
Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Partial vs. Total Order a.k.a Polychrony vs.
Synchrony

Models of Time for Safety Critical Systems

Sandeep K. Shukla
FERMAT Lab

Hume Center for National Security and Technology
Virginia Tech Arlington Research Center

Arlington, VA.

MBSE Colloq. at the University of Maryland

This work is partially supported by funds from AFRL and OSD
Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 1/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Good Read

Ivan Sutherland,”The Tyranny of the Clock – Promoting a
clock-free paradigm that fits everything learned about programming

since Turing”, Communications of ACM, October 2012.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 2/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Motivating this Talk

Describe a partial ordered model of logical time – Polychrony

Show some essential distinctions between synchronous
programming (totally ordered logical time) and Polychrony

Show a calculus of logical time as a calculus for deterministic
implementation, provable refinement, and more

A Polychronous methodology for distributed deterministic
implementation of model-driven Cyber Physical System design

L-3 and VT will produce a Robust Industrial Strength
Implementation of the Model Driven Synthesis Tool Based

on this.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 3/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Outline of the talk

1 Motivation

2 Introduction

3 Concurrency and Multi-Threading

4 Distribution over Asynchronous Network

5 Concluding Remarks

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 4/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Cyber Physical System

Outline of the talk

1 Motivation

2 Introduction

3 Concurrency and Multi-Threading

4 Distribution over Asynchronous Network

5 Concluding Remarks

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 4/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Cyber Physical System

Motivation

Cyber

Sampling/sensing
Compute based on control laws
Actuating

Physical

Dynamic
Continuous
Multiple Modes (piecewise continuous)

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 5/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Cyber Physical System

Motivation

Cyber

Sampling/sensing
Compute based on control laws
Actuating

Physical

Dynamic
Continuous
Multiple Modes (piecewise continuous)

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 5/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Cyber Physical System

What we will not talk About

Modeling the Physical Dynamics as Dynamical System

Adaptive Zero-crossing Issues

Real-Time Scheduling of Reactions

Higher Level Data Types and Extended Type System

Constructive Semantics for Polychrony

Combining Synchrony and Polychrony into one Framework –
Onyx

Visual Polychrony – EmCodeSyn Environment

Extending class of synthesizable Polychronous Programs
beyond weak endochrony

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 6/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

Outline of the talk

1 Motivation

2 Introduction

3 Concurrency and Multi-Threading

4 Distribution over Asynchronous Network

5 Concluding Remarks

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 6/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

PI Controller

Figure: Schematic of a car on
sloping road

m
dv

dt
+ cv = F −mgθ

dv

dt
+ 0.02v = u − 10θ

u = k(vr−v)+

∫ t

0
ki (vr−v(τ)) dτ

Figure: Block diagram of a car
with cruise control

s2 + (0.02 + k)s + ki = 0

k = 2ζω0 − 0.02

ki = ω2
0

ζ is damping parameter

ω0 is undamped natural frequency

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 7/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

PI Controller

Figure: Schematic of a car on
sloping road

m
dv

dt
+ cv = F −mgθ

dv

dt
+ 0.02v = u − 10θ

u = k(vr−v)+

∫ t

0
ki (vr−v(τ)) dτ

Figure: Block diagram of a car
with cruise control

s2 + (0.02 + k)s + ki = 0

k = 2ζω0 − 0.02

ki = ω2
0

ζ is damping parameter

ω0 is undamped natural frequency

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 7/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

A PI Controller for Cruise Control

PI
CONTROLLER

(k, ki)
V

Vr

u

u = k(vr − v) +
∫ t

0
ki (vr − v(τ)) dτ

L : S = 0 ;
Timer = T ;
while (Timer != 0){

Sample v ;
S = S + (vr − v)∗ki ;

Timer = Timer − τ
wait for τ

}
Sample v ;

u = k ∗ (vr − v) + S ;
GOTO L ;

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 8/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

Signals as Flows

v=sampled velocity, e=instantaneous error, u=computed throttle input

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 9/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

