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MPC Analogy

Jean Piaget (1896 – 1980)

Cognitive Psychology

Children learning and environment controlling

1. Image 2. Aim 3. Action 4. Collation
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MPC Analogy

Jacques Richalet (1936 – )

Predictive Functional Control

Credits for Brilliant Analogy

1. Image 2. Aim 3. Action 4. Collation

1. Model 2. Reference 3. Control 4. Feedback
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MPC Paradigm

Goals:

Constraint satisfaction,

Stability, and

Optimized performance.

Tool:

Model predictive control.

Model predictive control (MPC):

Repetitive decision making process (DMP).

Basic DMP is finite horizon optimal control.
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Basic DMP (Finite Horizon Optimal Control)

Given an integer N ∈ N and a state x ∈ X select predicted sequences of

control actions uN−1 := {u0, u1, . . . , uN−1}, and

controlled states xN := {x0, x1, . . . , xN−1, xN},
which, for each k ∈ {0, 1, . . . ,N − 1}, satisfy

xk+1 = f (xk , uk) with x0 = x ,

xk ∈ X,

uk ∈ U, and

xN ∈ Xf ,

and which minimize VN(xN ,uN−1) :=
∑N−1

k=0 `(xk , uk)+ Vf (xN) .
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Key Facts

Main properties:

MPC law u0
0 (·) is feedback implicitly evaluated at current state.

Predictions and optimized predictions are, however, open–loop.

Consistently improving and stabilizing (under mild assumptions).

Theoretical implementation:

Mathematical (nonlinear) programming in general case.

Strictly convex programming in most frequent cases.

Practical implementation:

Online optimization.

Offline parameteric optimization and online look–up tables.

Combinations of the online and offline parameteric optimization.
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RMPC Paradigm

Goals:

Robust constraint satisfaction,

Robust stability,

Optimized robust performance, and

Computational practicability.

Tool:

Robust model predictive control.

Robust model predictive control (RMPC):

Repetitive decision making process (DMP).

Basic DMP is finite horizon robust optimal control.
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Pivotal Concerns

Intricate interaction of uncertainty with:

System evolution,

Constraints, and

Performance.

Fragility (non–robustness) of conventional MPC.

Convoluted interplay between:

Quality of guaranteed structural properties and

Complexity of associated computational methods.
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Predicting Without Uncertainty (x+ = x + u)

States xk depend on:

initial state x0, and

controls u0, u1, . . . , uk−1.

Controls uk depend on:

initial state x0.
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Predicting Under Uncertainty (x+ = x + u + w)

States xk depend on:

initial state x0,

controls u0, u1, . . . , uk−1, and

disturbances w0,w1 . . . ,wk−1.

Controls uk depend on:

current state xk .

Disturbances wk are independent.
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Fragility of Conventional MPC

Key issues (mostly due to state constraints):

Asymptotic stability needs not be a robust property (Teel),

Optimal control of a continuous control system might induce a
discontinuous controlled dynamics, and

Optimal control might be a fragile process itself (Raković).

Message:

There’s no thing such as a free lunch.

Ensure robustness by design rather than hoping to get it for free.
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Dynamic Programming Based RMPC

Richard E. Bellman (1920 – 1984)

Dynamic Programming

Curse of Dimensionality

Minimax DP Recursion (with boundary conditions V0 (·) := Vf (·) and X0 := Xf )

Max value functions Jk (·):
∀(x , u) ∈ Xk × U, Jk (x , u) = maxw{`(x , u,w) + Vk−1(f (x , u,w)) : w ∈W}.
Minimax value functions Vk (·):

∀x ∈ Xk , Vk (x) = minu{Jk (x , u) : u ∈ U ∧ ∀w ∈W, f (x , u,w) ∈ Xk−1}.

Minimax optimal control laws uk (·) are the optimizers of the minimax value functions:
∀x ∈ Xk , uk (x) = arg minu{Jk (x , u) : u ∈ U ∧ ∀w ∈W, f (x , u,w) ∈ Xk−1}.
Domains of the minimax value functions Xk are the minimax controllability sets:
Xk = F−1(Xk−1) where F−1(X ) = {x ∈ X : ∃u ∈ U, ∀w ∈W, f (x , u,w) ∈ X}.

For DP based RMPC, one makes (repetitive) use of (a selection of) uN (·) and VN (·) over XN .
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Closed–Loop RMPC

System:

x+ = x + u + w

Uncertainty:

w ∈ [−1, 1]

Prediction horizon:

N = 4

Closed–Loop (or brute force scenarios based) RMPC is clearly intractable!
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Open–Loop RMPC

System:

x+ = x + u + w

Uncertainty:

w ∈ [−1, 1]

Prediction horizon:

N = 4

Open–Loop (or a careless man crossing street) RMPC is clearly insensitive!
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Breaking Down Complexity

What RMPC a rational and intelligent man should be happy with?

Improved computability w.r.t. DP based and closed–loop RPMC.

Improved sensibility w.r.t. conventional and open–loop RMPC.

And anything else on top of that as a bonus.

Reconsider the whole approach to MPC under uncertainty.
(In the spirit of “design the whole and then its parts”.)

Two key steps for simplifying complexity:

Utilization of parameterized predictions under uncertainty.

Acceptance of generalized notions and natural performance criteria.
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Separable RMPC (Linear–Polytopic Setting)

Parameterization via partial

states

xk =
∑k

j=0 x(j ,k)

controls

uk =
∑k

j=0 u(j ,k)

dynamics

x(j ,k+1) = Ax(j ,k) + Bu(j ,k)

initial conditions

x(0,0) = x ∧ x(k,k) = wk−1

x+ = x + u + w ,
w ∈ [−1, 1],
N = 4.

Employ separable RMPC as compatible with the superposition principle!
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Separable prediction structure

(x, u)–part � time 0 1 2 . . . k . . . N − 1 N
0 x(0,0) = x x(0,1) x(0,2) . . . x(0,k) . . . x(0,N−1) x(0,N)
0 u(0,0) u(0,1) u(0,2) . . . u(0,k) . . . u(0,N−1)
1 x(1,1) = w0 x(1,2) . . . x(1,k) . . . x(1,N−1) x(1,N)
1 u(1,1) u(1,2) . . . u(1,k) . . . u(1,N−1)
2 x(2,2) = w1 . . . x(2,k) . . . x(2,N−1) x(2,N)
2 u(2,2) . . . u(2,k) . . . u(2,N−1)

. . .

. . .
k x(k,k) = wk−1 . . . x(k,N−1) x(k,N)
k u(k,k) . . . u(k,N−1)

. . .

. . .
N − 1 x(N−1,N−1) = wN−2 x(N−1,N)
N − 1 u(N−1,N−1)
N x(N,N) = wN−1

N

total x(0,0)
∑1

j=0 x(j,1)
∑2

j=0 x(j,2) . . .
∑k

j=0 x(j,k) . . .
∑N−1

j=0 x(j,N−1)
∑N

j=0 x(j,N)

total u(0,0)
∑1

j=0 u(j,1)
∑2

j=0 u(j,2) . . .
∑k

j=0 u(j,k) . . .
∑N−1

j=0 u(j,N−1)

The x–rows dynamics x(j ,k+1) = Ax(j ,k) + Bu(j ,k) are deterministic.

For worst case cost use column–wise the kth–(x,u)–rows.

