0

k ).

Key steps:

1. Allow terminal constraint set to be
state–dependent Xf (·) .

2. Allow terminal cost function to be
state–dependent Vf (·, ·) .

3. Rework the usual terminal conditions.
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Generalized Terminal Conditions: Approach

Key idea:

Employ a set Tf of triplets Tf that are composed of terminal constraint
sets Xf , control laws κf (·) and cost functions Vf (·).

Discrete setting in this talk for simplicity and practicality.
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Generalized Terminal Conditions: Discrete Setting

A discrete set Tf of Tf := (Xf , κf (·) ,Vf (·)) triplets:

Tf := {Tf i = (Xf i , κf i (·) ,Vf i (·)) : i ∈ I}

Generalized conditions (Strong variant; Key points):

State and control constraints admissibility:
∀i ∈ I, Xf i ⊆ X.

∀x ∈ Xf i , κf i (x) ∈ U.

Positive invariance and stability requirements:
∀i ∈ I, ∃j ∈ I, ∀x ∈ Xf i , f (x , κf i (x)) ∈ Xf j .

∀x ∈ Xf i , Vf j(f (x , κf i (x))) ≤ Vf i (x)− `(x , κf i (x)).

(Note: For a weak variant, replace ∀i ∈ I, ∃j ∈ I, ∀x ∈ Xf i with
∀i ∈ I, ∀x ∈ Xf i , ∃j ∈ I, i.e. allow j to depend on both i and x .)
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Generalized Synthesis: Discrete Setting

Given an integer N ∈ N and a state x ∈ X select

an index i and finite sequences of

control actions uN−1 := {u0, u1, . . . , uN−1}, and

controlled states xN := {x0, x1, . . . , xN−1, xN},
which, for each k ∈ {0, 1, . . . ,N − 1}, satisfy

xk+1 = f (xk , uk) with x0 = x ,

xk ∈ X,

uk ∈ U,

xN ∈ Xf i , and i ∈ I ,

and which minimize VN(xN ,uN−1, i) :=
∑N−1

k=0 `(xk , uk)+ Vf i (xN) .
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Lower–, Upper– and Generalized Syntheses: Illustration

Syntheses time transitions (from k to k + 1)

Lower–Synthesis.
(Xf = X fixed.)

Upper–Synthesis.
(Xf ⊆ X fixed.)

Generalized Synthesis.
(Xf i ⊆ X variable.)

Fact: Generalized synthesis relaxes both the lower– and upper– syntheses.
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GMPC + Reachability = Smart Autonomous Behaviour

1. Can go from Y to F.

2. Can go from Y to B & A,
then from B & A to C & B,
then from C & B to F.

3. Can go from Y to C & B,
from C & B to F.

4. Can do many other things.
(e.g., hit obstacles :-(.)

GMPC uses dynamically consistent covers that can be easily constructed
using (backward) reachability analysis!
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Generalized Synthesis: Summary

Payoff: Obvious improvements of all properties.

Price: Increased complexity and need for computable parametrizations.

Lower Upper Generalized

N Long enough All All
(Xf , κf (·) ,Vf (·)) Constant Constant Variable
estimate of N Global – –

Word of caution: The dynamics of terminal constraint sets and cost
functions are not necessarily “stabilized”.

Generalization: Employment of generalized stage (and overall) cost
penalizing additionally the deviation of terminal triplets (Xf , κf (·) ,Vf (·))
from the “equilibrium” terminal triplet (X∗f , κ∗f (·) ,V ∗f (·)).

Saša V. Raković, Ph.D. DIC Generalized Model Predictive Control ISR @ UMD College Park, February 24, 2016 30



Part

Opening

Model Predictive Control of the Day Before Yesterday

Model Predictive Control Synthesis

Model Predictive Control Lower–Synthesis

Model Predictive Control Upper–Synthesis

Model Predictive Control Generalized Synthesis

Closing
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A Big Picture in MPC

Integration of identification and MPC
(e.g., Adaptive MPC).

Integration of uncertainty modelling and MPC
(e.g., Flexible MPC under uncertainty).

Integration of estimation and MPC
(e.g., Output feedback MPC).

Integration of fault tolerance and MPC
(e.g., Reconfigurable and actively fault tolerant MPC).

Integration of MPC’s general components and optimization
(i.e., Integrated MPC synthesis).

Make sure that the sum of parts is equal to the whole!
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Making MPC an Integral Part of Autonomous Systems

Thanks for the attention!

Questions are, as always, welcome!
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ACC 2016 Events

Double Invited Session
“MPC, Quo Vadis?”.

with W. S. Levine, B. Açikmeşe and I. V. Kolmanovsky

12 papers by well–known contributors in MPC.

Workshop
“MPC Under Uncertainty: Theory, Computations and Applications”.

with W. S. Levine, B. Açikmeşe and I. V. Kolmanovsky

Concise and unifying tutorial to MPC under uncertainty.
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