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� Next-generation wireless systems are increasingly complex



Learning and Optimization for Next Generation Wireless

Motivation & Setup

� Motivation I

Motivation II

Examles

Noisy Search

Code to Search

Break

Experiment Design

3 / 30
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� Each layer has an increasingly large number of parameters to
be optimally tuned
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� Next-generation wireless systems are increasingly complex

� Each layer has an increasingly large number of parameters to
be optimally tuned

� Networks operate at an increasingly diverse settings

– Performance relies on learning and parameter
optimization

– Example: network control’s main task involves iterative
enhancements of PHY parameters
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� Unlike in legacy systems the overhead associated with this
learning/optimization can be significant
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� Parameter space is increasingly large and complex

– Ultra Wideband spectrum sensing

– Ultra narrow beam alignment for mmWave
communication

– Empirical network parameter tuning
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� Unlike in legacy systems the overhead associated with this
learning/optimization can be significant

� Parameter space is increasingly large and complex

– Ultra Wideband spectrum sensing

– Ultra narrow beam alignment for mmWave
communication

– Empirical network parameter tuning

� Our objective is to characterize/minimize the network
overhead associated w learning/optimization
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� Spectrum with total bandwidth of B is available for
transmission

� Primary users have dedicated sub-bands of bandwidth δ each
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� Spectrum with total bandwidth of B is available for
transmission

� Primary users have dedicated sub-bands of bandwidth δ each

� Subset of subbands inspected sequentially by secondary user

time 1 . . . τ − 1 τ

sample A(1) . . . A(τ − 1)

observation Y (1) . . . Y (τ − 1)

declaration Ŵ = d(Y τ−1, xτ−1)

error 1{Ŵ �=W}
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time 1 . . . τ − 1 τ

sample A(1) . . . A(τ − 1)

observation Y (1) . . . Y (τ − 1)
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� Inspection of a subset results in a signal plus noise
measurement
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� Spectrum with total bandwidth of B is available for
transmission

� Primary users have dedicated sub-bands of bandwidth δ each

� Subset of subbands inspected sequentially by secondary user
� Inspection of a subset results in a signal plus noise

measurement

– Unit signal associated w the availability of band
– Sensing noise/unit of spectrum ≈ 0-mean, σ2-var

Gaussian
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� Spectrum with total bandwidth of B is available for
transmission

� Primary users have dedicated sub-bands of bandwidth δ each

� Subset of subbands inspected sequentially by secondary user
� Inspection of a subset results in a signal plus noise

measurement

Y a = aT (W + Z)
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� Spectrum with total bandwidth of B is available for
transmission

� Primary users have dedicated sub-bands of bandwidth δ each

� Subset of subbands inspected sequentially by secondary user
� Inspection of a subset results in a signal plus noise

measurement

Y a = aT (W + Z)

a ∈ A, W ∈ {0, 1}B
δ ||W ||0 = K Z ∼ N (0, δσ2I)
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� Spectrum with total bandwidth of B is available for
transmission

� Primary users have dedicated sub-bands of bandwidth δ each

� Subset of subbands inspected sequentially by secondary user
� Inspection of a subset results in a signal plus noise

measurement

Y a = aT (W + Z) a,W ∈ {0, 1}B
δ ||W ||0 = K N ∼ N (0, Bσ2/δI)

� Minimize E{τ} subject to Pe ≤ ε
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� Spectrum with total bandwidth of B is available for
transmission

� Primary users have dedicated sub-bands of bandwidth δ each

� Subset of subbands inspected sequentially by secondary user
� Inspection of a subset results in a signal plus noise

measurement

Y a = aT (W + Z) a,W ∈ {0, 1}B
δ ||W ||0 = K N ∼ N (0, Bσ2/δI)

� Minimize E{τε}
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� Directional transmission B ⊂ 2π is available for transmission
� Angular resolution of δ ≤ B
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� Directional transmission B ⊂ 2π is available for transmission
� Angular resolution of δ ≤ B