For worst case constraints use row–wise the kth–(x,u)–columns.
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Main Existing Parameterizations in RMPC

RMPC Parameterized Parameterized Prediction
Method States Controls Structure

NO–RMPC xk =
∑k

j=0 x(j,k) uk (xk , x) = K
∑k

j=0 x(j,k) Separable

OL–RMPC xk =
∑k

j=0 x(j,k) uk (xk , x) = u(0,k) Separable

TIASF–RMPC xk =
∑k

j=0 x(j,k) uk (xk , x) = u(0,k) + K
∑k

j=1 x(j,k) Separable

TVASF–RMPC xk =
∑k

j=0 x(j,k) uk (xk , x) = u(0,k) +
∑k

j=1 K(j,k)x(j,k) Separable

APDF–RMPC xk =
∑k

j=0 x(j,k) uk (xk , x) = u(0,k) +
∑k

j=1 M(j,k)x(j,j) Separable

SSF–RMPC xk =
∑k

j=0 x(j,k) uk (xk , x) = u(0,k) +
∑k

j=1 u(j,k)(x(j,k)) Separable

CL–RMPC xk uk (xk , x) = uk (xk ) Aggregated
DP–Based–RMPC xk uk (xk , x) = uk (xk ) Aggregated (∞)

OL–RMPC (Blanchini; Lee and Yu;...),

TIASF–RMPC (Chisci and Zappa; Kouvaritakis and Cannon;...),

TVASF–RMPC (...;Löfberg;...),

APDF–RMPC (van Hessem and Bosgra; Löfberg; Kerrigan;...),

SSF–RMPC (Raković; Raković, Kouvaritakis, Cannon and Panos),

CL–RMPC (Bertsekas; Scoekert and Mayne; ...), and

DP–Based–RMPC (Bellman; Bertsekas; Mayne;...).
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Robust Model-Predictive Control

Saša Raković�

Member of the Senior Common Room at St. Edmund Hall, Oxford University, Oxford, UK

Abstract

Model-predictive control (MPC) is indisputably one of the rare modern control techniques that has

significantly affected control engineering practice due to its unique ability to systematically handle

constraints and optimize performance. Robust MPC (RMPC) is an improved form of the nominal

MPC that is intrinsically robust in the face of uncertainty. The main objective of RMPC is to devise

an optimization-based control synthesis method that accounts for the intricate interactions of the

uncertainty with the system, constraints, and performance criteria in a theoretically rigorous and

computationally tractable way. RMPC has become an area of theoretical relevance and practical

importance but still offers the fundamental challenge of reaching a meaningful compromise

between the quality of structural properties and the computational complexity.

Keywords Model-predictive control • Robust model-predictive control • Robust optimal control

• Robust stability

Introduction

RMPC is an optimization-based approach to the synthesis of robust control laws for constrained

control systems subject to bounded uncertainty. RMPC synthesis can be seen as an adequately

defined repetitive decision-making process, in which the underlying decision-making process

is a suitably formulated robust optimal control (ROC) problem. The underlying ROC problem

is specified in such a way so as to ensure that all possible predictions of the controlled state

and corresponding control actions sequences satisfy constraints and that the “worst-case” cost

is minimized. The decision variable in the corresponding ROC problem is a control policy (i.e., a

sequence of control laws) ensuring that different control actions are allowed at different predicted

states, while the uncertainty takes on a role of the adversary. RMPC utilizes recursively the solution

to the associated ROC problem in order to implement the feedback control law that is, in fact, equal

to the first control law of an optimal control policy.

A theoretically rigorous approach to RMPC synthesis can be obtained either by employing, in

a repetitive fashion, the dynamic programming solution of the corresponding ROC problem or by

solving online, in a recursive manner, an infinite-dimensional optimization problem (Rawlings and

Mayne 2009). In either case, the associated computational complexity renders the exact RMPC

synthesis hardly ever tractable. This computational impracticability of the theoretically exact

RMPC, in conjunction with the convoluted interactions of the uncertainty with the evolution of the

�E-mail: svr@sasavRaković.com
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Invention of Prediction Structures and
Categorization of Robust MPC Syntheses ⋆

Saša V. Raković ∗

∗ St Edmund Hall, Oxford University, UK

Abstract: This plenary paper is concerned with robust model predictive control (MPC)
synthesis. In particular, the novel notion of prediction structures is introduced, and then utilized
to derive a precise and compact overview of the existing robust MPC (RMPC) syntheses as
well as to indicate direct improvements of their system theoretic properties. The prediction
structures paradigm allows for a systematic, implementation and examples independent,
comparison and classification of the existing RMPC syntheses. The corresponding categorization
of the currently available RMPC syntheses is derived by: (i) introducing the adequate
indices as measures of structural (including topological and system theoretic) properties and
computational complexity, and (ii) analysing the trade–off between the guaranteed structural
properties and the necessary computational complexity. The associated analysis is based on
the classical game and utility theory notions; for simplicity, it is delivered by deploying
the aggregated structural property and computational complexity indices; furthermore, it is
complemented with an unambiguous analysis of the ”holy–grail” trade–off between the quality
of structural properties and the degree of computational complexity.

Keywords: Robust Model Predictive Control, Prediction Structures, Parameterized Tubes.

1. INTRODUCTION

Robust model predictive control is an area of theoretical
relevance and practical importance (Rawlings and Mayne,
2009). The field has attracted significant research attention
over the last few decades. Nevertheless, the area still offers
the fundamental challenge of reaching a reasonable com-
promise between computational practicability and qual-
ity of both topological and system theoretic properties.
From a theoretical point of view, RMPC synthesis is an
adequately defined repetitive decision making process, in
which the underlying decision making process is a suitably
formulated robust optimal control (ROC) problem. Thus,
theoretically exact RMPC synthesis can be attained by
employing, in a repetitive fashion, the dynamic program-
ming (Bellman, 1957) solution of the underlying ROC
problem (Mayne et al., 2000; Bertsekas, 2007). Unfor-
tunately, the associated computational complexity is, in
general, impracticable. It is, hence, rather tempting to aim
to develop the methods which yield directly approximate
solutions (Jones et al., 2007) to the underlying exact ROC
problem. However, this approach is unwieldy, since the in-
herited complexity of the traditionally employed minimax
optimization (Scokaert and Mayne, 1998; Kerrigan and
Maciejowski, 2003) is bound to induce a reasonably high
degree of computational complexity to any approximation
based methodology that would guarantee reasonable sys-
tem theoretic properties. All in all, the prohibitive compu-
tational complexity of the exact RMPC synthesis (or its
direct minimax optimization based approximations) has
motivated the development of alternative approaches.

⋆ Email: svr@sasavrakovic.com.

The existing approaches to RMPC can be divided broadly
into two categories depending on the treatment of the un-
certainty and its interactions with evolution of the system,
constraints and performance criteria. The first category
of alternatives includes the methods that aim to employ
the inherent robustness, when plausible, of determinis-
tic MPC. These methods employ essentially determinis-
tic MPC synthesis, albeit applied to a suitably modified
description of the system, constraints and performance
criteria, and utilize the notion of input–to–state stability.
This category of the alternative approaches to RMPC re-
sults potentially in computationally practicable methods.
However, the presence of uncertainty is taken care of in an
indirect way, and furthermore such approaches seem to be
limited since the deterministic MPC is itself an inherently
fragile (non–robust) process. In this sense, it is known
that the stability property of deterministic MPC is non–
robust (Grimm et al., 2004), but the situation is, in fact,
even worse since the optimal control of constrained discrete
time systems is a fragile process itself (Raković, 2009). A
more detailed overview of this category of RMPC synthesis
methods can be found in (Raimondo et al., 2009). The sec-
ond category of alternative approaches to RMPC includes
the methods that account for the effects of the uncertainty
directly, but aim to exploit suitable parameterization of
the underlying control policy in order to reduce the cor-
responding computational complexity (Blanchini, 1990;
Chisci et al., 2001; Löfberg, 2003b,a; Langson et al., 2004;
Mayne et al., 2005; S. V. Raković, 2005; Goulart et al.,
2006; Raković et al., 2012d). This category of approaches
has been developed compatibly with a commonly accepted
consensus: there is a need for simplifying approximations
of the underlying control policy and for cost functions that

What delayed the use of the superposition principle for design of RMPC?
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TMPC Paradigm

The state tubes are sequences of sets of possible states.

