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Details

Abstract

A framework, developed in
collaboration with William S. Levine

and Behget Acikmese, for generalized
MPC is outlined.
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MPC Analogy

Jean Piaget (1896 — 1980)

Cognitive Psychology

Children learning and environment controlling

3. Action

4. Collation
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MPC Analogy

Jacques Richalet (1936 —)

Predictive Functional Control

Credits for Brilliant Analogy

3. Action

1. Model

4. Collation
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3. Control
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MPC Paradigm
Goals:

Constraint satisfaction,
Stability, and

Optimized performance.

Tool:

System

Current Information
(State)

Model predictive control.

Current Decision

Basic Decision
(Control)

Making Process
Model predictive control (MPC):
Repetitive decision making process (DMP).

Basic DMP is finite horizon optimal control.
Saga V. Rakovié, Ph.D. DIC
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Basic DMP (Finite Horizon Optimal Control)

Given an integer N € 91 and a state x € X select predicted sequences of

control actions uy_1 := {wo, u1,...,un—1}, and

controlled states xp := {xo, x1, ..., XN—_1, XN},

which, for each k € {0,1,..., N — 1}, satisfy

Unsafe Region

Xk+1 = F(xk, ug) with xg = x,

h "" quilibrium
N

ur € U, and

Infinite horizon X
optimal trajectory at (x.k) XN € f

Finite horizon
optimal trajectory at (xk)

and which minimize Vy(xn,uy—1) := 22/:_01 (X, u)+ Vie(xn) -
Xg and Ve ()

o & E E E DA
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Main properties:

m MPC law ud(-) is feedback implicitly evaluated at current state

Theoretical implementation:

m Predictions and optimized predictions are, however, open—loop.
m Consistently improving and stabilizing (under mild assumptions).

m Mathematical (nonlinear) programming in general case.

m Strictly convex programming in most frequent cases.
Practical implementation:

m Online optimization.

m Offline parameteric optimization and online look—up tables.

m Combinations of the online and offline parameteric optimization.
«O)>» «Fr « > « E» Q>
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Setting

xt = f(x,u)

f (-,-) the state transition map,
X the state variable, and

u the control variable.

xeXand ueU
X the state constraint set, and
U the control constraint set.

the (accumulated) sum of the stage costs.

().

Model Predictive Control (MPC).
Repetitive Decision Making Process (DMP).
Open—Loop Optimal Control (OLOC).

=] & = = = VA
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(Perfect) Synthesis via Infinite Horizon OLOC

Given a state x € X select infinite sequences of

control actions us := {ug, t1,...,Un-1,...}, and

controlled states Xoo := {X0, X1, -« s XN—1, XN, - - - },
which, for each k € {0,1,...,N —1,...}, satisfy

Unsafe Region

quilibrium

Xk+1 = F(xk, ug) with xg = x,

xkx € X, and

ug € U,
Infinite horizon
optimal trajectory at (x,k)

and which minimize Vog(Xoo, Uso) 1= Y o (XK, Uk).

o F = = £ DA
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(Actual) Synthesis via Modified Finite Horizon OLOC

Given an integer N € 91 and a state x € X select finite sequences of

control actions uy_1 := {wo, u1,...,un—1}, and

controlled states xp := {xo, x1,...,XN—1, XN},
which, for each k € {0,1,..., N — 1}, satisfy

Unsafe Region

Xk+1 = F(xk, ug) with xg = x,

e ’ Equilibrium
N

u, € U, and

Infinite horizon
optimal trajectory at (x.k) XN G Xf ,

Finite horizon
--------------- optimal trajectory at (x,k)

and which minimize Vy(xn,uy—1) := Zzlz_ol O(xk, ug)+ Ve(xn) -

o F = = £ DA
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m Control law ) (*) .

([Possibly set—valued] Feedback implicitly evaluated at current state.)
m Closed—loop controlled dynamics x* = f(x, ud(x)) .

([Possibly set-valued] Implicitly evaluated at encountered states.)
m Value function V3 (-).

(Lyapunov certificate for closed—loop controlled dynamics.)
m Controllability set, the domain of the value function, X}y .

(Positively invariant set for closed—loop controlled dynamics.)
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Synthesis Properties

Under relatively mild assumptions on problem setting
(e.g., regular continuous—compact-Is—continuous setting) design process is:

Well-posed.
m Consistently improving.
m Positive invariance—inducing.

m Stabilizing.