How to Compute the Thrust u

p r o c e s s CruiseControl (? r e a l v ; ! r e a l u) {parameter vr ,n , k , ki}
(| e := vr − v
| last_count := count $ i n i t 0
| count :=(last_count + 1) when (last_count < n) d e f a u l t 0 ;
| sum := ki ∗e when (count = 0) d e f a u l t ((sum $ i n i t 0) + ki ∗e)
| u := (k∗e + (sum $ i n i t 0)) when (count = 0)
|)
where

r e a l sum , e ;
i n t e g e r count , last_count ;

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 10/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

Timing Issues

Sampling of a new velocity v drives the computation

Computation of e, count, sum are synchronized to sampling
of v

Computation of u is only a sub-sampling of the flow of v

only when count = 0

This is almost synchronous programming

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 11/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

Differences with Synchronous Programming

Usually in imperative synchronous program
A tick indicates a new cycle of computation

Sampling of all signals are done at the tick

Values are computed as necessary

Those not computed are absent (Esterel), or contain default
values (Quartz)

Whatever happens at the instigation of a tick until the next
tick is a ’reaction’

The duration is abstracted to a point (logical instant)
Logical instants are totally ordered

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 12/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

Handling Multiple Inputs

p r o c e s s CruiseControl (? r e a l v ; i n t e g e r rpm ; ! r e a l u)
{parameter vr ,n , k , ki , rpmth , ud}

(| e := vr − v
| last_count := count $ i n i t 0
| count :=(last_count + 1) when (last_count < n) d e f a u l t 0 ;
| sum := ki ∗e when (count = 0) d e f a u l t ((sum $ i n i t 0) + ki ∗e)
| u := (k∗e + (sum $ i n i t 0)) when ((count = 0) when (rpm < rpmth))←↩

d e f a u l t (u$ i n i t ud)
| rpm ˆ= (count = 0)
|)
where

r e a l sum , e ;
i n t e g e r count , last_count ;

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 13/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

Timing Issues

Sampling of a new velocity v drives the computation

Computation of e, count, sum are synchronized to sampling
of v

Computation of u is only a sub-sampling of the flow of v

only when count = 0 and the sampled rpm is below a
threshold rpmth

The sampling of rpm is aligned with that of v but every n
samples of v

Logical time is totally ordered.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 14/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

A Simple PI Controller Example
Timing Issues
More Timing Issues

To Sample or not to Sample

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 15/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Outline of the talk

1 Motivation

2 Introduction

3 Concurrency and Multi-Threading

4 Distribution over Asynchronous Network

5 Concluding Remarks

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 15/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Concurrency

While the car is sampling speed for cruise control

It is also sampling temperature for climate control
It is also sampling user input to C/D player for audio control
It is also sampling GPS signals for navigation
It is sampling many other things

not all require the same sampling rate

Further, in some cases, whether to sample depends on the
values of already sampled ones.

e.g. Only if the sampled temperature too high, sample the
coolant level

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 16/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Multi-Attention Scenario

CRUISE
CONTROLLER

(k, ki)
V

Vr

u

THERMOSTAT
CONTROLLER

(k, ki)
t

ts

θ

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 17/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Consider a Simplified version of this

y = y$init0 + x

|

u = u$init0 + v

where, x=1,3,4,5,7,9,10,-1,6,...
and v=0,1,3,4,5,6,...

There is
“quiescent determinism”

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 18/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

If we were to sample under global clock

Read(x,v)?

Read(x); Read(v); ?

Read(v); Read(x); ?

None of them will be able to preserve all the possible flows shown.

Two distinct threads paced distinctly without any relationship
between their paces – logical time is partially ordered.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 19/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

What could have I done in Esterel/Lustre?

Create Buffers?

What size?
Whatever size you choose, there are behaviors that get pruned
out.
If you have any additional information between the paces of x
and v, then buffering may preserve all the behaviors
x̂ = 3v̂ + 2 (affine clocks)

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 20/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

When the threads interact!

