Learning and Optimization for Next Generation Wireless Networks

Tara Javidi

S. Chiu, A. Lalitha, N. Ronquillo, O. Shayevitz, S. Shubhanshu, Y. Kaspi

Motivation & ▷ Setup

Motivation I

Motivation II

Examles

Noisy Search

Code to Search

 Break

Experiment Design

Learning and Parameter Tuning for Next Generation Networks

Learning and Optimization for Next Generation Wireless

Motivation & Setup Motivation I Motivation II	 Next-generation wireless systems are increasingly complex
Examles	
Noisy Search	
Code to Search	
Break	
Experiment Design	

Learning and Optimization for Next Generation Wireless

Motivation & Setup			
▷ Motivation I			
Motivation II			
Examles			
Noisy Search			

Code to Search

 Break

Experiment Design

Next-generation wireless systems are increasingly complex

Each layer has an increasingly large number of parameters to be optimally tuned

Motivation & Setup	
\triangleright Motivation I	
Motivation II	
Examles	
Noisy Search	
Code to Search	
Break	
Experiment Design	

 \square

Next-generation wireless systems are increasingly complex

Each layer has an increasingly large number of parameters to be optimally tuned

Networks operate at an increasingly diverse settings

Motivation & Setup▷ Motivation IMotivation IIExamlesNoisy SearchCode to Search

 \square

 \square

Break

Experiment Design

Next-generation wireless systems are increasingly complex

Each layer has an increasingly large number of parameters to be optimally tuned

Networks operate at an increasingly diverse settings

- Performance relies on learning and parameter optimization
- Example: network control's main task involves iterative enhancements of PHY parameters

Learning and Optimization for Next Generation Wireless

Motivation & Setup

Motivation I

▷ Motivation II

Examles

Noisy Search

Code to Search

Break

Experiment Design

Unlike in legacy systems the overhead associated with this learning/optimization can be significant

Learning and Optimization for Next Generation Wireless

Motivation & Setup
Motivation I
Motivation II
Examles
Noisy Search
Code to Search
Break

 \square

Experiment Design

Unlike in legacy systems the overhead associated with this learning/optimization can be significant

Parameter space is increasingly large and complex

Motivation	&	Setup
Motivation	T	

 \square

▷ Motivation II

Examles

Noisy Search

Code to Search

Break

Experiment Design

Unlike in legacy systems the overhead associated with this learning/optimization can be significant

Parameter space is increasingly large and complex

- Ultra Wideband spectrum sensing
- Ultra narrow beam alignment for mmWave communication
- Empirical network parameter tuning

Motivation	&	Setup
Motivation	T	

 \square

▷ Motivation II

Examles

Noisy Search

Code to Search

Break

Experiment Design

Unlike in legacy systems the overhead associated with this learning/optimization can be significant

Parameter space is increasingly large and complex

- Ultra Wideband spectrum sensing
- Ultra narrow beam alignment for mmWave communication
- Empirical network parameter tuning
- Our objective is to characterize/minimize the network overhead associated w learning/optimization

Motivation & Setup

 \triangleright Examles

Spectrum Sensing

Initial Access

Noisy Search

Code to Search

 Break

Experiment Design

Spectrum Sensing and Initial Access

Motivation & Setup

 \square

 \square

Examles

Spectrum ▷ Sensing

Initial Access

Noisy Search

Code to Search

 Break

Experiment Design

Spectrum with total bandwidth of B is available for transmission

Primary users have dedicated sub-bands of bandwidth δ each

 \square

 \square

 \square

Motivation & Setup				
Examles				
Spectrum				
Sensing				
Initial Access				
Noisy Search				
Code to Search				
Break				

Experiment Design

- Spectrum with total bandwidth of B is available for transmission
- Primary users have dedicated sub-bands of bandwidth δ each

Subset of subbands inspected sequentially by secondary user

Motivation & Setup

 \square

 \square

Examles

Spectrum ▷ Sensing

Initial Access

Noisy Search

Code to Search

Break

Experiment Design

Spectrum with total bandwidth of B is available for transmission

Primary users have dedicated sub-bands of bandwidth δ each

Subset of subbands inspected sequentially by secondary user

time	1	•••	$\tau - 1$	au
sample	A(1)		$A(\tau - 1)$	
observation	Y(1)		$Y(\tau - 1)$	
declaration				$\hat{W} = d(Y^{\tau-1}, x^{\tau-1})$
error				$1_{\{\hat{W} eq W\}}$

Motivation & Setup

 \square

 \square

Examles

Spectrum ▷ Sensing

Initial Access

Noisy Search

Code to Search

Break

Experiment Design

Spectrum with total bandwidth of B is available for transmission

Primary users have dedicated sub-bands of bandwidth δ each

Subset of subbands inspected sequentially by secondary user

time	1	•••	$\tau - 1$	au
sample	A(1)		$A(\tau - 1)$	
observation	Y(1)		$Y(\tau - 1)$	
declaration				$\hat{W} = d(Y^{\tau-1}, x^{\tau-1})$
error				$1_{\{\hat{W} eq W\}}$