Optimizing.

However, the principal components and associated properties
depend strongly on the terminal conditions!
(Terminal constraint set X and terminal cost function V¢ () .)
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Lower—Synthesis via Truncated Infinite Horizon OLOC

Given an integer N € 9 and a state x € X select finite sequences of
control actions uy_1 := {uwg, U1, ..., uy—1}, and

controlled states xp 1= {xo, X1, ..., XN—1, XN},
which, for each k € {0,1,..., N — 1}, satisfy

Unsafe Region

Xk4+1 = )“(Xk7 Uk) with xp = x,

Equilibrium

XK € X,
u, € U, and

Toncated nfte orzon xy € X,
and which minimize V(xn,uny—1) == ZLV:_OI O( Xk, ug).

o F = = £ DA
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Terminal Ingredients and Assumptions

Constant (induced) terminal

constraint set Xy = X and cost function V¢ (-) =0
Assumptions (key parts only):

m X = X is control invariant.
(Very strong assumption.)

m Prediction horizon N is sufficiently large.
(Controllability through £(-,-) assumption.)

Saga V. Rakovié, Ph.D. DIC
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Upper-Synthesis via Modified Finite Horizon OLOC

Given an integer N € 91 and a state x € X select finite sequences of

control actions uy_1 := {uwo, u1,...,un—1}, and

controlled states xp := {xo, X1, ..., XN—1, XN},

which, for each k € {0,1,..., N — 1}, satisfy

Unsafe Region

Xk+1 = F(xk, ug) with xg = x,

) “.' Equilibrium
N

u, € U, and

Infinite horizon

optimal trajectory at (x,K) XN G Xf ,

Finite horizon
optimal trajectory at (x.k)

and which minimize Vy(xy,un_1) == ELV:_OI O(xk, ug )+ Ve(xn) -

o & E E E DA
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Terminal Ingredients and Assumptions

Constant (designed) terminal
constraint set Xy C X and cost function V¢ (:) = 0

Assumptions (key parts only):

m Local positive invariance of X¢:
Xr C X, Vx € Xy, Hf(X) € U and f(X, /ﬁ?f(X)) e Xr

m Local Lyapunov stability with certificate Vi (-):
Vx € X, Vr(f(x,re(x))) < Vr(x) — U(x, ke(x))
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Lower—synthesis:

Prediction horizon N Large enough.

Terminal ingredients X¢ and V¢ (-) Induced (state independent).
The estimate for large enough N Global (state independent).

Upper—synthesis:
Prediction horizon N Any (non—negative).

Terminal ingredients X¢ and V¢ (-) Global (state independent).
The estimate for large enough N Not needed.

There is no reason for above induced hypothesis!

«O>r «Fr «=>» «E» = Q>



Visiting a Friend and MPC

1. Can go from R to H.

2. Can go from R to C,
then from C to S,
then from S to H.

3. Can go from R to S,
from S to H.

= 4. Can do many other things.
(e.g., fail to visit a friend :-(.)

How to make some maths of this for MPC (and increase its value)?
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Revisiting MPC Synthesis Process

Take an infinite horizon OC process A/Plo 1 2 .. N-1 N
0 0 0 0 0
Xy X{ X5 ... Xyn_g XN
012 ...N-1NN+1... 0 [ & W@ ...
0o ,0 0 0 0 0
Xg X[ X3 .o Xy_1 Xy Xyypoc-- X? Xg x§) XI?/ X/?I-l
ud W Wy W u(,)vJrl 1 T, B T
0 0 0 0 0
. . . . . . X X X X X
and rewrite it via finite horizon OC S Wt SR
: 2 | W W .. W,
processes as shown on right.
0 0 0 0
Reconsider and revise traditionally XS Xt“ Xé+k X'(;Hk*l XNtk
employed terminal conditions. Y Mk Boh o YNkt
o = = = = 9ace
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Revisiting MPC Synthesis Process

Simple (semi—group like) observation:

Key steps:

1. Allow terminal constraint set to be
state—dependent Xg(-) .

0 0 . .
- X1 R 2. Allow terminal cost function to be

state—dependent V¢ (-,-) .