� Subsets of B are used sequentially by transmitter (receiver)

time 1 . . . τ − 1 τ

sample A(1) . . . A(τ − 1)

observation Y (1) . . . Y (τ − 1)

declaration Ŵ = d(Y τ−1, xτ−1)

error 1{Ŵ �=W}
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� Angular resolution of δ ≤ B

� Subsets of B are used sequentially by transmitter (receiver)
� Inspection of a subset results in a signal plus noise

measurement
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� Uknown parameter: W ∈ {0, 1}B
δ , ||W ||0 = 1

� Actions A(t) ∈ A ⊂ {0, 1}B
δ chosen sequentially

� Y (t) = A(t)(W+ Z)
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� Uknown parameter: W ∈ {0, 1}B
δ , ||W ||0 = 1

� Actions A(t) ∈ A ⊂ {0, 1}B
δ chosen sequentially

� Y (t) = A(t)(W+ Z) = A(t)W + Ẑ

– Observation noise variance increases w |A(t)|
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� Uknown parameter: W ∈ {0, 1}B
δ , ||W ||0 = 1

� Actions A(t) ∈ A ⊂ {0, 1}B
δ chosen sequentially

� Y (t) = A(t)(W+ Z) = A(t)W + Ẑ

– Observation noise variance increases w |A(t)|
time 1 . . . τ − 1 τ

sample A(1) . . . A(τ − 1)

observation Y (1) . . . Y (τ − 1)

declaration Ŵ = d(Y τ−1, xτ−1)

error 1{Ŵ �=W}

Objective:
Find τ , A(0), . . . , A(τ − 1), and d(·) that minimize E [τ ] s.t. Pe ≤ ε
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� Uknown parameter: W ∈ {0, 1}B
δ , ||W ||0 = 1

� Actions A(t) ∈ A ⊂ {0, 1}B
δ chosen sequentially

� Y (t) = A(t)(W+ Z) = A(t)W + Ẑ

– Observation noise variance increases w |A(t)|
time 1 . . . τ − 1 τ

sample A(1) . . . A(τ − 1)

observation Y (1) . . . Y (τ − 1)

declaration Ŵ = d(Y τ−1, xτ−1)

error 1{Ŵ �=W}

Objective:
Find τ , A(0), . . . , A(τ − 1), and d(·) that minimize E [τ ] s.t. Pe ≤ ε

� Numerical solution via a dynamic programming equation
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� Role of allowable actions set A
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� Role of allowable actions set A

– Designing A can significantly reduce the overhead
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– Designing A can significantly reduce the overhead

� Even though noise variance increases w |a| linearly!
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� Even though noise variance increases w |a| linearly!

� Selecting A(t) based on past observations (a feedback
scheme) or off-line (non-adaptively)?
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� Role of allowable actions set A

– Designing A can significantly reduce the overhead

� Even though noise variance increases w |a| linearly!

� Selecting A(t) based on past observations (a feedback
scheme) or off-line (non-adaptively)?

– What is the adaptivity gain?

– Feedback policies are computationally expensive
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– Advantages of group testing
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� Role of allowable actions set A
– Advantages of group testing

– If A only singletons (||A(t)|| = 1) ⇒ search time O(B/δ)

– If A includes intervals, can be O (log(B/δε))
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� Role of allowable actions set A
– Advantages of group testing

– If A only singletons (||A(t)|| = 1) ⇒ search time O(B/δ)

– If A includes intervals, can be O (log(B/δε))

Observation:

If Y a =

X
︷ ︸︸ ︷

1{object in a} +Z, Z ∼ N (0, σ2
z), ⇒ E[τ ] ≈ logB/δε

I(X,Y a)
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� Selecting A(t) based on past observations (a feedback
scheme) is computationally expensive
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� Selecting A(t) based on past observations (a feedback
scheme) is computationally expensive

� Critical to quantify the Adaptivity (feedback) gain E [τε]:

E [τnaε ]− E [τ∗ε ]
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E [τnaε ]− E [τ∗ε ]

� Asymptotic analysis when B/δ grows

– Qualitative difference when B grows versus δ shrinks
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� Selecting A(t) based on past observations (a feedback
scheme) is computationally expensive

