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MPC Analogy

Jean Piaget (1896 — 1980)

Cognitive Psychology

Children learning and environment controlling
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MPC Analogy

Jacques Richalet (1936 —)

Predictive Functional Control

Credits for Brilliant Analogy

3. Action

1. Model

4. Collation
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MPC Paradigm
Goals:

Constraint satisfaction,
Stability, and

Optimized performance.

Tool:

System

Current Information
(State)

Model predictive control.

Current Decision

Basic Decision
(Control)

Making Process
Model predictive control (MPC):
Repetitive decision making process (DMP).

Basic DMP is finite horizon optimal control.
Saga V. Rakovié, Ph.D. DIC
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Basic DMP (Finite Horizon Optimal Control)

Given an integer N € 91 and a state x € X select predicted sequences of

control actions uy_1 := {uwo, u1,...,un—1}, and

controlled states xp := {xo, X1, ..., XN—1, XN},

which, for each k € {0,1,..., N — 1}, satisfy

Unsafe Region

T Xk1 = F(xk, ug) with xg = x,
o ’ Equilibrium + ( ’ )

u, € U, and

Infinite horizon
optimal trajectory at (x.k) XN G Xf ,

Finite horizon
optimal trajectory at (x.k)

and which minimize Vy(xn, uy—1) := 221;01 O(xk, ug)+ Ve(xn) -

[m] = = =
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Main properties:

m MPC law ud(-) is feedback implicitly evaluated at current state

Theoretical implementation:

m Predictions and optimized predictions are, however, open—loop.
m Consistently improving and stabilizing (under mild assumptions).

m Mathematical (nonlinear) programming in general case.

m Strictly convex programming in most frequent cases.
Practical implementation:

m Online optimization.

m Offline parameteric optimization and online look—up tables.

m Combinations of the online and offline parameteric optimization.
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RMPC Paradigm

Goals:

Robust constraint satisfaction,
. System
Robust stability,

Current Information
(State)

Optimized robust performance, and
Computational practicability.

Basic Decision
Tool:

Current Decision Making Process
(Control)

Robust model predictive control.

Robust model predictive control (RMPC):
Repetitive decision making process (DMP).

Basic DMP is finite horizon robust optimal control.
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m Intricate interaction of uncertainty with:
m System evolution,

m Constraints, and
m Performance.

m Fragility (non—robustness) of conventional MPC.

m Convoluted interplay between:

m Quality of guaranteed structural properties and

m Complexity of associated computational methods.
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States xx depend on:

initial state xp, and

controls ug, U1, ..., Ux_1.

Controls uy depend on:

initial state xg.
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Robust Model Predictive Control

Disturbances wy are independent.

5 6 7 8 9 10

Predicting Under Uncertainty (x* = x + u + w)

States x, depend on:

initial state xg,
controls ug, tn, ..., Ux—1, and
disturbances wyp, wy ..., Wx_1

Controls ug depend on:

current state xy.
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Key issues (mostly due to state constraints):

m Asymptotic stability needs not be a robust property (Teel),

m Optimal control of a continuous control system might induce a
discontinuous controlled dynamics, and

m Optimal control might be a fragile process itself (Rakovi¢).

Message:

m There's no thing such as a free lunch.

m Ensure robustness by design rather than hoping to get it for free.
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Dynamic Programming Based RMPC

Richard E. Bellman (1920 — 1984)

Dynamic Programming

T - |
o C f Di ionalit
P J urse of Dimensionality
T e T

Minimax DP Recursion (with boundary conditions Vo (-) := V¢ (-) and Xo := Xy)
Max value functions J (-):
V(x,u) € Xk x U, Ji(x,u) = maxy{l(x, u,w) + Vi_1(f(x,u,w)) : we W}
Minimax value functions V (-):
Vx € Xg, Vi(x) =ming{Jk(x,u) : uelU A Vw eW, f(x,u,w) € Xr_1}.

Minimax optimal control laws wuy () are the optimizers of the minimax value functions:
Vx € Xk, uk(x) =argming{Jk(x,u) : ue U A Yw e W, f(x,u,w) € Xe_1}.
Domains of the minimax value functions X, are the minimax controllability sets:

Xk = F1(Xy_1) where F 3 (X)={x€X : JueU, VweW, f(x,u,w) € X}.

