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Backgrounds 

• Cloud radio access networks 

– Promoted by  
Huawei [Liu et al], Intel [Intel], Alcatel-Lucent [Segel-Weldon], China Mobile [China],  
Texas Inst. [Flanagan], Ericsson [Ericsson] 

– Base stations (BSs) (e.g., macro-BS and pico-BS) operate as  
soft relays. 

An Illustration of the downlink of cloud radio access networks 
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Backgrounds 

• Cloud radio access networks (ctd’) 

– Low-cost deployment of BSs 

• Encoding/decoding functionalities migrated to the central unit 

• No need to consider cell association 

– Effective interference mitigation 

• Joint encoding/decoding at the central unit 

– But, the backhaul links have limited capacity 
• Macro BSs: increasingly fiber cables [Segel-Weldon] 

• Dedicated relays: wireless [Maric et al][Su-Chang] 

• Home BSs: last-mile connections 

 
 

The distribution of backhaul connections for  macro BSs 

(green: fiber, orange: copper, blue: air) [Segel-Weldon]. 
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• We focus on the downlink 

 

 

 

 

 

 

 

 

 
 

 

– Notation: 
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• Assuming flat-fading channel, the received signal at MS    is given 
by 
 
 
 
where 

 

 

• Per-BS power constraints 

 

 
– The results of this work can be extended to more general power constraints: 
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• Backhaul constraints 

– Each BS    is connected to the central encoder via a backhaul link of 
capacity      bits per channel use (c.u.). 

 

• Oblivious BSs 

– The codebooks of the MSs are not known to the BSs. 
• As assumed in cloud radio access networks, e.g., [Liu et al]-[Ericsson]. 

– Systems with informed BSs treated in [Ng et al][Sohn et al][Zakhour-Gesbert][Simeone et al: 12]. 

Basic Setting 

i

iC
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• Distributed compression  

– Received signals at different BSs are statistically correlated. 

– This correlation can be utilized to improve the achievable rates 
[Sanderovich et al][dCoso-Simoens][Park et al:TVT][Zhou et al]. 

Previous Work: Uplink 

Conventional compression Distributed compression 

: Side information 
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• Joint decompression and decoding [Sanderovich et al][Yassaee-Aref][Lim et al] 

– Potentially larger rates can be achieved with joint decompression and 
decoding (JDD) at the central unit [Sanderovich et al]. 

– Optimization of the Gaussian test channels with JDD [Park et al:SPL]. 

Previous Work: Uplink 

Joint decompression and decoding Numerical results in 3-cell uplink [Park et al:SPL] 

       (SDD: separate decompression and decoding) 
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• Compressed dirty-paper coding (CDPC) [Simeone et al:09] 

– Joint dirty-paper coding [Costa] for all MSs 
• A simpler scheme based on zero-forcing DPC [Caire-Shamai] was studied in [Mohiuddin et al:13]. 

– Followed by independent compression 
• DPC output signals for different BSs are compressed independently. 

Previous Work: Downlink 

1C
1M
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Quantization is performed at the central 

unit using the forward test channel 

 

 

where 

• Compressed dirty-paper coding [Simeone et al:09] (ctd’) 

Previous Work: Downlink 
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• Reverse compute-and-forward (RCoF) [Hong-Caire] 

– Downlink counterpart of the compute-and-forward (CoF) scheme 
proposed for the uplink in [Nazer et al]. 

• Exchange the role of BSs and MSs and use CoF in reverse direction. 

– System model 

•   

Previous Work: Downlink 
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• Reverse compute-and-forward (RCoF) [Hong-Caire] (ctd’) 

 

 

 

 

 

 

 

 

– The same lattice code is used by each BS. 

– Each MS   estimates a function                   by decoding on the lattice 
code. 

– Achievable rate per MS is given by 

Previous Work: Downlink 
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• Structure of the central encoder 
– Precoding: interference mitigation 

– Compression: backhaul communication 

 

 

 

 

 

 

 

 

 

 

– Achievable rate for MS    (single-user detection) 

Central Encoder 
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• Channel encoding for MS 
– Assume Gaussian codewords 

 
 
 
 

where 

Channel Encoding 
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• Linear precoding 
 
 
 
 
 
where 

 

 

 
 

– Remark: Non-linear dirty-paper coding [Costa] can be also considered. 
• All kind of pre-processing can be accommodated as long as the message to compress is 

treated as a Gaussian vector. 
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• Conventional Compression 

Conventional Compression 
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• Multivariate Compression 

Multivariate Compression 
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• Multivariate Compression (ctd’) 
– Gaussian test channel [dCoso-Simoens][Simeone et al:09] 

 

 

– Overall, the compressed signal                        is given as 
 
 
 
with the compression noise                                   where 
 
 
 
 
 
 
and                 . 
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• Multivariate Compression (ctd’) 
– For a precoder     and a compression correlation    , we have the 

following modified BC. 