� Critical to quantify the Adaptivity (feedback) gain E [τε]:

E [τnaε ]− E [τ∗ε ]

� Asymptotic analysis when B/δ grows

– Qualitative difference when B grows versus δ shrinks

� When B grows overall noise variance grows
� Overall noise is constant even when 1/δ grows
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� Selecting A(t) based on past observations (a feedback
scheme) is computationally expensive

� Critical to quantify the Adaptivity (feedback) gain E [τε]:

E [τnaε ]− E [τ∗ε ]

� Asymptotic analysis when B/δ grows

– Qualitative difference when B grows versus δ shrinks

� When B grows overall noise variance grows
� Overall noise is constant even when 1/δ grows

– Need for a fairly tight non-asymptotic analysis
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� Searching with codebooks with feedback over a stateful
channel
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� Searching with codebooks with feedback over a stateful
channel
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Yn

(1)

(r)

(2)
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channel (K = 1)

– Reduces the non-adaptive case to known IT problems
– Adaptive strategy as a variant of feedback code
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– Reduces the non-adaptive case to known IT problems
– Adaptive strategy as a variant of feedback code

� Non-asymptotic achievability analysis for an adaptive scheme

– Sorted Posterior Matching (SortPM) search strategy
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� Searching with codebooks with feedback over a stateful
channel (K = 1)

– Reduces the non-adaptive case to known IT problems
– Adaptive strategy as a variant of feedback code

� Non-asymptotic achievability analysis for an adaptive scheme

– Sorted Posterior Matching (SortPM) search strategy

� Characterize daptivity gain with two distinct asymptotic
regimes B/δ → ∞
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� Searching with codebooks with feedback over a stateful
channel (K = 1)

– Reduces the non-adaptive case to known IT problems
– Adaptive strategy as a variant of feedback code

� Non-asymptotic achievability analysis for an adaptive scheme

– Sorted Posterior Matching (SortPM) search strategy

� Characterize daptivity gain with two distinct asymptotic
regimes B/δ → ∞
– Fixed search interval and increasing resolution (initial

access)

– Fixed resolution and increasing search (primary user
detection)
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� Searching with codebooks with feedback over a stateful
channel (K = 1)

– Reduces the non-adaptive case to known IT problems
– Adaptive strategy as a variant of feedback code

� Non-asymptotic achievability analysis for an adaptive scheme

– Sorted Posterior Matching (SortPM) search strategy

� Characterize daptivity gain with two distinct asymptotic
regimes B/δ → ∞
– Fixed search interval and increasing resolution (initial

access)
– Fixed resolution and increasing search (primary user

detection)
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– Reduces non-adaptive case to known IT problem:

Y = Xq + Zq, Xq ∼ Ber(q), Zq ∼ N (0, qB
δ
σ2)



Non-asymptotic Converse for Non-adaptive Search:

Motivation & Setup

Examles

Noisy Search

Code to Search

� Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

Break

Experiment Design

15 / 30
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– Reduces non-adaptive case to known IT problem:

Y = Xq + Zq, Xq ∼ Ber(q), Zq ∼ N (0, qB
δ
σ2)

E[τNA
ε ] ≥ (1− ε) log B

δ − h(ε)

CBPSK(q, σ
√
qB/δ)
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� Searching via coding over a stateful channel

– Reduces non-adaptive case to known IT problem:

Y = Xq + Zq, Xq ∼ Ber(q), Zq ∼ N (0, qB
δ
σ2)

E[τNA
ε ] ≥ (1− ε) log B

δ − h(ε)

CBPSK(q∗, σ
√
q∗B/δ)
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Non-adaptive Strategy:
Fix the number of samples τ = T
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Non-adaptive Strategy:
Fix the number of samples τ = T

� select T to be such that E{Pe} ≤ ε
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Non-adaptive Strategy:
Fix the number of samples τ = T

� select T to be such that E{Pe} ≤ ε
� for all t ≤ T query random set a such that |a| = q∗B/δ

optimized
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Sorted Posterior Matching (sortPM) Strategy:

Consider prior ρ(t) := (P{W = ei|A(0 : t− 1), Y (0, t− 1)})
� declares i as the target, if ρi(t) ≥ 1− ε, i ∈ Ω
� otherwise, queries the bins left of the median of the sorted

prior

– observe (noisy) Y
– update the prior (posterior) via the Bayes’ rule
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Theorem. [Lalitha, Ronquillo and J. 17] Under SortPM, we have

E[τSPM ] ≤ min
α

logB/δε+max{log logB/δ, log log 1
ε
}

1− h(Q((σ2αB/δ)−1/2))
+K(α).

where

h(p) = p log
1

p
+ (1− p) log

1

1− p
,

K(·) is non-increasing function
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Theorem. [Lalitha, Ronquillo and J. 17] Under SortPM, we have

E[τSPM ] ≤ min
α

logB/δε+max{log logB/δ, log log 1
ε
}

1− h(Q((σ2αB/δ)−1/2))
+K(α).

where

h(p) = p log
1

p
+ (1− p) log

1

1− p
,

K(·) is non-increasing function

� Analysis is based on a Lyapunov drift
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Corollary. [Lalitha, Ronqullio and J. 17] Relying on hard-detected
output symbols, the asymptotic adaptivity gain for B/δ → ∞ is:

lim
δ→0

τNA
opt − E[τAopt]

log B
δ

=
1

CBPSK(q∗, Bσ2)
− 1.

lim
B→∞

τNA
opt − E[τAopt]

B
δ log B

δ

≥ σ2δ

log e
.
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� Generalized binary search [Burnashev and Zigangirov ’74]

� Channel coding over DMC with feedback [Burnashev ’75],
[Yamamato and Itoh ’79], ... [Naghshvar, Wigger and J ’13]

� Posterior matching [Shayevitz and Feder ’11]

� Bisection search with noisy responses [Horstein ’63],
[Waeber, Frazier, Henderson ’13]
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� General noise model: Y (t) = A(t)W + Ẑ, Ẑ = f(Z, A(t))
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� General noise model: Y (t) = A(t)W + Ẑ, Ẑ = f(Z, A(t))
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� General noise model: Y (t) = A(t)W + Ẑ, Ẑ = f(Z, A(t))

� Fixed (hierarchical) beam patterns
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� Fixed (hierarchical) beam patterns
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� Search for multiple target (K > 1)

� Dynamic case: W (t)

� Beyond Gaussian
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� Search for multiple target (K > 1)

� Noisy sequential group testing [Atia and Saligrama ’12];
Mapped to an OR MAC [Kaspi, Shayevitz, J ’15]

� Dynamic case: W (t)

� Beyond Gaussian
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� Search for multiple target (K > 1)

� Noisy sequential group testing [Atia and Saligrama ’12];
Mapped to an OR MAC [Kaspi, Shayevitz, J ’15]

� Factor of 1
K in rate, where K bounds (is) the number of

targets

� Dynamic case: W (t)

� Beyond Gaussian
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‡ Case of an adder channel

� Dynamic case: W (t)
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� Factor of 1
K in rate, where K bounds (is) the number of
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‡ Case of an adder channel

� Dynamic case: W (t)

� Results generalizes to unknown but constant speed (cut
rate by half)

� Beyond Gaussian
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� Search for multiple target (K > 1)

� Noisy sequential group testing [Atia and Saligrama ’12];
Mapped to an OR MAC [Kaspi, Shayevitz, J ’15]

� Factor of 1
K in rate, where K bounds (is) the number of

targets
‡ Case of an adder channel

� Dynamic case: W (t)

� Results generalizes to unknown but constant speed (cut
rate by half)

� Beyond Gaussian

� Similar results for the binary symmetric noise (hard
decoding) [Kaspi, Shayevitz, J ’14]
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Network performance function of network parameter f : X → R.

Assumptions:

� X is the set of network parameters and protocols
� f(x) is the network performance; f(x1) and f(x2)

”correlated”
� f observed w noise: y = f(x) + η(x), η non-presistent noise

Goal: Design a sequential strategy of selecting n query points
x1, . . . , xn to identify a global optimizer of f .