 Inspection of a subset results in a signal plus noise measurement Motivation & Setup

 \square

 \square

Examles

Spectrum ▷ Sensing

Initial Access

Noisy Search

Code to Search

Break

Experiment Design

- Spectrum with total bandwidth of B is available for transmission
- Primary users have dedicated sub-bands of bandwidth δ each

- Subset of subbands inspected sequentially by secondary user Inspection of a subset results in a signal plus noise measurement
 - Unit signal associated w the availability of band
 - Sensing noise/unit of spectrum \approx 0-mean, σ^2 -var Gaussian

Motivation & Setup Examles Spectrum ▷ Sensing Initial Access Noisy Search Code to Search Break

Experiment Design

 \square

- \Box Spectrum with total bandwidth of B is available for transmission
 - Primary users have dedicated sub-bands of bandwidth δ each

 Subset of subbands inspected sequentially by secondary user
 Inspection of a subset results in a signal plus noise measurement

 $Y^a = \mathbf{a}^T (\mathbf{W} + \mathbf{Z})$

Motivation & Setup

 \square

 \square

Examles

Spectrum ▷ Sensing

Initial Access

Noisy Search

Code to Search

Break

Experiment Design

Spectrum with total bandwidth of B is available for transmission

Primary users have dedicated sub-bands of bandwidth δ each

 Subset of subbands inspected sequentially by secondary user
 Inspection of a subset results in a signal plus noise measurement

 $Y^a = \mathbf{a}^T (\mathbf{W} + \mathbf{Z})$

 $\mathbf{a} \in \mathcal{A}, \quad \mathbf{W} \in \{0,1\}^{\frac{B}{\delta}} \qquad ||W||_0 = K \qquad \mathbf{Z} \sim \mathcal{N}(0, \delta \sigma^2 \mathbf{I})$

Motivation & Setup

 \square

 \square

Examles

Spectrum ▷ Sensing

Initial Access

Noisy Search

Code to Search

Break

Experiment Design

- Spectrum with total bandwidth of B is available for transmission
- Primary users have dedicated sub-bands of bandwidth δ each

 Subset of subbands inspected sequentially by secondary user
 Inspection of a subset results in a signal plus noise measurement

 $Y^a = \mathbf{a}^T (\mathbf{W} + \mathbf{Z})$ $\mathbf{a}, \mathbf{W} \in \{0, 1\}^{\frac{B}{\delta}}$ $||W||_0 = K$ $\mathbf{N} \sim \mathcal{N}(0, B\sigma^2/\delta \mathbf{I})$

Motivation & Setup

 \square

 \square

Examles

Spectrum ▷ Sensing

Initial Access

Noisy Search

Code to Search

Break

Experiment Design

- Spectrum with total bandwidth of B is available for transmission
- Primary users have dedicated sub-bands of bandwidth δ each

 Subset of subbands inspected sequentially by secondary user
 Inspection of a subset results in a signal plus noise measurement

 $Y^a = \mathbf{a}^T (\mathbf{W} + \mathbf{Z})$ $\mathbf{a}, \mathbf{W} \in \{0, 1\}^{\frac{B}{\delta}}$ $||W||_0 = K$ $\mathbf{N} \sim \mathcal{N}(0, B\sigma^2/\delta \mathbf{I})$

 \Box Minimize $\mathbb{E}\{\tau_{\epsilon}\}$

Motivation & Setup

 \square

Examles

Spectrum Sensing

▷ Initial Access

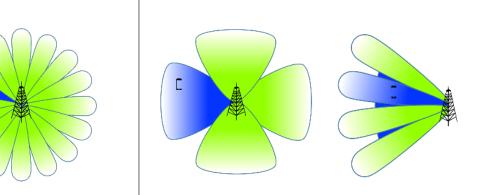
Noisy Search

Code to Search

 Break

Experiment Design

Directional transmission $B \subset 2\pi$ is available for transmission Angular resolution of $\delta \leq B$



Motivation & Setup

 \square

Examles

Spectrum Sensing

▷ Initial Access

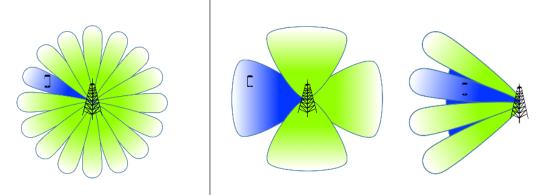
Noisy Search

Code to Search

 Break

Experiment Design

Directional transmission $B \subset 2\pi$ is available for transmission Angular resolution of $\delta \leq B$



 \Box Subsets of *B* are used sequentially by transmitter (receiver)

time	1	 $\tau - 1$	au
sample	A(1)	 $A(\tau - 1)$	
observation	Y(1)	 $Y(\tau - 1)$	
declaration			$\hat{W} = d(Y^{\tau-1}, x^{\tau-1})$
error			$1_{\{\hat{W} eq W\}}$