3. Rework the usual terminal conditions.

o F = = =
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Generalized Terminal Conditions: Approach
Key idea:

Employ a set 7r of triplets T¢ that are composed of terminal constraint
sets X¢, control laws k¢ (-) and cost functions V¢ ().

Discrete setting in this talk for simplicity and practicality.

Saga V. Rakovié, Ph.D. DIC

Generalized Model Predictive Control

] = =

ISR @ UMD College Park, February 24

, 2016



Generalized Terminal Conditions: Discrete Setting

A discrete set Tr of T¢ := (X¢, k¢ (+), VF (+)) triplets:
Tr = {Tri = (Xri, ke (), Vi (4) : i €1}

Generalized conditions (Strong variant; Key points):

VieT, X¢; C X.
Vx € X, /{f,'(X) e U.

VieZ, dj €, Vxée Xy, f(X, Kf,'(X)) Gij.
Vx € Xyj, Vri(f(x, kri(x))) < Vri(x) = U(x, rri(x))-

(Note: For a weak variant, replace Vi € Z, 3j € Z, Vx € X¢; with
VieZ, Vx € Xy;, 3j €Z, i.e. allow j to depend on both i and x.)
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Generalized Synthesis: Discrete Setting

Given an integer N € 91 and a state x € X select
an index i and finite sequences of
control actions uy_1 := {wo, v1,...,un—1}, and

controlled states xp := {xo, x1, ..., XN—_1, XN},

which, for each k € {0,1,..., N — 1}, satisfy

Unsafe Region

Xkr1 = F(Xk, ux) with xo = x,
» quilibrium
‘j Xk € X,

UkGU,

Infinite horizon [

optimal trajectory at (x,k) XN E Xfl , an d I e I ,
Finite horizon

optimal trajectory at (x )

and which minimize Vy(xn,uny—1,1) := ELV:_OI O(xk, uk )+ Vei(xn) -

o F
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Lower—, Upper— and Generalized Syntheses: lllustration
Syntheses time transitions (from k to k + 1)
Lower—Synthesis.
(Xf = X fixed.)

Upper—Synthesis.

(X¢ C X fixed.)

Saga V. Rakovié, Ph.D. DIC

Generalized Synthesis.
(Xf; € X variable.)
Fact: Generalized synthesis relaxes both the lower— and upper— syntheses.

Generalized Model Predictive Control
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GMPC + Reachability = Smart Autonomous Behaviour

E 1. Can go from Y to F.

2. Can go from Y to B & A,
then from B & A to C & B,
then from C & B to F.

B&A

3. Can go from Y to C & B,
from C & B to F.

E
c&B 4. Can do many other things.
(e.g., hit obstacles :-(.)

GMPC uses dynamically consistent covers that can be easily constructed
using (backward) reachability analysis!
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Generalized Synthesis: Summary

Payoff: Obvious improvements of all properties.
Price: Increased complexity and need for computable parametrizations.

| Lower Upper Generalized
N Long enough  All All

(X¢,5¢ (), Ve (1))| Constant Constant Variable

estimate of N Global - -

Word of caution: The dynamics of terminal constraint sets and cost
functions are not necessarily “stabilized”.

Generalization: Employment of generalized stage (and overall) cost
penalizing additionally the deviation of terminal triplets (X¢, k¢ (-), V¥ (+))
“ T " . . * ok *
from the “equilibrium” terminal triplet (X}, s} (-), V7 (*)).
=} = = E £ DA
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m Integration of identification and MPC
(e.g., Adaptive MPC).

m Integration of uncertainty modelling and MPC
(e.g., Flexible MPC under uncertainty).

m Integration of estimation and MPC
(e.g., Output feedback MPC).

m Integration of fault tolerance and MPC
(e.g., Reconfigurable and actively fault tolerant MPC).

m Integration of MPC's general components and optimization
(i.e., Integrated MPC synthesis).

Make sure that the sum of parts is equal to the whole!
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Thanks for the attention!

a

Questions are, as always, welcome!
«O>r «Fr < > DA
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m Double Invited Session
“MPC, Quo Vadis?".

m with W. S. Levine, B. Acikmese and |. V. Kolmanovsky

m 12 papers by well-known contributors in MPC.
m Workshop

“MPC Under Uncertainty: Theory, Computations and Applications”
m with W. S. Levine, B. Agikmese and |. V. Kolmanovsky

m Concise and unifying tutorial to MPC under uncertainty.
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