� Performance measures:

– Simple regret: Sn = f(x∗)− f(x∗n)

– Cumulative regret: Rn =
∑n

t=1 f(x
∗)− f(xt)
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Assumptions:

� X is the set of network parameters and protocols
� f(x) is the network performance; f(x1) and f(x2)

”correlated”
� f observed w noise: y = f(x) + η(x), η non-presistent noise

Goal: Design a sequential strategy of selecting n query points
x1, . . . , xn to identify a global optimizer of f .

� Performance measures:

– Simple regret: Sn = f(x∗)− f(x∗n)

– Cumulative regret: Rn =
∑n

t=1 f(x
∗)− f(xt) [bandit]
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� M mutually exclusive hypotheses: Hi ⇔ {θ = i},
i = 1, 2, . . . ,M

� Prior ρ(0) = [ρ1(0), . . . , ρM (0)], ρi(0) = P (θ = i)
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� M mutually exclusive hypotheses: Hi ⇔ {θ = i},
i = 1, 2, . . . ,M

� Prior ρ(0) = [ρ1(0), . . . , ρM (0)], ρi(0) = P (θ = i)

� Experiments A are available

� Z|{θ=i,A=a} ∼ qai (·): observation density given a ∈ A and Hi
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� M mutually exclusive hypotheses: Hi ⇔ {θ = i},
i = 1, 2, . . . ,M

� Prior ρ(0) = [ρ1(0), . . . , ρM (0)], ρi(0) = P (θ = i)

� Experiments A are available

� Z|{θ=i,A=a} ∼ qai (·): observation density given a ∈ A and Hi

Objective:
What is the best experiment A = a to identify θ?
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� Consider a single experiment a ∈ A
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� Consider a single experiment a ∈ A
– Prior θ ∼ ρ

– Noisy observations subject to {qai (·)}i,a
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� Consider a single experiment a ∈ A
– Prior θ ∼ ρ

– Noisy observations subject to {qai (·)}i,a
� What should a be?
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� Consider a single experiment a ∈ A
– Prior θ ∼ ρ

– Noisy observations subject to {qai (·)}i,a
� What should a be? Compare experiment a with a′?
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� Consider a single experiment a ∈ A
– Prior θ ∼ ρ

– Noisy observations subject to {qai (·)}i,a
� What should a be? Compare experiment a with a′?

– Stochastically degraded case [Blackwell ’53], [Stein ’53]
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� Consider a single experiment a ∈ A
– Prior θ ∼ ρ

– Noisy observations subject to {qai (·)}i,a
� What should a be? Compare experiment a with a′?

– Stochastically degraded case [Blackwell ’53], [Stein ’53]

� Given experiment a:
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� Consider a single experiment a ∈ A
– Prior θ ∼ ρ

– Noisy observations subject to {qai (·)}i,a
� What should a be? Compare experiment a with a′?

– Stochastically degraded case [Blackwell ’53], [Stein ’53]

� Given experiment a:

– True hypothesis θ = i with probability ρi
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� Consider a single experiment a ∈ A
– Prior θ ∼ ρ

– Noisy observations subject to {qai (·)}i,a
� What should a be? Compare experiment a with a′?

– Stochastically degraded case [Blackwell ’53], [Stein ’53]

� Given experiment a:

– True hypothesis θ = i with probability ρi
– Output distribution Za ∼ ∑M

i=1 ρiq
a
i (·)
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� Consider a single experiment a ∈ A
– Prior θ ∼ ρ

– Noisy observations subject to {qai (·)}i,a
� What should a be? Compare experiment a with a′?

– Stochastically degraded case [Blackwell ’53], [Stein ’53]

� Given experiment a:

– True hypothesis θ = i with probability ρi
– Output distribution Za ∼ ∑M

i=1 ρiq
a
i (·)

– Posterior upon observation θ|Za ∼ Φa(ρ, Za)−−−︸ ︷︷ ︸
Bayes operator
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� Consider a single experiment a ∈ A
– Prior θ ∼ ρ

– Noisy observations subject to {qai (·)}i,a
� What should a be? Compare experiment a with a′?