The previous example has two threads who never interact

Two Esterel/Lustre processes could be written and run under
two different clocks and avoid Polychrony

But more often than not, these kinds of threads will interact

A contrived example:

The temperature control thread might decide to disengage the
cruise control when the temperature is too low

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 21/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

How to Handle Interrupt

p r o c e s s Interruptible_CC (? r e a l v ; ? boo l ean interrupt ; ! r e a l u)
{parameter vr ,n , k , ki}

(| e := vr − v
| last_count := (count $ i n i t 0)
| count :=(last_count+ 1) when (last_count < n) d e f a u l t 0 ;
| sum :=((sum $ i n i t 0) + ki ∗e) when (last_count < n) d e f a u l t 0 ;
| u := (k∗e + sum) when (! interrupt when (count = n))
| interrupt ˆ= (count=n)
| count ˆ= v ˆ= sum
|)
where

r e a l sum , e ;
i n t e g e r count , last_count ;

2 inputs with unrelated paces
interrupts happen once in a while
sampling of velocity happens regularly

One solution: Check Interrupt only when outputting throttle
interrupt sampling is done at predetermined events – bring
back total order

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 22/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Another Solution

p r o c e s s Interruptible_CC (? r e a l v ; ? boo l ean interrupt ; ! r e a l u)
{parameter vr ,n , k , ki}

(| e := vr − v
| last_count := (count $ i n i t 0)
| count :=(last_count + 1) when (last_count < n) d e f a u l t 0 ;
| sum :=((sum $ i n i t 0) + ki ∗e) when (last_count < n) d e f a u l t 0 ;
| interrupted := interrupt d e f a u l t (interrupted $ i n i t false)
| u := (k∗e + sum) when (! interrupted when (count == n))
| interrupt ˆ= v
| count ˆ= v ˆ= sum
|)
where

r e a l sum , e ;
i n t e g e r count , last_count ;
boo l ean interrupted ;

Check for interrupt every time you sample v, and it has a
value true iff there is an interrupt – total order

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 23/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Temperature Control Process (PI controller)

p r o c e s s TempControl (? r e a l t ; ! r e a l θ ; ! e ven t interrupt)
{parameter ts ,n , c , ci , T}

(| e := ts − t
| last_count := (count $ i n i t 0)
| interrupt := true when (t < T)
| count :=(last_count + 1) when (last_count < n) d e f a u l t 0 ;
| sum :=((sum $ i n i t 0) + ci ∗e)when (last_count < n) d e f a u l t 0 ;
|θ := (c∗e + sum) when (count == n)
| count ˆ= t ˆ= sum
|)
where

r e a l sum , e ;
i n t e g e r count ;

Generate an interrupt as soon as temperature goes below a
threshold T.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 24/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Combined CC + TC

p r o c e s s CCTC (? r e a l v , r e a l t ; ! boo l ean interrupt , r e a l u , r e a l θ)
{parameter vr , ts n , m , k , ki ,c , ci , T}

(| e1 := vr − v
| last_count1 := (count1 $ i n i t 0)
| count1 :=(last_count1+1) when (last_count1 < n) d e f a u l t 0
| sum1 :=((sum1 $ i n i t 0)+ki ∗e1) when (last_count1 < n) d e f a u l t 0
| u := (k∗e1 + sum1) when (! interrupted when (count1 == n)
| interrupted ˆ= (count1 == n)
| count1 ˆ= v ˆ= sum1

| e2 := ts − t
| interrupt := true when (t>T) d e f a u l t interrupt $ i n i t false
| interrupted := interrupt when (count2 == m)
| last_count2 := (count2 $ i n i t 0)
| count2 :=(last_count2+1) when (last_count2 <n) d e f a u l t 0 ;
| sum2 :=((sum2 $ i n i t 0)+ci ∗e) when (last_count2 < n) d e f a u l t 0 ;
|θ := (c∗e2 + sum2) when (count2 == m)
| count2 ˆ= t ˆ= sum2

|)
where

r e a l sum1 , e1 , sum2 , e2 ;
i n t e g e r count1 , count2 ;
boo l ean interrupted ;

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 25/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Modular Hierarchic CC+TC

p r o c e s s Modular_CCTC (? r e a l v , r e a l t ; ! boo l ean interrupt , r e a l u , r e a l θ)
{parameter vr , ts n , m , k , ki ,c , ci , T}

(| u := Interruptible_CC{vr , n , k , ki }(v , interrupt)
| θ , interrupt := TempControl{ts , m , c , c , ci , T}(t)
|)