The control tubes are sequences of sets of possible controls.

State and control tubes play role of state and control sequences.

Tubes are induced from the dynamics, uncertainty and control policy.

Optimal tubes are obtained via tube optimal control.

TMPC is repetitive online utilization of related tube optimal control.

All RMPC methods result in tubes.

Parameterization of tubes and control policy is of major importance.
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TMPC Methods

Rigid TMPC (2002 – 2006)
with D. Q. Mayne and involving some collaborations.

Homothetic TMPC (2007 – 2009)
involving some collaborations.

Parameterized TMPC (2007 – 2010)
involving some collaborations.

Elastic TMPC (2015 – 2016)
with W. S. Levine and B. Açikmeşe.
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Rigid TMPC Key Features

Parameterizations

States xk = zk + sk .

Controls uk = vk + Ksk .

“Nominal” dynamics zk+1 = Azk + Bvk .

“Local” dynamics sk+1 = (A + BK )sk + wk .

Tubes (with S(1) := {x : Cx ≤ 1})
State cross–sections Xk = zk ⊕ S(1).

Control cross–sections Uk = vk ⊕ KS(1).

“Nominal” dynamics zk+1 = Azk + Bvk .

“Local” dynamics (A + BK )S(1)⊕W ⊆ S(1).
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Rigid TMPC References

State and, observer based, output feedback rigid TMPC.

Automatica 41 (2005) 219–224
www.elsevier.com/locate/automatica

Brief paper

Robust model predictive control of constrained linear systems with
bounded disturbances�

D.Q. Maynea,∗, M.M. Seronb, S.V. Rakovića

aDepartment of Electrical and Electronic Engineering, Imperial College, London, SW72BT, UK
bSchool of Electrical Engineering and Computer Science, University of Newcastle, New South Wales, Australia

Received 9 February 2004; received in revised form 14 July 2004; accepted 23 August 2004
Available online 8 December 2004

Abstract

This paper provides a novel solution to the problem of robust model predictive control of constrained, linear, discrete-time systems in
the presence of bounded disturbances. The optimal control problem that is solved online includes, uniquely, the initial state of the model
employed in the problem as a decision variable. The associated value function is zero in a disturbance invariant set that serves as the
‘origin’ when bounded disturbances are present, and permits a strong stability result, namely robust exponential stability of the disturbance
invariant set for the controlled system with bounded disturbances, to be obtained. The resultant online algorithm is a quadratic program
of similar complexity to that required in conventional model predictive control.
� 2004 Elsevier Ltd. All rights reserved.

Keywords: Robust model predictive control; Robustness; Bounded disturbances

1. Introduction

Model predictive control is widely employed for the con-
trol of constrained systems and an extensive literature on
the subject exists some of which is reviewed in Bemporad
and Morari (1999); Allgöwer, Badgwell, Qin, Rawlings,
and Wright (1999); Mayne, Rawlings, Rao, and Scokaert
(2000). Several methods for achieving robustness have
been considered. The simplest is to ignore the disturbance
and rely on the inherent robustness of deterministic model
predictive control applied to the nominal system (Scokaert
& Rawlings, 1995; Marruedo, Álamo, & Camacho, 2002).
Open-loop model predictive control that determines the
current control action by solving on-line an optimal con-
trol problem in which the decision variable is a sequence

� This paper was not presented at any IFAC Meeting. This paper was
recommended for publication in revised form by Associate Editor M.
Guay under the direction of Editor F. Allgower. Research supported by
the Engineering and Physical Sciences Research Council, UK.

∗ Corresponding author.
E-mail address: d.mayne@imperial.ac.uk (D.Q. Mayne).

0005-1098/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2004.08.019

{u0, u1, . . . , uN−1} of control actions was proposed in
Zheng and Morari (1993); this method cannot contain the
‘spread’ of predicted trajectories resulting from distur-
bances. Hence feedback model predictive control in which
the decision variable is a policy �, which is a sequence
{�0(·),�1(·), . . . ,�N−1(·)} of control laws, was advocated
in, for example, Mayne (1995); Kothare, Balakrishnan, and
Morari (1996); Lee and Yu (1997); Scokaert and Mayne
(1998); De Nicolao, Magni, and Scattolini (2000); Magni,
Nijmeijer, and van der Schaft (2001); Magni, De Nicolao,
Scattolini, and Allgöwer (2003). Determination of a control
policy is usually prohibitively difficult so research has con-
centrated on various simplifying approximations (Mayne,
1995; Kothare et al., 1996; Scokaert & Mayne, 1998; Park &
Kwon, 1999; Kouvaritakis, Rossiter, & Schuurmans, 2000;
Schuurmans & Rossiter, 2000; Lee & Kouvaritakis, 2000;
Mayne & Langson, 2001; Chisci, Rossiter, & Zappa, 2001;
Lee, Kouvaritakis, & Cannon, 2002; Langson, Chrysso-
choos, Raković, & Mayne, 2004).In many papers, following
(Lee & Kouvaritakis, 2000), a sub-optimal control policy in
which �i (x) = vi + Kx is employed.

Automatica 42 (2006) 1217–1222
www.elsevier.com/locate/automatica

Brief paper

Robust output feedback model predictive control of
constrained linear systems�

D.Q. Maynea, S.V. Rakovića,∗, R. Findeisenb, F. Allgöwerb

aDepartment of Electrical and Electronic Engineering, Imperial College London
bInstitute for Systems Theory and Automatic Control (IST), University of Stuttgart, Germany

Received 13 August 2005; received in revised form 22 November 2005; accepted 10 March 2006

Available online 4 May 2006

Abstract

This paper provides a solution to the problem of robust output feedback model predictive control of constrained, linear, discrete-time systems

in the presence of bounded state and output disturbances. The proposed output feedback controller consists of a simple, stable Luenberger

state estimator and a recently developed, robustly stabilizing, tube-based, model predictive controller. The state estimation error is bounded

by an invariant set. The tube-based controller ensures that all possible realizations of the state trajectory lie in a simple uncertainty tube the

‘center’ of which is the solution of a nominal (disturbance-free) system and the ‘cross-section’ of which is also invariant. Satisfaction of the

state and input constraints for the original system is guaranteed by employing tighter constraint sets for the nominal system. The complexity

of the resultant controller is similar to that required for nominal model predictive control.

� 2006 Elsevier Ltd. All rights reserved.

Keywords: Output feedback; Robust model predictive control; Observer; Robust control invariant tubes

1. Introduction

Model predictive control has received considerable attention

driven largely by its ability to handle hard constraints as well as

nonlinearity. An inherent problem is that model predictive con-

trol normally requires full knowledge of the state (Findeisen,

Imsland, Allgöwer, & Foss, 2003; Mayne, Rawlings, Rao, &

Scokaert, 2000). Whereas, in many control problems, not all

states can be measured exactly. In practice this problem is of-

ten overcome by employing ‘certainty equivalence’. For linear

systems not subject to disturbances that employ an observer

and linear control, stability of the closed-loop can be guaran-

teed by the separation principle. However, when state and out-

put disturbances are present and the system or its controller is

� This paper was not presented at any IFAC meeting. This paper was

recommended for publication in revised form by Associate Editor Franco

Blanchini under the direction of Editor Roberto Tempo. Research supported

by the Engineering and Physical Sciences Research Council, UK.
∗ Corresponding author.