– Stochastically degraded case [Blackwell ’53], [Stein ’53]

� Given experiment a:

– True hypothesis θ = i with probability ρi
– Output distribution Za ∼ ∑M

i=1 ρiq
a
i (·)

– Posterior upon observation θ|Za ∼ Φa(ρ, Za)−−−︸ ︷︷ ︸
Bayes operator

– How does Φa(·, ·) compare with Φa′(·, ·)
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Divergence-based Selection

� Define a “symmetrized divergence” among qa1 , q
a
2 , . . . , q

a
M
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Divergence-based Selection

� Define a “symmetrized divergence” among qa1 , q
a
2 , . . . , q

a
M

� Best action must maximize the divergence
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Divergence-based Selection

� Define a “symmetrized divergence” among qa1 , q
a
2 , . . . , q

a
M

� Best action must maximize the divergence

– maximize discrimination among H1, H2, . . . , HM
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Divergence-based Selection

� Define a “symmetrized divergence” among qa1 , q
a
2 , . . . , q

a
M

� Best action must maximize the divergence

– maximize discrimination among H1, H2, . . . , HM

Information Utility Heuristics:

� Measure of uncertainty V [DeGroot 1962]

� Information utility associated with V

IU(a,ρ, V ) = V (ρ)− E[V (Φa(ρ, Z))]
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Information Utility Heuristics:

� Measure of uncertainty V [DeGroot 1962]

� Information utility associated with V

IU(a,ρ, V ) = V (ρ)− E[V (Φa(ρ, Z))]−−−︸ ︷︷ ︸
Bayes operator
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Divergence-based Selection

� Define a “symmetrized divergence” among qa1 , q
a
2 , . . . , q

a
M

� Best action must maximize the divergence

– maximize discrimination among H1, H2, . . . , HM

Information Utility Heuristics:

� Measure of uncertainty V [DeGroot 1962]

� Information utility associated with V

IU(a,ρ, V ) = V (ρ)− E[V (Φa(ρ, Z))]−−−︸ ︷︷ ︸
Bayes operator

� Most informative action argmaxa IU(a,ρ, V )
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Divergence-based Selection

� Define a “symmetrized divergence” among qa1 , q
a
2 , . . . , q

a
M

� Best action must maximize the divergence

– maximize discrimination among H1, H2, . . . , HM

Information Utility Heuristics:

� Measure of uncertainty V [DeGroot 1962]

� Information utility associated with V

IU(a,ρ, V ) = V (ρ)− E[V (Φa(ρ, Z))]−−−︸ ︷︷ ︸
Bayes operator

� Most informative action argmaxa IU(a,ρ, V )

Noisy search reduces to maximizing the IU(a,ρ, V ∗)
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� The Entropy of p(·) on space Z:

H(p) =
∑
Z

p(z) log
1

p(z)

� The Kullback-Leibler (KL) divergence between p(·) and q(·):

D(p||q) =
∑
Z

p(z) log
p(z)

q(z)
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A widely used heuristic

πI(ρ) = argmax
a

I(θ;Za), where Za ∼ qaρ =
M∑
i=1

ρiq
a
i

[Chaloner Verdinelli 1995], [Lindley 1956], [MacKay 1992], [Paninski 2005],

[Branson 2010], [Butko Movellan 2009], [Fleuret 2004], [Williams et al.

2007]
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A widely used heuristic

πI(ρ) = argmax
a

I(θ;Za), where Za ∼ qaρ =
M∑
i=1

ρiq
a
i

I(θ;Za) = H(ρ)− E(H(Φa(ρ, Za)))

= IU(a,ρ, H)
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A widely used heuristic

πI(ρ) = argmax
a

I(θ;Za), where Za ∼ qaρ =
M∑
i=1

ρiq
a
i

I(θ;Za) = H(ρ)− E(H(Φa(ρ, Za)))

= IU(a,ρ, H)

Also

I(θ;Za) =
∑M

i=1 ρiD(qai ||qaρ)
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A widely used heuristic

πI(ρ) = argmax
a

I(θ;Za), where Za ∼ qaρ =
M∑
i=1

ρiq
a
i

I(θ;Za) = H(ρ)− E(H(Φa(ρ, Za)))