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 26/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Modular Hierarchic CC+TC (2)

p r o c e s s TempControl (? r e a l t ; ! r e a l θ ; ! boo l ean interrupt)
{parameter ts ,n , c , ci , T}

(| e := ts − t
| last_count := (count $ i n i t 0)
| in_interrupt := true when (t>T) d e f a u l t in_interrupt $ i n i t false
| interrupt := in_interrupt when (count == n)
| count :=(last_count + 1) when (last_count < n) d e f a u l t 0 ;
| sum :=((sum $ i n i t 0) + ci ∗e) when (last_count < n) d e f a u l t 0 ;
|θ := (c∗e + sum) when (count == n)
| count ˆ= t ˆ= sum
|)
where

r e a l sum , e ;
i n t e g e r count ;
boo l ean in_interrupt

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 27/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Modular Hierarchic CC+TC (3)

p r o c e s s Interruptible_CC (? r e a l v ; ? boo l ean interrupt ; ! r e a l u)
{parameter vr ,n , k , ki}

(| e := vr − v
| last_count := (count $ i n i t 0)
| count :=(last_count + 1) when (last_count < n) d e f a u l t 0 ;
| sum :=((sum $ i n i t 0) + ki ∗e) when (last_count < n) d e f a u l t 0 ;
| u := (k∗e + sum) when (count == n) when ! interrupt
| interrupt ˆ= (count == n)
| count ˆ= v ˆ= sum
|)
where

r e a l sum , e ;
i n t e g e r count , last_count ;

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 28/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

Clock Hierarchy (Logical Time Hierarchy)

 v = e1= count1

 = sum1

 = count1$

count1$< n

Interrupted == false
= u

 t = e2= count2

 = sum2

 = count2$

t > T t ≤ T
count2$ < m

count1$==n
= interrupted

count2$ == m
= interrupted

= θ

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 29/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Split Attention
Threads, Interaction and Interrupts

This process can be synthesized into two threads TC and CC

TC in every cycle, samples temperature
At the same cycle when it issues temperature correction it
checks if temperature exceeds threshold
if so, it generates interrupt and wait until CC’s has read it
then goes back to computing its control, and then starts the
same cycle again.

CC in every cycle samples speed,
computes the control, but checks for interrupted status which
is by default false during every cycle, except when TC had
raised the interrupt, and waiting.
interrupted status only changes at the same cycle as throttle
computation
The CC’s throttle computation is synchronized with TC’s
temperature correction

The thread synchronization mechanism must ensure that TC
can check when CC sets its interrupted status to true (via
wait/notify or others)Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 30/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Outline of the talk

1 Motivation

2 Introduction

3 Concurrency and Multi-Threading

4 Distribution over Asynchronous Network

5 Concluding Remarks

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 30/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Flow Determinism

What does it mean to design GALS implementation?

Design a Concurrent System in Polychronous Framework
Prove Correctness with respect to High Level Flow Equations
Split the System into Concurrent Components
Deploy over distributed nodes with no global clock
Prove flow equivalence

Let P1 and P2 be two Polychronous processes such that
P1 | P2 is weakly endochronous

This means P1 | P2 has deterministic multi-threaded
implementation with flow determinism

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 31/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Flow Determinism

What does it mean to design GALS implementation?

Design a Concurrent System in Polychronous Framework
Prove Correctness with respect to High Level Flow Equations
Split the System into Concurrent Components
Deploy over distributed nodes with no global clock
Prove flow equivalence

Let P1 and P2 be two Polychronous processes such that
P1 | P2 is weakly endochronous

This means P1 | P2 has deterministic multi-threaded
implementation with flow determinism

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 31/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Flow Determinism (2)

What is flow determinism?