E-mail address: sasa.rakovic@imperial.ac.uk (S.V. Raković).

0005-1098/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.automatica.2006.03.005

nonlinear (as is the case with model predictive control of con-

strained systems), stability of the closed-loop cannot, in gen-

eral, be ensured by simply combining a stable estimator with a

stable state feedback controller (Atassi & Khalil, 1999; Teel &

Praly, 1995). Robust stability is obtained if the nominal system

is inherently robust and the estimation errors are sufficiently

small; however, predictive controllers are not always inherently

robust (Grimm, Messina, Teel, & Tuna, 2004; Scokaert, Rawl-

ings, & Meadows, 1997).

An appealing approach for overcoming this drawback is

to use robust controller design methods that take the state

estimation error directly into account. In the late sixties,

Witsenhausen (1968a, 1968b) studied robust control synthesis

and set-membership estimation of linear dynamic systems

subject to bounded uncertainties; this work was followed

by Schweppe (1968), Bertsekas and Rhodes (1971a,1971b),

Glover and Schweppe (1971) and by related work on vi-

ability (Aubin, 1991; Kurzhanski & Vályi, 1997; Kurzhan-

ski & Filippova, 1993). Further results include: a paper by

Blanchini (1990) that deals with linear, constrained, uncer-

tain, discrete-time systems, an anti-windup scheme that em-

ploys invariant sets in a similar fashion to their use in this
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a b s t r a c t

The problem of output feedback model predictive control of discrete time systems in the presence of
additive but bounded state and output disturbances is considered. The overall controller consists of two
components, a stable state estimator and a tube based, robustly stabilizing model predictive controller.
Earlier results are extended by allowing the estimator to be time varying. The proposed robust output
feedback controller requires the online solution of a standard quadratic program. The closed loop system
renders a specified invariant set robustly exponentially stable.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control has been widely applied, especially
in the process industries, because of its ability to handle hard
constraints. While output feedback is inevitably employed in
practice, much of the literature deals with ‘deterministic’ model
predictive control in which it is assumed that the system state
is exactly known and that there is no model error or external
disturbance. In the ‘deterministic’ case it is possible to achieve
stabilizing control by solving an open loop optimal control problem
online yielding implicit state feedback. When uncertainty is
present in the form of state estimation error, model error or
external disturbance, it is desirable that the decision variable in
the optimal control problem solved online is a feedback policy.

✩ Research supported by the Engineering and Physical Sciences Research Council,
UK. The material in this paper was partially presented at the 45th IEEE Conference
on Decision and Control 2006, San Diego, CA, USA, December 2006. This paper was
recommended for publication in revised formbyAssociate Editor Yasumasa Fujisaki
under the direction of Editor Roberto Tempo.∗ Corresponding address: Centre for Process Systems Engineering, Imperial
College London, Roderic Hill Building, South Kensington Campus, SW7 2AZ London,
UK. Tel.: +44 77 99775366; fax: +44 20 7594 6606.

E-mail address: svr@sasavrakovic.com (S.V. Raković).
1 S.V. Raković is currently a scientific associate at Otto-von-Guericke-Universität,

Magdeburg, Germany and an Honorary Research Associate at Imperial College
London.

To avoid the consequent complexity, many schemes have been
proposed for robust model predictive control in the face of
uncertainty; see the review papers Findeisen, Imsland, Allgöwer
and Foss (2003) and Mayne, Rawlings, Rao and Scokaert (2000).
This paper extends the results on output feedback predictive
control in Mayne, Raković, Findeisen and Allgöwer (2006) which
may be consulted for a discussion of the relevant literature.

In output feedback model predictive control, the state has to be
estimated and this introduces a special type of uncertainty, state
estimation error. Because optimality cannot be achieved in this
case with a reasonable computational burden, compromises have
to be made. Our main objective in this paper, and its predecessor
(Mayne et al., 2006), is simplicity of the optimal control problem
that is solved online. To achieve simplicity in state estimation,
we employ a Luenberger observer to estimate the state instead
of a moving horizon or set membership estimator; if the initial
state estimation error and the disturbances are bounded, the state
estimation error can be shown to be bounded. To achieve simplicity
in control, we control the system and, hence, the observer, which
is a dynamic system subject to an additive disturbance, using tube
based model predictive control described, for the time invariant
case, inMayne, Seron, andRaković (2005). A novel nominal optimal
control problem is defined whose solution yields both a central
trajectory that satisfies constraints that are tighter than those
specified for the original system and that converges to the origin
as well as a control that maintains the observer trajectory within
a known neighbourhood of the central trajectory. Combining this

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
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A few other papers supporting strongly the methodology.
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Homothetic TMPC Key Features

Parameterizations

States xk = zk + sk .

Controls uk = vk + Ksk .

Decoupled “nominal” dynamics zk+1 = Azk + Bvk .

Decoupled “local” dynamics sk+1 = (A + BK )sk + wk .

Tubes (with S(α) := {x : Cx ≤ α1} for α ∈ R≥0)

State cross–sections Xk = zk ⊕ S(αk).

Control cross–sections Uk = vk ⊕ KS(αk).

Decoupled “nominal” dynamics zk+1 = Azk + Bvk .

Decoupled “local” dynamics (A + BK )S(αk)⊕W ⊆ S(αk+1).

Coupled dynamics Azk +Bvk ⊕ (A+BK )S(αk)⊕W ⊆ zk+1⊕S(αk+1).
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Approximate reachability and state feedback homothetic TMPC.

Approximate Reachability Analysis for
Linear Discrete Time Systems Using

Homothety and Invariance
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Abstract: This paper introduces a method for approximate reachability, for linear discrete time
systems, based on homothety and set invariance. The proposed method utilizes two particular
families of sets, more precisely their members, and particular forms of the approximation
maps to obtain simple inner and outer approximate reachable sets/tubes. The resulting
set–dynamics, induced by the uncertainty set, the underlying dynamics in the state space
and the approximation maps, are restricted to these particular families of sets and under
standard assumptions yield bounded and convergent approximate reachable sets/tubes. A
tractable computational procedure is suggested and a few illustrative examples are provided.
Copyright c
2008 IFAC.

Keywords: Reachability Analysis, Approximations, Homothety, Set Invariance.

1. INTRODUCTION

Reachability analysis is one of the central research top-
ics in the control theory due to its intimate relationship
with optimal control, set invariance, set–membership state
estimation, safety verification and control synthesis under
uncertainty, see the monographs (Aubin, 1991; Kurzhanski
and Vályi, 1997), the survey papers (Milanese and Vicino,
1991; Blanchini, 1999) and more recent references (Raković
and Mayne, 2005; Artstein and Raković, 2008; Raković,
2007). Initial ideas related to reachability analysis and
guaranteed state estimation can be traced back to the
pioneering control literature (Witsenhausen, 1968; Hermes
and Lasalle, 1969; Bertsekas and Rhodes, 1971; Schweppe,
1973; Kurzhanski, 1977). The research on reachability has
recognized that the exact reachability is computationally
demanding and has, therefore, focused on approximate
reachability. Approximate reachability methods suggested
in, for example, (Milanese and Vicino, 1991; Chernousko,
1994; Kurzhanski and Vályi, 1997; Kühn, 1998a; Alamo
et al., 2005; Kurzhanski and Varaiya, 2006) employ, es-
sentially, ellipsoidal, polytopic or even zonotopic calculus
to obtain guaranteed, possibly optimal with respect to a
utilized criterion, inner and/or outer estimates of the exact
reachable sets/tubes or sets of possible states consistent
with acquired information, system dynamics and the un-
certainty specification.