For DP based RMPC, one makes (repetitive) use of (a selection of) uy (-) and V() over Xy.
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Closed—Loop RMPC

.«
System: 4 IR
o |1 |2 |3 Kol BREY
+ % .*3
XT=x4+u+w . _ . % S
Tut Uncertainty vs Time 0 e
’ S .
, .
Uncertainty: ‘ R
y 0 |1 |2 |3 14
A} -
w &€ [—1,1] ‘\ e —.‘.
N I
. . 0 1 23 K RO DY i
Prediction horizon: & St
- -~
N=4 L )
Predicted Controls vs Time .

Predicted States vs Time
Closed—Loop (or brute force scenarios based) RMPC is clearly intractable!

o = E E T 9ace

Saga V. Rakovié, Ph.D. DIC Robust Model Predictive Control ISR @ UMD College Park, February 22, 2016



Open—Loop RMPC

o

System: R N P

« 2e2

xtP=x+u+w IO Il ]2 13 B RO R A
:’ ",'

Uncertainty vs Time 0 MY Pae

Uncertainty: ‘ "~

y 0 |1 |2 |3 14

A} -

w e [-1,1] Y % O
‘\ Il’

. ‘o “~~ "-

Prediction horizon: & NS

4 34

0 1 2 3 Y PCS
_ ) i 1 'Y
N=4 Predicted Controls vs Time ¢,

Predicted States vs Time
Open—Loop (or a careless man crossing street) RMPC is clearly insensitive!
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m What RMPC a rational and intelligent man should be happy with?

m Improved computability w.r.t. DP based and closed—loop RPMC.

m Improved sensibility w.r.t. conventional and open—loop RMPC.
m And anything else on top of that as a bonus.

m Reconsider the whole approach to MPC under uncertainty.
(In the spirit of “design the whole and then its parts”.)

m Two key steps for simplifying complexity:

m Utilization of parameterized predictions under uncertainty.

m Acceptance of generalized notions and natural performance criteria.
«O)>» «Fr « > « E» Q>



Separable RMPC (Linear—Polytopic Setting)

initial conditions
xT=x+u+w,

w e [—1,1],

Predicted Controls vs Time N = 4.

Parameterization via partial o 1 2 3 4
0 e ) L) ° )
states IO Il IZ I3 I I I
1
_ \k Uncertainty vs Ti
X = Zj:o X(j,k) ncertainty vs Time I I
2
controls
K o 1 2 3
Uk = Zj:o U k) 0 e e o o 3 I
dynamics 1 I I I 4
X(j,k+1) = AX(j,k) + Bu(j,k) I I Predicted States vs Time

X(0,0) = X A X(k,k) = Wk—1 s

Employ separable RMPC as compatible with the superposition principle!
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Separable prediction structure

(x, u)—part © time |0 1 2 .k . N—-1 N

0 X(0,0) = X X(0,1) X(0,2) -+ X(0,k) - X(0,N—1) X(0,N)

0 U(0,0) U(0,1) U(0,2) - U(0,k) - U,N—1)

1 X(1,1) = W0 X(1,2) < X(1,K) - X(1,N—1) X(1,N)

1 u(1,1) u(1,2) UL, K) - U, N—1)

2 X(2,2) = WL - X(2,K) - X(2,N—1) X(2,N)

2 U(2,2) ©U@2,K) - UR2,N-1)

k X(k,k) = Wk—1 -+ X(k,N—1) X(k,N)

Ls U(k,K) < U(k,N—1)

N—1 X(N—1,N—1) = WN—2 X(N—1,N)
N—1 UN—1,N—1)

N X(N,N) = WN—1
N

total 00 Sj0XG) Sj-0%G.2) 0 Si-0XG.k) - - S0 Xi.n)
ikl o) Thotin EioUya) - Efotue oo Tjlg U

The x=rows dynamics x(j k1) = AX(j,k) + Bugj k) are deterministic.

For worst case cost use column-wise the k*—(x,u)-rows.