 

 

 

 

 

 

 

 

 

– Received signal at MS 
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• Multivariate Compression (ctd’) 
– Leverages correlated compression in order to better control the 

effect of the additive quantization noises at the MSs. 
• Ex: Consider the case with single-MS and two-BSs. 

 
 
 
 
 
 
 

 

 

• The conventional independent compression [Simeone et al:09] is a 
special case of multivariate compression by setting 
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• Multivariate Compression (ctd’) 
– Lemma 1 [ElGamal-Kim, Ch. 9]  

 Consider an i.i.d. sequence     and    large enough. Then, there 
exist codebooks             with rates            , that have at least 
one tuple of codewords                                 jointly typical 
with      with respect to the given joint distribution             
                                            with probability arbitrarily close 
to one, if the inequlities  
 
 
 
are satisfied. 

Multivariate Compression 
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• Multivariate Compression (ctd’) 
– Lemma 2 (Lemma 1 applied to our setting) [Park et al:13] 

 The signals              obtained via (1) can be reliably transferred 
to the BSs on the backhaul links if the condition 
 
 
 
 
 
is satisfied for all subsets           .  
 

Multivariate Compression 
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• Multivariate Compression (ctd’) 
– Consider the case with two BSs. 

• The multivariate constraints in Lemma 2 become 

 

 

 

 

 

• With independent compression            , the constraints (A) reduce 
to 

 

 

 

• Constraints (A) are stricter than (B). 

– The introduction of correlation among the quantization noises for 
different BSs leads to additional constraints on the backhaul link 
capacities. 

Multivariate Compression 

     

     

         

1 1 1

2 2 2

1

1 1

2 2

2 1 2 1 21 2 1 2

| , ( 1)

| , (

;

;

; ,

2)

, | . ( 3; )

Ih h C A

h h C A

h h h C

I

I CI A





 

 

 

   

x x x

x x x

x x x x

x x

x x

x x x x xx

 

 

1 1 1

2 2 2

; , ( 1)

; . ( 2)

I C B

I C B





x x

x x

1,2 Ω 0



Page 29 of 66 

• Weighted sum-rate maximization 
 
 
 
 
 
 
 
where 

Problem Definition 
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• If we define             for         , the problem (2) falls in 
the class of difference-of-convex problem [Beck-Teboulle] 
with respect to the variables             . 

 

– We can use a Majorization Minimization (MM) algorithm  
[Beck-Teboulle] to find a stationary point of the problem. 

• At each iteration, linearize non-convex parts. 

• The algorithm is detailed in Algorithm I in the next slide. 

MM Algorithm 
H

k k kR A A k MN
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where the functions                              are the local approximations of the  

functions                              at the point                    . 

Initialize              and         and set         . 

Algorithm I 
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Step   : 

• For given variables         , the implementation of the joint 
compression is relatively complex. 

• A successive architecture with a given permutation              . 

 

 

 

 

 

 

 

 
 

– Compression rate at step             : 
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• Lemma 3: The region of the backhaul capacity tuples            
satisfying the constraints (2b) is a contrapolymatroid [Tse-Hanly, Def. 3.1]. 
Therefore, it has a corner point for each permutation     of the 
BS indices     , and each such corner point is given by the tuple                    
                  with 
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– Thus, we have 
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• Example of the backhaul capacity region for 2BN 

Successive estimation-compression 
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• Proposed successive estimation-compression architecture 

Successive estimation-compression 
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• For reference, consider independent quantization  
[Simeone et al:09], i.e., 

 

 

• Since the above constraint is affine, the MM algorithm is 
still applicable. 

Independent Quantization 
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• For reference, consider the separate design of precoding 
and compression. 
– Selection of the precoding matrix 

•     is first selected according to some standard criterion 

– e.g., zero-forcing [RZhang], MMSE [Hong et al], sum-rate max. [Ng-Huang] 

• Assume a reduced power constraint        with          since 

 

 

 

– Optimization of the compression covariance 

• Having fixed    , the problem then reduces to solving (2) only with 
respect to    . 