Usually Polychronous operators define relations between flows
If endochronous – such relations turn out to be functions
(endochrony)
If weakly endochronous – such relations turn out to be
functions modulo partial order trace equivalence (Mazurkiewicz
trace theory)

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 32/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Mutual Timing Awareness

Let us denote by P1‖P2 – asynchronous composition of P1

and P2

If we have proven P1 | P2 flow deterministic – safe to
implement

Proving P1‖P2 ∼ P1 | P2 will accomplish our objective
∼ – flow equivalence

If P1‖P2 � P1 | P2 – then we have to find conditions or
wrappers that would make it so.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 33/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Mutual Timing Awareness (2)

if P1 and P2 share signals x , y , ..

if P1 | P2 is weakly endochronous – they have the same
deterministic notion of timing of x , y , ..
Hence P1‖P2 ∼ P1 | P2

If P1 and P2 is said to be isochronous if they have exact
mutual timing awareness.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 34/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Making them isochronous

Consider P1 = (| x := a default b |)
P2 = (| y := a default b |)
Since (| x := a default b | y := a default b |) ∼ (| x :=
a default b | y := x |)

P1 | P2 (extended) flow deterministic.
But P1 | P2 � P1‖P2

Because relative delays of a and b are not guaranteed.

Therefore, in order to deploy these two processes in a GALS
environment, we need wrappers.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 35/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Wrapper Synthesis

Let us define P ′
1 = (| x := a default b | aˆ= when ca | bˆ=

when cb | caˆ= cb |)
Let P ′

2 = (| aˆ= when ca | bˆ= when cb | caˆ= cb | y :=
a default b |)

P ′1 | P ′2 ∼ P ′1‖P ′2
Now P ′1 is a wrapped version of P1, and P ′2 is a wrapped
version of P2

P ′1 and P ′2 has two extra inputs ca and cb which encode
presence and absence of a, b, and thus both processes have
mutual awareness of presence/absence of a and b.

If the network can guarantee synchronized signals are
synchronously visible at both nodes (ca and cb) – that is
sufficient for this to work.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 36/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Wrapper Synthesis (2)

If the network can guarantee consistent delivery of a view of
external signal synchronizations – e.g.,present() system call

Let us define
PP1 = (| P ′

1 | ca := present(a) | cb := present(b) |) \ {ca, cb}
PP2 = (| P ′

2 | ca := present(a) | cb := present(b) |) \ {ca, cb}
PP1 | PP2 ∼ PP1‖PP2

Now PP1 is a wrapped version of P1, and PP2 is a wrapped
version of P2

PP1 and PP2 do not even need any change to their interface as
the distributed O/S delivers a consistent information to both.

The Question is how does the O/S implement a deterministic
system call such as present()

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 37/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Wrapper Synthesis (3)

If present() system call is not deterministically implemented,
one can make one of the processes a master process as follows

Let us define
PP1 = (| P ′

1 | ca := present(a) | cb := present(b) |)
(PP1 | P ′

2) \ {ca, cb} ∼ P1‖P2

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 38/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Wrapper Synthesis (4)

In these solutions the logical timing is not changed, thus the
logical synchronizations are preserved. This is not required to
preserve flow equivalence.

Consider the following example:
ADD1(?a, b; !s1) = s1 := a + b and
ADD2(?a, b; !s2) = s2 := a + b

In ADD1 | ADD2 we have s1 and s2 as synchronous flows – as
so are a and b

Now Let us create synchronous/asynchronous interfaces for
these processes which can be wrapped on the synchronous
ADDi to be used in GALS

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 39/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Asynchronous Interface

p r o c e s s ASYNIF (? r e a l a , b ; ! r e a l aa , ab)
(| ma : = a cell ˆb
| mb : = b cell ˆa
| do_add = aˆ∗b d e f a u l t (a ˆ+ b) when (number−arrived = 1)
| number−arriving = (0 when do_add) d e f a u l t ((number−arrived + 1) ←↩

when (a ˆ+ b))
| number−arrived = number−arriving $ i n i t 0
| number_arriving ˆ= a ˆ+ b
| aa := ma when do_add
| bb := mb when do_add |)

where
r e a l ma , mb ;
i n t e g e r number−arriving , number−arrived ;
e v en t do_add ;
end ;
p r o c e s s ASYNADD1 (? r e a l a , b ; ! r e a l s1)
(| aa , bb := ASYNINF (a , b)
| s1 := aa + bb
|) where

r e a l aa , ab ;
end ;

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 40/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Flow Determinism
Isochrony and Mutual Timing Awareness
Making Them Isochronous
Wrap Them for GALS
Asynchronous Interface Synthesis

Asynchronous Interface

In ASYNDD1 | ASYNDD2, s1 and s2 still are synchronous
flows, but a and b are asynchronous.