= IU(a,ρ, H)

Also

I(θ;Za) =
∑M

i=1 ρiD(qai ||qaρ)
Jensen-Shannon divergence [Lin 1991]

Generalizing L divergence: DL(f, g) =
1
2
D(f || f+g

2
) + 1

2
D(g|| f+g

2
)
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A widely used heuristic

πI(ρ) = argmax
a

I(θ;Za), where Za ∼ qaρ =
M∑
i=1

ρiq
a
i

I(θ;Za) = H(ρ)− E(H(Φa(ρ, Za)))

= IU(a,ρ, H)

Also

I(θ;Za) =
∑M

i=1 ρiD(qai ||qaρ)
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A widely used heuristic

πI(ρ) = argmax
a

I(θ;Za), where Za ∼ qaρ =
M∑
i=1

ρiq
a
i

I(θ;Za) = H(ρ)− E(H(Φa(ρ, Za)))

= IU(a,ρ, H)

Also

I(θ;Za) =
∑M

i=1 ρiD(qai ||qaρ)

As ρi → 1, D(qai ||qaρ) → D(qai ||qai ) = 0 for any experiment a
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Extrinsic Jensen-Shannon Divergence [Naghshvar, J. ISIT’12]
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Extrinsic Jensen-Shannon Divergence [Naghshvar, J. ISIT’12]

The Extrinsic Jensen-Shannon (EJS) divergence among densities
q1, q2, . . . , qM with respect to ρ = [ρ1, ρ2, . . . , ρM ] is defined as

EJS(ρ; q1, q2, . . . , qM ) =
∑M

i=1 ρiD(qi||
∑

k �=i
ρk

1−ρi
qk).
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Extrinsic Jensen-Shannon Divergence [Naghshvar, J. ISIT’12]

The Extrinsic Jensen-Shannon (EJS) divergence among densities
q1, q2, . . . , qM with respect to ρ = [ρ1, ρ2, . . . , ρM ] is defined as

EJS(ρ; q1, q2, . . . , qM ) =
∑M

i=1 ρiD(qi||
∑

k �=i
ρk

1−ρi
qk).

Bayesian generalization of J-divergence [Jefferys 73]

DJ (f, g) =
1

2
D(f ||g) + 1

2
D(g||f)
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Extrinsic Jensen-Shannon Divergence [Naghshvar, J. ISIT’12]

The Extrinsic Jensen-Shannon (EJS) divergence among densities
q1, q2, . . . , qM with respect to ρ = [ρ1, ρ2, . . . , ρM ] is defined as

EJS(ρ; q1, q2, . . . , qM ) =
∑M

i=1 ρiD(qi||
∑

k �=i
ρk

1−ρi
qk).

Bayesian generalization of J-divergence [Jefferys 73]

DJ (f, g) =
1

2
D(f ||g) + 1

2
D(g||f)

Proposition
EJS is the information utility associated with the average
likelihood function U(ρ) =

∑M
i=1 ρi log

1−ρi
ρi

, i.e.

EJS(ρ; qa1 , . . . , q
a
M ) = IU(a,ρ, U)
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Theorem (Naghshvar et. al. 13). Suppose there is C > 0 s.t. when
a is selected according to SortPM and |a| ≤ αB/δ, for all ρ,
EJS(ρ, a) ≥ C. Then

E[τ∗] ≤ E[τSortPM ] ≤ logM +max{log logM, log 1
δ
}+ 4∆

C
+K(α).
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Theorem (Naghshvar et. al. 13). Suppose there is C > 0 s.t. when
a is selected according to SortPM and |a| ≤ αB/δ, for all ρ,
EJS(ρ, a) ≥ C. Then

E[τ∗] ≤ E[τSortPM ] ≤ logM +max{log logM, log 1
δ
}+ 4∆

C
+K(α).

Lemma. Fix α ∈ (0, 1). Using hard-decoded observation

sequence ⇒ C(α) = 1− h
(
Q
((

σ2αB/δ
)−1/2

))
.