Approximate reachability methods result in “optimal ap-
proximations” obtained, often, by somehow prioritizing
“shape simplicity” and “geometric criteria” over “dynam-
ical aspects” of the approximation procedures. The “dy-

1 Corresponding Author.
2 The second author acknowledges MCYT-Spain for funding this
work DPI2007-66718-C04-01.

namical aspects” of the approximation procedure can be
addressed more directly using the set invariance theory.
Recent advances in the set invariance theory include a the-
oretical framework for the examination of the minimality
of invariant sets for the nonlinear–compact case (Artstein
and Raković, 2008) and its specialization to the linear–
convex case (Raković, 2007). Following ideas of (Artstein
and Raković, 2008), we discuss a version of approximate
reachability by utilizing homothety and set invariance. We
analyze set–dynamics, induced by the uncertainty set, the
underlying dynamics in the state space and the approx-
imation maps, evolving within two particular families of
sets whose members are homothetic copies of invariant
inner and outer basic shape sets SY and SZ . We establish
that, under modest assumptions, the resulting approxi-
mate reachable sets/tubes are bounded and convergent.

Paper Structure: Section 2 presents necessary prelimi-
naries. Sections 3 and 4 discuss the use of homothety and
invariance in approximate reachability. Sections 5 and 6
provide computational remarks, examples and conclusions.

Basic Nomenclature and Definitions: The sets of
non–negative, positive integers and non–negative real
numbers are denoted, respectively, by N , N+ and R+,
i.e. N := {0, 1, 2, . . .}, N+ := {1, 2, . . .} and R+ := {x ∈
R : x ≥ 0}. For two sets X ⊂ Rn and Y ⊂ Rn, the
Minkowski set addition is defined by X ⊕ Y := {x +
y : x ∈ X, y ∈ Y }. For a set X ⊂ Rn and a vector
x ∈ Rn we write x ⊕ X instead of {x} ⊕ X. Given the
sequence of sets {Xi ⊂ Rn}b

i=a, a ∈ N, b ∈ N, b > a, we

denote
�b

i=a Xi := Xa⊕· · ·⊕Xb. Given a set X and a real
matrix M of compatible dimensions (possibly a scalar) we
define MX := {Mx : x ∈ X}. Given a matrix M ∈ Rn×n,
ρ(M) denotes the largest absolute value of its eigenvalues.
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a b s t r a c t

The robust model predictive control for constrained linear discrete time systems is solved through the
development of a homothetic tube model predictive control synthesis method. The method employs
several novel features including a more general parameterization of the state and control tubes based
on homothety and invariance, a more flexible form of the terminal constraint set and a relaxation of the
controlled dynamics of the sets that define the state and control tubes. Under natural assumptions, the
proposed method is computationally efficient and it induces strong system theoretic properties.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tube model predictive control (TMPC) (Mayne, Raković, Find-
eisen, & Allgöwer, 2009; Mayne, Seron, & Raković, 2005; Raković,
2009) is a computationally tractable framework for robust model
predictive control (RMPC). It is also mathematically sensible since
tubes, which are sequences of sets, capture the totality of possi-
ble state and control sequences arising due to uncertainty. The
effective use of tubes in RMPC is enabled through a parameteri-
zation of the control policy that allows for the direct handling of
the disturbance and its interactionwith the system dynamics, con-
straints and performance. In the case of linear systemswith known
models which are subject to bounded additive disturbances and
convex constraint sets it is possible to use separable control poli-
cies in order to separate the evolution of the nominal system from
that of the local uncertain system. The effect of disturbances can
be accounted for by considering the local exact reachable tubes
centered around the trajectories of the nominal system and invok-
ing suitably modified constraints on the nominal variables as well
as employing computationally more tractable performance objec-
tives (Blanchini, 1990; Chisci, Rossiter, & Zappa, 2001; Lee, Kouvar-
itakis, & Cannon, 2002; Mayne et al., 2009, 2005; Raković, 2009).

✩ The material in this paper was partially presented at the 19th International
Symposium on Mathematical Theory of Networks and Systems MTNS 2010, July
5–9, 2010, Budapest, Hungary. This paper was recommended for publication in
revised form by Associate Editor Lalo Magni under the direction of Editor Frank
Allgöwer.

E-mail address: svr@sasavrakovic.com (S.V. Raković).
1 Tel.: +1 202 621 4752; fax: +1 301 314 9218.

Our main task is to utilize recent homothetic TMPC (HTMPC)
concepts (Raković, Kouvaritakis, & Findeisen, 2009; Raković,
Kouvaritakis, Findeisen, & Cannon, 2010), and develop an HTMPC
synthesis for a more structured setting. The employed state and
control tubes are sequences of the homothetic sets {Xk = zk ⊕
αkS}k∈NN and {Uk = vk ⊕ αkR}k∈NN−1 which are parameterized
via the fixed shape sets S and R and the sequences of the centers,
{zk}k∈NN and {vk}k∈NN−1 , and scalings {αk}k∈NN . The associated
separable control policy {πk(·, Xk,Uk)}k∈NN−1 is a sequence of
control laws parameterized via a local control function ν (·) and
the sequences of the centers of the homothetic state and control
tubes {zk}k∈NN and {vk}k∈NN−1 (so that πk(y, Xk,Uk) = vk +
ν(y − zk) for all y ∈ Xk). The tube basic shape sets S and R and
the local control function ν (·) are designed off-line and satisfy
reasonable assumptions, while the sequences {zk}k∈NN , {vk}k∈NN−1
and {αk}k∈NN are decision variables in the on-line optimization.
In comparison to Blanchini (1990), Chisci et al. (2001), Lee et al.
(2002), Mayne et al. (2005) and Mayne et al. (2009) our proposal
introduces several novel features. First, our homothetic tubes are
more general as is our separable control policy that makes use
of a positively homogeneous local control function ν (·) (which
includes linear local control functions as a special case). Second,
we employ exact global set-dynamics of the underlying state and
control tubes which allows for less conservative on-line constraint
handling. Third, we introduce an improved terminal constraint
set which is obtained by analyzing the local homothetic tube
dynamics. The exact local set-dynamics is simplified by employing
affine vector-valued dynamics describing the evolution of the
centers and the scalings of the outer-bounding homothetic tubes;
this, in turn, allows for the utilization of the classical set invariance

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
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This paper develops an equi-normalization process in order to verify the existence of, and characterize,
theminimal robust positively invariant set generated by a number of a-priori, but suitably, selected linear
inequalities. It also develops the exact scaling dynamics associated with this set. The paper then proposes
an improved homothetic tube model predictive control synthesis for linear systems subject to additive
disturbances and polytopic constraints.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Model predictive control (MPC) need not be robust [1–3], while
min–max feedback MPC [4] is computationally intractable, hence
the need for robust MPC synthesis that strikes a balance between
optimality and computability. Tube MPC (TMPC) [2,3,5,6] forms a
rigorous set theoretic approach to robust MPC synthesis, which
results in computationally efficient handling of constraints and
uncertainty. Early TMPC [3,5] used ‘‘rigid’’ tubes with fixed cross-
section shape sets whose centers were optimized on-line. The
deployment of the fixed tube cross-section shape sets results in
a degree of conservatism. Latter ‘‘homothetic’’ tubes allowed for
more flexibility: the cross-sections of homothetic state and control
tubes are parameterized in terms of the sequences of associated
centers and scalings [7]. These sequences form decision variables
for the on-line optimization, and are subject to constraints that
enforce robust constraint satisfaction. Global conditions describing
the tube dynamics and ensuring robust constraint satisfaction
were given in [7]. The dynamics of the local homothetic state and
control tubes is characterized by the dynamics of the local state and
control tubes centers and scalings. These dynamics plays a crucial
role for derivation of the stabilizing conditions through the use
of a terminal constraint set and a local Lyapunov function. In [7],
an affine relationship between the tube scalings at consecutive

∗ Corresponding author. Tel.: +44 7799775366.
E-mail addresses: svr@sasavrakovic.com, svr@umd.edu (S.V. Raković).

times was used. The affine scalings dynamics represents an upper
approximation of the exact dynamics and, as such, it induces a
degree of conservatism.