Separate Design 

A

Ω

A

i iP

precoded quantization
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• Assuming perfect channel state information (CSI) at the 
central encoder might be unrealistic. 

Robust Design 

Compute 

    and A Ω

  Precoding 

       and 

compression 
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• Singular value uncertainty model [Loyka-Charalambous:Sec. II-A] 

– The actual CSI      is modeled as 
 
 
 
where 

 

 

– Worst-case optimization problem 

Robust Design 
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• Singular value uncertainty model (ctd’) 
– Lemma. The problem (3) is equivalent to the original weighted 

sum-rate maximization problem with                   for           , 
i.e., 
 
 
 
 
 
 
where 

Robust Design 
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• Ellipsoidal uncertainty model [Shen et al][Bjornson-Jorswieck] 

– Consider MISO case such that                        . 

– The actual channel     is modeled as 
 
 
 
where 

Robust Design 
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ˆ : the CSI known at the central encoder,

: the error vector bounded with 1,

( specifies the size and shape of the ellipsoid.)
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• Ellipsoidal uncertainty model (ctd’) 
– The “dual” problem of power minimization under SINR 

constraints for all MSs, i.e., 
 
 
 
 
 
 
 
 
 
where 

Robust Design 
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• Ellipsoidal uncertainty model (ctd’) 
– Lemma. Constraint (4b) holds if and only if there exist constants 

          such that the condition 
 
 
 
 
 
is satisfied for all           where we have defined 
 
 
 
 
pf: Follows by applying the S-procedure [Boyd-Vandenberghe, Appendix B-2]. 
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• Three-cell SISO circular Wyner model [Gesbert et al] 

– The channel coefficients given by 

 

 

 

 

– Compare the following schemes 
• Reverse Compute-and-Forward (RCoF) [Hong-Caire] 

– Structured codes, but sensitive to the channel coefficients. 

• Dirty-paper coding with 
– Multivariate compression 

– Independent quantization (this case corresponds to the compressed DPC in [Simeone et al:09]) 

• Linear precoding with 
– Multivariate compression 

– Independent quantization  
(this case corresponds to quantized network MIMO in [Zakhour-Gesbert, Sec. IV-A]) 
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• Three-cell SISO Wyner model [Gesbert et al] (ctd’) 
– Per-cell sum-rate versus     when              and           . 

Wyner Model 
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Linear precoding

RCoF
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   compression

independent 
compression

- Multivariate compression is significantly 

 advantageous for both linear and DPC 

 precoding. 

- RCoF in [Hong-Caire] remains the most 

 effective approach in the regime of  

 moderate backhaul     , although 

 multivariate compression allows to 

 compensate for most of the rate loss of 

 standard DPC precoding in the low- 

 backhaul regime. 

- The curve of RCoF flattens before the 

 others do, since it is limited by the  

 integer approximation penalty when the  

 backhaul capacity is large enough. 

C
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• More general MIMO fading model 
– There are three BSs and three MSs, i.e.,              . 

– Each BS uses two antennas while each MS uses a single antenna. 

– The elements of       between MS    and BS    are i.i.d. with 
               . 

• We call     the inter-cell channel gain. 

– In the separate design, 

• The precoding matrix     is obtained via the sum-rate maximization 
scheme in [Ng-Huang]. 

– Under the power constraint      for each BS with    selected so that the 
compression problem be feasible. 

MIMO Fading Channels 

,k iH k i
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• More general MIMO fading model (ctd’) 
– Sum-rate versus    for the separate design of linear precoding 

and compression with             and 

MIMO Fading Channels 
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- Increasing     generally results in a better 

 sum-rate. 

- However, if     exceeds some threshold 

 value, the problem of optimizing the 

 correlation      given the precoder      is  

 more likely to be infeasible. 

- This threshold value grows with the 

 backhaul capacity, since a larger backhaul 

 capacity allows for a smaller power of the 

 quantization noises. 
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• More general MIMO fading model (ctd’) 
– Sum-rate versus    for linear precoding with         and 

MIMO Fading Channels 
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joint design
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- The gain of multivariate compression is 

 more pronounced when each BS uses a 

 larger power. 

- As the received SNR increases,  

 more efficient compression strategies 

 are called for. 

- Multivariate compression is effective in 

 partly compensating for the suboptimality 

 of the separate design. 

- Only the proposed joint design with 

 multivariate compression approaches the 

 cutset bound as the transmit power  

 increases. 
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• More general MIMO fading model (ctd’) 
– Sum-rate versus    for the joint design with          and 

MIMO Fading Channels 
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multivariate compression
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DPC precoding

linear precoding

- DPC is advantageous only in the regime 

 of intermediate     due to the limited-capacity 

 backhaul links. 