For worst case constraints use row—wise the k*—(x,u)

Saga V. Rakovié, Ph.D. DIC
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NO-RMPC
OL-RMPC
TIASF-RMPC
TVASF-RMPC
APDF-RMPC

SSF-RMPC
CL-RMPC
DP-Based—RMPC

Xk = D010 X(.k)
X =350 XG,k)
XK= Y0 X(i.k)
X = 30 X k)
X =30 X(i.k)
X = 30 X(ik)
Xk

Xk

u(xk, x) = K 32720 X(j k) Separable
uk(Xk, X) = U(o,k) Separable
uk(xi, x) = u,) + K EJ’-‘ZI X(j,k) Separable

uk (XK, X) = U,y + Z};l K, k)XG,k) | Separable
ug(xk, X) = o k) + Zj;l Mg X,y |Separable
ug (XK, X) = o,y + Zj"=1 u(j, k) (X(j,k)) | Separable

Uk (xk, x) = up(xx)
U (Xk, x) = ug(xk)

Aggregated
Aggregated (c0)

OL-RMPC (Blanchini; Lee and Yu;...),
TIASF-RMPC (Chisci and Zappa; Kouvaritakis and Cannon;...),
TVASF-RMPC (...;Lofberg;...),
APDF-RMPC (van Hessem and Bosgra; Lofberg; Kerrigan;...),

SSF-RMPC (Rakovi¢; Rakovi¢, Kouvaritakis, Cannon and Panos),
CL-RMPC (Bertsekas; Scoekert and Mayne;
DP-Based-RMPC (Bellman; Bertsekas; Mayne;...).

«O0>» «Fr» «Z» «

...), and

> £ 9DAE



RMPC Personal References

Saga V. Rakovié, Ph.D. DIC

What delayed the use of the superposition principle for design of RMPC?
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m The state tubes are sequences of sets of possible states.
m The control tubes are sequences of sets of possible controls.
m State and control tubes play role of state and control sequences.

m Tubes are induced from the dynamics, uncertainty and control policy.

Optimal tubes are obtained via tube optimal control.

m TMPC is repetitive online utilization of related tube optimal control.
m All RMPC methods result in tubes.
Parameterization of tubes and control policy is of major importance.

«O>r «Fr «=>» «E» = Q>



m Rigid TMPC (2002 - 2006)
with D. Q. Mayne and involving some collaborations.

m Homothetic TMPC (2007 — 2009)
involving some collaborations.

m Parameterized TMPC (2007 — 2010)
involving some collaborations.

m Elastic TMPC (2015 - 2016)
with W. S. Levine and B. Acikmese.

«O>r «Fr «=>» «E» =] Q>



Rigid TMPC Key Features

m Parameterizations
m States xx = zx + 5.

m Controls ux = vx + Ksy.

m “Nominal” dynamics zx11 = Azx + Bvg.

m “Local” dynamics sg41 = (A+ BK)sk + wi
m Tubes (with §(1) := {x

Cx <1})
m State cross—sections Xy = zx & S(1).
m Control cross—sections Uy = v, & KS(1).

1
m “Nominal" dynamics zx41 = Azk + Bvk.

Saga V. Rakovié, Ph.D. DIC

m “Local” dynamics (A+ BK)S(1) @ W C S5(1).

Robust Model Predictive Control
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Rigid TMPC References

State and, observer based, output feedback rigid TMPC

automatica

A few other papers supporting strongly the methodology.
Saga V. Rakovié, Ph.D. DIC

Robust Model Predictive Control
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Homothetic TMPC Key Features

m Parameterizations
m States xx = zx + Sk.
m Controls ug = vk + Ksy.
m Decoupled “nominal” dynamics zxy1 = Azx + Bvg.

m Decoupled “local” dynamics sg11 = (A+ BK)sk + w.

m Tubes (with S(a) :={x : Cx < al} for « € R>o)
m State cross—sections Xy = zx @ S(ak).
m Control cross—sections Ux = vk @& KS(a).
m Decoupled “nominal” dynamics zxy1 = Azx + Buvg.
Decoupled “local” dynamics (A+ BK)S(ak) @ W C S(akt1).
m Coupled dynamics Azx 4+ Bvx @ (A+ BK)S(ak) W C z1 ® S(ovk41).

o & E E E DA
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Approximate reachability and state feedback homothetic TMPC.
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Parameterized TMPC Key Features

m Parameterizations
m States xx = EJI-;O X(j,k)-

m Controls uy = ZJI;O Ugj,k)-

m Partial deterministic dynamics X k11) = AX(j k) + Bug k)

m Partial initial conditions x,0) = X A Xk,k) = Wk—1.

m Minkowski decomposable tubes (free and optimized online)
m State cross—sections Xk = X(o,x) P @jle X(j,k)-
m Partial state cross—sections Xj x) = convh({x(ij«) : i € T}).
m Control cross—sections Uy = up ) EBJ 1 Ui ny-

m Partial control cross—sections U xy = convh({ugjx @ 7 €T}).

m Partial extreme deterministic dynamics xj j k+1) = AX(ij.k) T BU(i jk)

=} 5 E £ DA
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Robust control invariance and state feedback parameterized TMPC.