This article introduces an equi-normalization process, derives a
description of the exact scaling dynamics and achieves a significant
constraint relaxation. Using the proposed equi-normalization
we establish the existence of, and characterize, the minimal
robust positively invariant (RPI) set generated by a number of
a-priori, but suitably, selected linear inequalities. The function
inducing the exact scaling dynamics is shown to be a piecewise
affine, convex, continuous, non-negative and monotonically non-
decreasing function. Remarkably, this function is composed of, at
most, two affine functions irrespective of the system dimension
and the number of utilized linear inequalities. In particular, this
function can be expressed as the maximum of two affine functions
and yields the exact scaling dynamics (in contrast to the affine
upper approximate scaling dynamics of [7]). The equi-normalized
minimal RPI (mRPI) set together with the exact scaling function
is used to analyze the dynamics of the local state and control
tubes centers (z, Kz) and scalings α. (The latter dynamics is
determined completely by the (z, α)-dynamics.) This analysis
enables us to ensure themaximality (w.r.t. both the volume and set
inclusion) of the constraint set on the local state and control tubes
centers (z, Kz) and scalings α. (These constraints are characterized
fully by constraints on the (z, α)-variable.) The equi-normalized
mRPI set induces the minimal (w.r.t. set inclusion) homothetic
tubes cross-section shape sets, while the exact scaling function
induces the tightest (w.r.t. set inclusion) (z, α)-dynamics. In turn,
this yields a significantly improved terminal constraint set, and

0167-6911/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
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Parameterized TMPC Key Features

Parameterizations

States xk =
∑k

j=0 x(j,k).

Controls uk =
∑k

j=0 u(j,k).

Partial deterministic dynamics x(j,k+1) = Ax(j,k) + Bu(j,k).

Partial initial conditions x(0,0) = x ∧ x(k,k) = wk−1.

Minkowski decomposable tubes (free and optimized online)

State cross–sections Xk = x(0,k) ⊕
⊕k

j=1 X(j,k).

Partial state cross–sections X(j,k) = convh({x(i,j,k) : i ∈ I}).

Control cross–sections Uk = u(0,k) ⊕
⊕k

j=1 U(j,k).

Partial control cross–sections U(j,k) = convh({u(i,j,k) : i ∈ I}).

Partial extreme deterministic dynamics x(i,j,k+1) = Ax(i,j,k) + Bu(i,j,k).
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Robust control invariance and state feedback parameterized TMPC.
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Parameterized Robust Control Invariant Sets
for Linear Systems: Theoretical Advances

and Computational Remarks
Saša V. Raković and Miroslav Barić

Abstract—We characterize a family of parametrized robust con-
trol invariant sets for linear discrete time systems subject to addi-
tive but bounded state disturbances. The existence of a member of
the introduced family of parametrized robust control invariant sets
can be verified by solving a tractable convex optimization problem
in the linear convex case, which reduces to the standard linear or
convex quadratic programme in the linear polytopic case. The de-
veloped method can also be utilized to detect and obtain an implicit
representation of local control Lyapunov functions in the linear
convex case from the solution of a single and tractable convex op-
timization problem. The offered method permits for the compu-
tation of polytopic robust control invariant sets and local control
Lyapunov functions of indirectly controlled and limited complexity
in the linear polytopic case.

Index Terms—Control Lyapunov functions, linear polytopic
case.

I. INTRODUCTION

T HE research on the set invariance theory and its applica-
tion to robust control synthesis and analysis problems is

a topical one; see, for instance, the comprehensive monographs
[1], [2], the survey paper [3] and references therein for a more
detailed overview. Indeed, invariant sets permit for the synthesis
of controllers guaranteeing robust constraint satisfaction, and
under additional and relatively mild assumptions robust stability
and convergence to an adequate set despite the presence of un-
certainty and hard constraints on system variables. The main
issues in set invariance are, for obvious reasons, the character-
ization and computation of the maximal and minimal invariant
sets and their invariant approximations [1]–[12]. Though the
maximal and minimal invariant sets are of particular interest,
a direct inspection of the related literature suggests that any in-
variant set can be utilized for the corresponding control syn-
thesis or analysis of the uncertain dynamics; see, for example,
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[13]–[19] and references therein. Consequently, computation-
ally more tractable methods (compared to the standard set in-
variance computations) have been also considered [20]. The op-
timized robust control invariance approach [20] addresses the is-
sues related to the finite time termination of the viability kernel
based algorithms, and permits for an indirect control of the com-
plexity of the resulting robust control invariant set.

In this manuscript, we offer further advances and characterize
a novel family of parametrized robust control invariant sets for
linear discrete time systems subject to additive but bounded state
disturbances. The reported results are more general than those
of the optimized robust control invariance [20] and several other
existing methods [8], [10], [12], since the considered construc-
tion utilizes more general feedback control laws. The theoretical
developments lead to efficient computational procedures based
on the standard optimization methods; in fact, we show that
the existence of a member of the introduced family of parame-
trized robust control invariant sets for the constrained case can
be verified by solving a tractable convex optimization problem
whose size scales polynomially with the size of input data. A
formulation of the corresponding convex optimization problem
is discussed in more detail for a frequently encountered case –
namely, the linear polytopic case. Apart from the characteriza-
tion and implicit computation of robust control invariant sets, we
demonstrate that the reported results can be utilized for the con-
struction of indirectly controlled and limited complexity poly-
topic local control Lyapunov functions for constrained linear
discrete time systems via an optimization procedure.

Paper Structure: Section II provides necessary preliminaries
and paper objectives. Section III introduces the underlying prin-
ciple permitting for the finite time characterization of parame-
terized robust control invariant sets. Section IV presents a novel
family of polytopic parameterized robust control invariant sets.
Section V suggests the utilization of reported results in the sta-
bility analysis. Section VI discusses computational aspects. Sec-
tions VII and VIII present numerical examples and concluding
remarks.

Basic Nomenclature and Definitions: The sets of non–neg-
ative and positive integers are denoted, respectively, by

and . Let
for given and such that

; denotes for . Similarly, a set of non–negative
real numbers is denoted by so that .

The Minkowski set addition of two (nonempty) subsets of ,
say and , is denoted by ;
in addition, if is a vector in (which could be a sum of
vectors), we write to denote . Given a sequence of

sets such that , with ,

0018-9286/$26.00 © 2010 IEEE
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Parameterized Tube Model Predictive Control
Sa�a V. Raković, Basil Kouvaritakis, Mark Cannon, Christos Panos, and Rolf Findeisen

Abstract�This paper develops a parameterized tube model pre-
dictive control (MPC) synthesis method. The most relevant novel
feature of our proposal is the online use of a single tractable linear
program that optimizes parameterized, Minkowski decomposable,
state and control tubes and an associated, fully separable, non-
linear, control policy. The induced control policy enjoys a higher
degree of nonlinearity than existing tube MPC and robust MPC
using disturbance af�ne control policy. Our proposal offers greater
generality than the state of the art robust MPC methods. It is con-
jectured, and also established in three cases, that our proposal is
equivalent, feasibility-wise, to dynamic programming (DP). It is
also shown that, under natural assumptions, our method is compu-
tationally ef�cient while it possesses rather strong system theoretic
properties.

Index Terms�Constrained control, convex programming, ro-
bust control, set-dynamics, tube model predictive control.