- Unlike the conventional BC channels 

 with perfect backhaul links where there 

 exists constant sum-rate gap between 

 DPC and linear precoding at high SNR 

 (see, e.g., [Lee-Jindal]). 

- The overall performance is determined by 

 the compression strategy rather than 

 precoding method when the backhaul  

 capacity is limited at high SNR. 
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• More general MIMO fading model (ctd’) 
– Sum-rate versus    for linear precoding with           and 

MIMO Fading Channels 
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- When the backhaul links have enough 

 capacity, the benefits of multivariate 

 compression or joint design of precoding 

 and compression become negligible. 

- since the overall performance 

 becomes limited by the sum-capacity 

 achievable when the BSs are able to 

 fully cooperate with each other. 

- The separate design with multivariate 

 compression outperforms the joint design 

 with independent quantization for backhaul 

 capacities larger than 5 bit/c.u.
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• More general MIMO fading model (ctd’) 
– Sum-rate versus the inter-cell channel gain    for linear precoding 

with          and 

MIMO Fading Channels 
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- The multi-cell system under consideration 

 approaches the system consisting of      

 parallel single-cell networks as the inter-cell 

 channel gain     decreases. 

- The advantage of multivariate compression 

 is not significant for small values of    , since 

 introducing correlation of the quantization  

 noises across BSs is helpful only when each 

 MS suffers from a superposition of 

 quantization noises emitted from multiple 

 BSs. 
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• We have studied the design of joint precoding and compression 
strategies for the donwlink of cloud radio access networks. 

– The BSs are connected to the central encoder via finite-capacity 
backhaul links. 

 

• We have proposed to exploit multivariate compression of the signals 
of different BSs. 

– In order to control the effect of the additive quantization noises at the 
MSs. 

 

• The problem of maximizing the weighted sum-rate subject to power 
and backhaul constraints was formulated. 

– An iterative MM algorithm was proposed that achieves a stationary 
point. 

Concluding Remarks 
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• Moreover, we have proposed a novel way of implementing 
multivariate compression. 

– based on successive per-BS estimation-compression steps. 

 

• Via numerical results, it was confirmed that  

– The proposed approach based on multivariate compression and on joint 
precoding and compression strategy outperforms the conventional 
approaches based on independent compression and separate design of 
precoding and compression strategies. 

• Especially when the transmit power or the inter-cell channel gain are large, 
and when the limitation imposed by the finite-capacity backhaul link is 
significant. 

Concluding Remarks 
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• Interesting open problems 

– Impact of CSI quality 

• The central unit has a different (worse) CSI quality than the distributed BSs. 

• Some related works found in [Park et al:13, Sec. V][Marsch-Fettweis][Hoydis et al]. 

– Broadcast approach [Shamai-Steiner][Verdu-Shamai] 

• The overall system can be regarded as a broadcast channel with different 
fading states among the MSs. 

– Combination of structured codes [Nazer et al][Hong-Caire], partial decoding 
[Sanderovich et al][dCoso-Ibars] and multivariate processing [Park et al:13]. 

– Multi-hop backhaul links 
• The BSs may communicate with the central unit through multi-hop backhaul links. 

• Related works can be found in [Yassaee-Aref][Goela-Gastpar]. 

Concluding Remarks 
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  The talk considers the downlink of cloud radio access networks, in which a central encoder is 
connected to multiple multi-antenna base stations (BSs) via finite-capacity backhaul links. The 
processing is done at the central encoder, while the distributed BSs employ only oblivious (robust) 
processing. We first review current state-of-the-art approaches, where the signals intended for 
different BSs are compressed independently, or alternatively the recently introduced structured 
coding ideas (Reverse Compute-and-Forward) are employed. We propose to leverage joint 
compression, also referred to as multivariate compression, of the signals of different BSs in order to 
better control the effect of the additive quantization noises at the mobile stations. We address the 
maximization of a weighted sumrate. For joint compression this is associated with the optimization 
of the precoding matrix and the joint correlation matrix of the quantization noises, subject to power 
and backhaul capacity constraints. An iterative algorithm is described that achieves a stationary 
point of the problem, and a practically appealing architecture is proposed based on successive steps 
of minimum mean-squared error estimation and per-BS compression. We conclude by comparison 
of different processing techniques, discussing a robust design concerning the available accuracy of 
the channel state information and overviewing some aspects for future research. 
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