If there are no overtaking of a or b (there is never more than
one occurrence of each flow in advance)
ASYNDD1 | ASYNDD2 ∼ ADD1 | ADD2

Thus provided that there is no overtaking of a or b in the
network, ASYNDD1‖ASYNDD2 ∼ ADD1 | ADD2

synchronization is not preserved, thus we do not have process
equality.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 41/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Outline of the talk

1 Motivation

2 Introduction

3 Concurrency and Multi-Threading

4 Distribution over Asynchronous Network

5 Concluding Remarks

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 41/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Final Remarks

We talked about the basics of Polychrony and Calculus of
Partially ordered Logical Instants

How to use the Calculus to refine spec to implementation

We did not talk about our most recent work.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 42/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Further Reading

1 ”Embedding polychrony into synchrony” J. Brandt, M. Gemnde, K.
Schneider, S. Shukla, and J.-P. Talpin. In Transactions on Software
Engineering. IEEE, 2012.

2 ”Representation of synchronous, asynchronous, and polychronous
components by clocked guarded Actions” J. Brandt, M. Gemnde, K.
Schneider, S. Shukla, and J.-P. Talpin. In Design Automation for
Embedded Systems, Special Issue on Languages, Models and Model
Based Design for Embedded Systems. Springer, 2012.

3 ”Constructive polychronous systems”. J.-P. Talpin, J. Brandt, M.
Gemnde, K. Schneider, and S. Shukla. Logical Foundations in Computer
Science (LFCS’12). Springer, January 2013

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 43/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Further Reading (2)

1 Bijoy A. Jose, Jason Pribble and Sandeep K. Shukla, ”Faster software
synthesis using Actor Elimination Techniques for Polychronous formalism,
in Proceedings of Applications of Concurrency in Synchronous (ACSD),
Portugal, June 2010.

2 Bijoy A. Jose and Sandeep K. Shukla, MRICDF : A polychronous Model
for Embedded Software Synthesis. Book Chapter in: ”Synthesis of
embedded software: frameworks and methodologies for correctness by
construction software design”, ISBN 978-1-4419-6399-4, Springer, 2010.

3 Synthesizing embedded software with safety wrappers through polyhedral
analysis in a polychronous framework M Nanjundappa, M Kracht, J Ouy,
SK Shukla - System Level Synthesis Conference (ESLsyn), 2012

4 Bijoy A. Jose, Abdoulaye Gamati, Julien Ouy, Sandeep K. Shukla: SMT
based false causal loop detection during code synthesis from
Polychronous specifications. MEMOCODE 2011: 109-118

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 44/ 46

Motivation
Introduction

Concurrency and Multi-Threading
Distribution over Asynchronous Network

Concluding Remarks

Further Reading (3)

1 Bijoy A. Jose, Sandeep K. Shukla: An alternative polychronous model
and synthesis methodology for model-driven embedded software.
ASP-DAC 2010: 13-18

2 Bijoy A. Jose, Jason Pribble, Sandeep K. Shukla: Faster Software
Synthesis Using Actor Elimination Techniques for Polychronous
Formalism. ACSD 2010: 147-156

3 M Nanjundappa, M Kracht, J Ouy, SK Shukla:A New Multi-threaded
Code Synthesis Methodology and Tool for Correct-by-Construction
Synthesis from Polychronous Specifications,ACSD 2013:21-30

4 SK Shukla, JR Ouy, M Nanjundappa, P Kumar, M Anderson, G Selvam,
M Kracht: Techniques and Tools for Trustworthy Composition of
Pre-Designed Embedded Software Components, AFRL Technical Report,
2012

5 Julien Ouy, Matthew Kracht, and Sandeep K. Shukla: Abstraction of
Polychronous Dataflow Specifications into Mode-Automata, SAMOS XIII,
2013.

Sandeep K. Shukla FERMAT Lab Hume Center for National Security and Technology Virginia Tech Arlington Research Center Arlington, VA.Models of Time for Safety Critical Systems 45/ 46

Any Questions??

Thank You!!

	Motivation
	Introduction
	Concurrency and Multi-Threading
	Distribution over Asynchronous Network
	Concluding Remarks

