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Parameter space is increasingly large and complex

— Ultra Wideband spectrum sensing

— Ultra narrow beam alignment for mmWave
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— Empirical network parameter tuning
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— Prior6 ~p
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A widely used heuristic

M
r(p) = argmax I(6; Z%), where Z% ~ q; = sz-qg‘
“ i=1

[Chaloner Verdinelli 1995], [Lindley 1956], [MacKay 1992], [Paninski 2005],
[Branson 2010], [Butko Movellan 2009], [Fleuret 2004], [Williams et al.
2007]
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q1,qQ2, - - -, qrr With respect to p = [p1, p2, ..., par] is defined as
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Bayesian generalization of J-divergence [Jefferys 73]
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Proposition
EJS is the information utility associated with the average

likelihood function U(p) = Zf\il pi log 1;?', ie.

L) = IU(a, p,U)

EJS(p;qi,- ..
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Theorem (Naghshvar et. al. 13). Suppose there is C' > 0 s.t. when

a is selected according to SortPM and |a| < aB/J, for all p,

EJS(p,a) > C. Then

E[T*] < E[TSortPM] <

log M + max{loglog M, log %} + 4A
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+ K(a).
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EJS(p,a) > C. Then

log M + max{loglog M, log %} + 4A
C

E[7*] < El[rsortpm] < + K(a).

Lemma. Fix a € (0,1). Using hard-decoded observation
sequence = C'(a) =1—h (Q ((02043/5)_1/2)>.
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