I. INTRODUCTION

R OBUST model predictive control (RMPC) is an area of
practical importance, which received a lot of research

attention over the last two decades [1] but still offers the
signi�cant challenge of reaching a reasonable compromise
between computational tractability and degree of optimality. A
theoretically rigorous way for RMPC synthesis is to employ, in
a repetitive fashion, the DP solution [2]�[4] of the associated
robust optimal control problem. However, prohibitive compu-
tational complexity motivated the development of alternatives.
Early RMPC was based on open loop min-max optimal control
problems and thus had limited control theoretic properties.
An alternative proposed a reformulation of a DP-based so-
lution and used closed loop min-max optimal control in the
repetitive fashion [5], [6]. This is computationally unwieldy
since the associated approach reduces, in general, to an in�nite
dimensional optimization, or in more structured cases [5], [6],
to a �nite-dimensional optimization for which the number of
decision variables and constraints scales exponentially with
the prediction horizon. The inadequacy of open loop min-max
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RMPC and the impracticability of DP based and closed loop
min-max RMPC has led to a consensus: there is a need for sim-
plifying approximations of the underlying control policy and
for cost functions that ensure computational tractability while
retaining system theoretic rigor. An approach with this potential
is tube model predictive control (TMPC) [7]�[11] which uses
a parameterization of the partially separable policy that allows
for the direct handling of uncertainty and its interaction with the
system dynamics, constraints and performance. Early TMPC
(e.g., [9] and [10]) employs state and control tubes with time
varying cross sections and results in a reduction of the compu-
tational complexity. More recent proposals [7] employ tubes
with constant cross sections, but allow for the optimization
of the initial condition of the nominal system and guarantee
robust stability and attractivity of the corresponding minimal
robust positively invariant set. Recent advances of TMPC [11],
termed homothetic tube model predictive control, employ: a
more general parameterization of state and control tubes and
associated control policy based on homothety, invariance and
homogeneity; a more �exible form of the terminal constraint
set; and a relaxation of the global tube dynamics. However, all
existing TMPC methods utilize the of�ine design of the tube
cross sections and the local feedback control law, and thus can
be conservative. The RMPC with disturbance af�ne control
policy [12]�[14] leads to improved system theoretic properties
at a manageable computational cost, but the restriction that
the dependence of control laws should be af�ne constitutes a
serious limitation.
This paper proposes a novel TMPC methodology which

supersedes RMPC with the disturbance af�ne control policy
[12]�[14] as it provides a more general nonlinear framework
with which to achieve more optimal results at the same compu-
tational cost. The key to this is a new parameterization of state
and control tubes for constrained linear systems which are sub-
ject to additive polytopic uncertainty. Our proposal, in contrast
to the existing TMPC methods, allows uniquely for the simulta-
neous online optimization of the state and control tubes as well
as the associated control policy. The new parameterized TMPC
(PTMPC) offers, at the same computational cost, greater gen-
erality compared to RMPC with the disturbance af�ne control
policy, while the associated parameterized tube optimal control
(PTOC) problem overcomes the tractability problem of closed
loop min-max RMPC [5], [6], by leading to a standard, �nite
dimensional, linear program for which the number of decision
variables and constraints scales quadratically with the predic-
tion horizon. Combined use of linearity, separability, superposi-
tion and convexity allows a decomposition of the -steps-ahead
state into components
satisfying . Likewise, the -steps-ahead
control rule is decomposed into components

satisfying
. Consequently, the state

components evolve according to the deterministic recur-
sion , and hence the
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Fully parameterized tube model predictive control‡
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SUMMARY

The recently proposed parameterized tube model predictive control (MPC) exploited linearity to separate
the treatment of future disturbances in robust model predictive control, thereby gaining significant com-
putational advantages while superseding the state-of-the-art closed-loop strategies. The approach used an
upper triangular parameterized tube prediction structure and a linear cost. The current paper proposes an
extension of the tube prediction structure, which is fully parameterized and allows for the use of more
general cost functions. The introduced parameterization generalizes the one associated with parameterized
tube MPC (PTMPC), while it shares its strong system theoretic properties as well as its computational
tractability. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite the plethora of results on robust model predictive control (MPC) (e.g., [1,2]), there remains

the challenge of reaching an efficient compromise between computational complexity and degree

of optimality. Optimality can be achieved via dynamic programming (DP) (e.g., [3]) and closed-

loop min–max MPC [4, 5], but the computation required by these approaches grows exponentially

with the prediction horizon, N . Open-loop or semi-closed-loop strategies are computationally

cheaper, and, among these, tube model predictive control (TMPC) provides an effective alternative.

Tubes can be rigid with adjustable centers [6] or have variable centers and variable cross-sectional

scalings [7, 8].

The so-called disturbance affine control policy [9, 10] provides a way of optimizing parameter-

ized control policies, giving improved performance and larger regions of attraction at increased

computational cost, which is nonetheless manageable because the numbers of decision variables

and constraints depend quadratically (rather than exponentially) on N . However, the use of affine

strategies can be restrictive, and this was circumvented in [11, 12] through the use of a state/control

decomposition that separates the treatment of each future value of additive disturbances. This sep-

aration holds the key to preventing the exponential growth of computation: it does not require all

extreme points of the regions in which all possible predicted states lie to be considered explic-

itly. More precisely, the decomposition replaces the single pair of state and control tubes used

in [6–8, 13, 14] with a number of pairs of partial state and control tubes. Each partial state/control

tube has as its initial cross section, either the current state/control or the polyhedral set, that

contains term of the uncertain future state/control sequence. The parameterization employs an upper

*Correspondence to: Saša V. Raković, Institute for Systems Research, University of Maryland, College Park, MD, USA.
†E-mail: svr@sasavrakovic.com
‡This paper honours Professor David W. Clarke’s early contributions to the model predictive control field.
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Elastic TMPC Key Features

Parameterizations

States xk = zk + sk .

Controls uk = vk + K (ak)sk .

Decoupled “nominal” dynamics zk+1 = Azk + Bvk .

Decoupled “local” dynamics sk+1 = (A + BK (ak))sk + wk .

Tubes (with S(a) := {x : Cx ≤ a} for a ∈ Rq
≥0)

State cross–sections Xk = zk ⊕ S(ak).

Control cross–sections Uk = vk ⊕ K (ak)S(ak).

Decoupled “nominal” dynamics zk+1 = Azk + Bvk .

Decoupled “local” dynamics (A + BK (ak))S(ak)⊕W ⊆ S(ak+1).

Coupled dynamics
Azk + Bvk ⊕ (A + BK (ak))S(ak)⊕W ⊆ zk+1 ⊕ S(ak+1).
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Elastic TMPC References

State feedback elastic TMPC.

Elastic Tube Model Predictive Control

Saša V. Raković, William S. Levine and Behçet Açıkmeşe

Abstract— This paper introduces elastic tube model predic-
tive control (MPC) synthesis. The proposed framework is a
natural generalization of the rigid and homothetic tube MPC
design methods. The cross–sections of the employed state and
control tubes are allowed to change more elastically, while the
local component of the tubes control policy is permitted to take
a more general form. The related stabilizing terminal conditions
are also adequately generalized in order to take advantage of
more flexible tubes and tubes control policy parameterizations.
These novel features result in an improved tube MPC at a cost
of manageable increase in computational complexity.