Parameterized Robust Control Invariant Sets Parameterized Tube Model Predlctwe Comml
for Linear Systems: Theoretical Advances Sl b, Ko
and Computational Remarks
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Elastic TMPC Key Features

m Parameterizations
m States xx = zx + Sk.
m Controls ux = vk + K(ak)sk.
m Decoupled “nominal” dynamics zx+1 = Azx + Buvg.

m Decoupled “local” dynamics sx11 = (A + BK(ak))sk + wk.

m Tubes (with §(a) :=={x : Cx< a}forace 9%;0)
m State cross—sections Xy = zx @ S(ak).
m Control cross—sections Ux = vk ® K(ax)S(ak).
m Decoupled “nominal” dynamics zx+1 = Azx + Buvg.
m Decoupled “local” dynamics (A + BK(ax))S(ax) @ W C S(ak+1).

Coupled dynamics
Az + By @ (A + BK(ak))S(ak) AWC zy1 D 5(ak+1).

o F = = £ DA

Saga V. Rakovié, Ph.D. DIC Robust Model Predictive Control ISR @ UMD College Park, February 22, 2016



Elastic TMPC References

State feedback elastic TMPC.

Saga V. Rakovié, Ph.D. DIC

Robust Model Predictive Control

Conference version out. Journal version in progress.
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TMPC Methods in Books

Model Predictive Control:

Theory and Design

James B. Rawlings
David Q. Mayne

Includes my work with D. Q. Mayne on

m Rigid state feedback TMPC.

m Rigid, observer based, output feedback
TMPC.

m Time—varying, observer based, output
feedback TMPC.
O~ publishing

And a few other results that | developed.

Saga V. Rakovié, Ph.D. DIC
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TMPC Methods in Books

Advanced Textbooks in Control and Signal Processing

Basil Kouvaritakis Includes my work on
Mark Cannon

Model Predictive m Rigid TMPC (with D. Q. Mayne).
Control™h

m Homothetic TMPC.

(lassical, Robust and Stochastic
m Parameterized TMPC.

And a few other results that | developed.

@ Springer
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m Scenarios based “quasi-robust” MPC.

Real-time RMPC (Real-time TMPC).

Stochastic MPC.

Decentralized MPC under uncertainty.

Networked MPC under uncertainty.

Economic MPC under uncertainty.

And many more, MPC has seen tremendous expansion.
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Potential Directions

m Modelling uncertainty for MPC.

m Contemporary uncertainty in MPC.
m Resilient MPC.

m Fault—tolerant MPC.

m MPC for autonomous systems.

m Collaboratively adaptive MPC.

And many more classical and contemporary directions, since MPC is
applicable to a wide range of conventional and modern areas.

o F = = £ DA
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m Integration of identification and MPC
(e.g., Adaptive MPC).

m Integration of uncertainty modelling and MPC
(e.g., Flexible MPC under uncertainty).

m Integration of estimation and MPC
(e.g., Output feedback MPC).

m Integration of fault tolerance and MPC
(e.g., Reconfigurable and actively fault tolerant MPC).

m Integration of MPC's general components and optimization
(i.e., Integrated MPC synthesis).

Make sure that the sum of parts is equal to the whole!
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More of a story telling and a slightly different angle!

Questions are, as always, welcome!
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m Double Invited Session
“MPC, Quo Vadis?".

m with W. S. Levine, B. Acikmese and |. V. Kolmanovsky

m 12 papers by well-known contributors in MPC.
m Workshop

“MPC Under Uncertainty: Theory, Computations and Applications”
m with W. S. Levine, B. Agikmese and |. V. Kolmanovsky

m Concise and unifying tutorial to MPC under uncertainty.
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