I. INTRODUCTION

Due to its unique ability to systematically handle con-
straints and optimize performance, MPC has become an
elemental and contemporary research field that has seen
important advances in underlying theory [1]–[3] as well as
numerous industrial applications [4]. Robust MPC (RMPC)
is an improved MPC variant providing structural properties
(e.g. performance, invariance and stability) that are robust in
face of the bounded uncertainty. A real intricacy in RMPC
arises due to the facts that the closed loop RMPC [5]
provides strong structural properties but it is computationally
unwieldy, while the conventional MPC is not necessarily
robust [6] even though it is computationally convenient.
Being one of MPC’s fundamental subfields, RMPC has
been the subject of intensive research investigations [5]–[17].
See also comprehensive monographs [2], [18], main survey
papers [1], [3] and encyclopedic and plenary articles [19],
[20] for an in–depth overview of the current state of affairs
in RMPC and for a number of additional relevant references.

Tube MPC (TMPC) has emerged as a dominant design
framework for RMPC, since it addresses effectively the
fundamental challenge of reaching a meaningful compromise
between the quality of guaranteed structural properties and
the associated computational complexity. TMPC considers
predicted behaviour in terms of the sets of possible states
and controls due to the spread of trajectories caused by
the uncertainty. This results in state and control tubes that
represent either the exact or outer bounding sequences of the
sets of possible states and associated controls. The sensible
parameterizations of the state and control tubes and related
tubes control policy lead to computationally highly attractive
TMPC that induces strong structural properties. TMPC is
particularly effective for constrained linear systems subject
to additive uncertainty [10], [11], [14]–[16].

Rigid TMPC (RTMPC) [11] is the first generation of
TMPC. The cross–sections of the state and control tubes

Saša V. Raković and Behçet Açıkmeşe are with the University of Texas
at Austin, USA. William S. Levine is with the University of Maryland at
College Park, USA.

in RTMPC are simple translations of the fixed cross–section
basic shape sets S(1) and K(1)S(1) so that Xk = zk⊕S(1)
and Uk = vk⊕K(1)S(1) where zk and vk are the centers of
the state and control tubes. The related control laws take form
πk(xk, zk, vk) = vk + K(1)(xk − zk). Homothetic TMPC
(HTMPC) [14], [15] is the second generation of TMPC.
The cross–sections of the state and control tubes in HTMPC
are homothetic copies of the fixed cross–section basic shape
sets S(1) and K(1)S(1) so that Xk = zk ⊕ αkS(1) and
Uk = vk ⊕ αkK(1)S(1) where scalar αk is the scaling
factor of the state and control tubes. Parameterized TMPC
(PTMPC) [16], [19] is the third generation of TMPC. The
cross–sections of the state and control tubes in PTMPC
are expressed in terms of partial cross–sections so that
Xk = X(0,k) ⊕ X(1,k) ⊕ . . . ⊕ X(k,k) and Uk = U(0,k) ⊕
U(1,k) ⊕ . . . ⊕ U(k,k) where sets X(j,k) and U(j,k) are
paramaterized via finitely many points. The related control
laws πk(xk, Xk, Uk) are separable and nonlinear functions
composed of partial control rules π(j,k)(x(j,k), X(j,k), U(j,k))

so that πk(xk, Xk, Uk) =
�k

j=0 π(j,k)(x(j,k), X(j,k), U(j,k))

for xk =
�k

j=0 x(j,k) with x(j,k) ∈ X(j,k). The online
implementations of RTMPC, HTMPC and PTMPC reduce
to convex optimization for which the number of decision
variables and constraints scales linearly w.r.t. the prediction
horizon in cases of RTMPC and HTMPC, and quadrat-
ically in case of PTMPC. RTMPC [11] induces strong
system theoretic properties that are, however, weaker than
those guaranteed by HTMPC [14], [15]. Both RTMPC and
HTMPC are considerably outperformed by PTMPC [16],
[19]. As a matter of fact, PTMPC outperforms all major
methods for RMPC such as those based on the constraint
tightening with or without prestabilization [7], [8] or on
the use of affine–in–the–predicted–states and affine–in–the–
past–disturbances control policies [9], [12].

The main aim of our proposal is to improve considerably
RTMPC and HTMPC design methods at a cost of controlled
increase in computational complexity. This goal is achieved
by introducing more flexible parameterizations of the state
and control tubes and related tubes control policy. The cross–
sections Xk of the state tubes are parameterized in terms of
the centers zk and vector–valued elasticity parameters ak as
Xk = zk ⊕ S(ak). Likewise, the cross–sections Uk of the
control tubes are parameterized in terms of the centers vk

and elasticity parameters ak as Uk = vk ⊕ K(ak)S(ak).
The related tubes control policy is formed from the control
laws πk(xk, zk, vk, ak) = vk +K(ak)(xk − zk). In the spirit
of RTMPC and HTMPC, the suitable set–valued function
S (·), with values S(a), and matrix–valued function K (·),

S.V. Raković, W.S. Levine and B. Açıkmeşe

Elastic Tube Model Predictive Control

Saša V. Raković (1), William S. Levine (2), Behçet Açıkmeşe (3),

(1) The University of Texas, Austin, USA (2) The University of Maryland, College Park,
USA (3) The University of Washington, Seattle, USA

This paper introduces elastic tube model predictive control (MPC) synthesis. The
proposed framework is a natural generalization of the rigid and homothetic tube MPC
design methods. The cross–sections of the employed state and control tubes are allowed to
change more elastically, while the local component of the tubes control policy is permitted
to take a more general form. The related stabilizing terminal conditions are also adequately
generalized in order to take advantage of more flexible tubes and tubes control policy
parameterizations. These novel features result in an improved tube MPC at a cost of
manageable increase in computational complexity.

1

Conference version out. Journal version in progress.
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TMPC Methods in Books

Includes my work with D. Q. Mayne on

Rigid state feedback TMPC.

Rigid, observer based, output feedback
TMPC.

Time–varying, observer based, output
feedback TMPC.

And a few other results that I developed.
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TMPC Methods in Books

Includes my work on

Rigid TMPC (with D. Q. Mayne).

Homothetic TMPC.

Parameterized TMPC.

And a few other results that I developed.
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Part

Model Predictive Control (MPC)

Robust Model Predictive Control (RMPC)

Tube Model Predictive Control (TMPC)

Trends & Directions

Closing
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Present Trends

Scenarios based “quasi–robust” MPC.

Real–time RMPC (Real–time TMPC).

Stochastic MPC.

Decentralized MPC under uncertainty.

Networked MPC under uncertainty.

Economic MPC under uncertainty.

And many more, MPC has seen tremendous expansion.
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Potential Directions

Modelling uncertainty for MPC.

Contemporary uncertainty in MPC.

Resilient MPC.

Fault–tolerant MPC.

MPC for autonomous systems.

Collaboratively adaptive MPC.

And many more classical and contemporary directions, since MPC is
applicable to a wide range of conventional and modern areas.
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A big picture in MPC

Integration of identification and MPC
(e.g., Adaptive MPC).

Integration of uncertainty modelling and MPC
(e.g., Flexible MPC under uncertainty).

Integration of estimation and MPC
(e.g., Output feedback MPC).

Integration of fault tolerance and MPC
(e.g., Reconfigurable and actively fault tolerant MPC).

Integration of MPC’s general components and optimization
(i.e., Integrated MPC synthesis).

Make sure that the sum of parts is equal to the whole!
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Part

Model Predictive Control (MPC)

Robust Model Predictive Control (RMPC)

Tube Model Predictive Control (TMPC)

Trends & Directions

Closing
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Last Time
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This Time

More of a story telling and a slightly different angle!

Questions are, as always, welcome!
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ACC 2016 Events

Double Invited Session
“MPC, Quo Vadis?”.

with W. S. Levine, B. Açikmeşe and I. V. Kolmanovsky

12 papers by well–known contributors in MPC.

Workshop
“MPC Under Uncertainty: Theory, Computations and Applications”.

with W. S. Levine, B. Açikmeşe and I. V. Kolmanovsky

Concise and unifying tutorial to MPC under uncertainty.
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