Motivation & Setup

 \square

Examles

Spectrum Sensing

▷ Initial Access

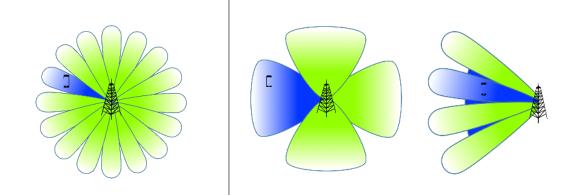
Noisy Search

Code to Search

 Break

Experiment Design

Directional transmission $B \subset 2\pi$ is available for transmission Angular resolution of $\delta \leq B$



Motivation & Setup

 \square

Examles

Spectrum Sensing

▷ Initial Access

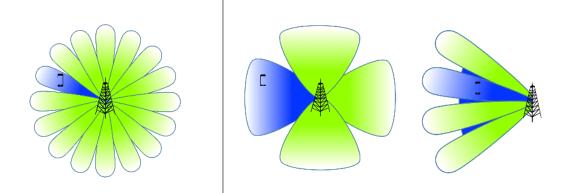
Noisy Search

Code to Search

 Break

Experiment Design

Directional transmission $B \subset 2\pi$ is available for transmission Angular resolution of $\delta \leq B$



$$Y^{a} = \mathbf{a}^{T} (\mathbf{W} + \mathbf{Z})$$
$$\mathbf{a}, \mathbf{W} \in \{0, 1\}^{\frac{B}{\delta}} \qquad ||W||_{0} = K \qquad \mathbf{Z} \sim \mathcal{N}(0, \delta \sigma^{2} \mathbf{I})$$

Motivation & Setup

 \square

Examles

Spectrum Sensing

▷ Initial Access

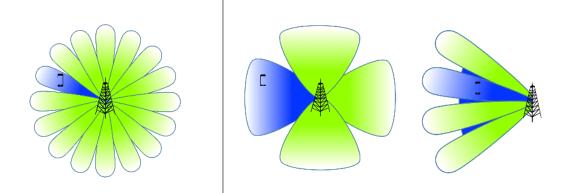
Noisy Search

Code to Search

 Break

Experiment Design

Directional transmission $B \subset 2\pi$ is available for transmission Angular resolution of $\delta \leq B$



$$Y^{a} = \mathbf{a}^{T} (\mathbf{W} + \mathbf{Z})$$
$$\mathbf{a}, \mathbf{W} \in \{0, 1\}^{\frac{B}{\delta}} \qquad ||W||_{0} = K \qquad \mathbf{Z} \sim \mathcal{N}(0, \delta \sigma^{2} \mathbf{I})$$

Motivation & Setup

 \square

Examles

Spectrum Sensing

▷ Initial Access

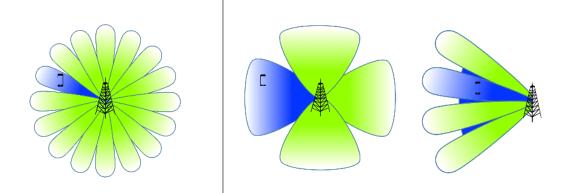
Noisy Search

Code to Search

 Break

Experiment Design

Directional transmission $B \subset 2\pi$ is available for transmission Angular resolution of $\delta \leq B$



$$Y^{a} = \mathbf{a}^{T} (\mathbf{W} + \mathbf{Z})$$
$$\mathbf{a}, \mathbf{W} \in \{0, 1\}^{\frac{B}{\delta}} \qquad ||W||_{0} = K \qquad \mathbf{Z} \sim \mathcal{N}(0, \delta\sigma^{2}\mathbf{I})$$
Minimize $\mathbb{E}\{\tau_{\epsilon}\}$

Motivation & Setup

Examles

▷ Noisy Search

Problem Setup

Questions

Analysis I

Analysis II

Summary Result

Code to Search

 Break

Experiment Design

Measurement-Dependent Noisy Search

Motivation & Setup
Examles
Noisy Search
▷ Problem Setup
Questions
Analysis I
Analysis II
Summary Result
Code to Search
Break
Experiment Design

 $\Box \quad \text{Uknown parameter: } W \in \{0,1\}^{\frac{B}{\delta}}, ||W||_0 = 1$ $\Box \quad \text{Actions } A(t) \in \mathcal{A} \subset \{0,1\}^{\frac{B}{\delta}} \text{ chosen sequentially}$ $\Box \quad Y(t) = A(t)(\mathbf{W} + \mathbf{Z})$ Motivation & Setup Examles Noisy Search

Problem Setup

Questions

Analysis I

Analysis II

Summary Result

Code to Search

Break

Experiment Design

 $\Box \quad \text{Uknown parameter: } W \in \{0,1\}^{\frac{B}{\delta}}, ||W||_0 = 1$ $\Box \quad \text{Actions } A(t) \in \mathcal{A} \subset \{0,1\}^{\frac{B}{\delta}} \text{ chosen sequentially}$ $\Box \quad Y(t) = A(t)(\mathbf{W} + \mathbf{Z}) = A(t)\mathbf{W} + \hat{Z}$

– Observation noise variance increases w |A(t)|

Motivation & Setup

Examles

Noisy Search

> Problem Setup

Questions

Analysis I

Analysis II

Summary Result

Code to Search

Break

Experiment Design

Uknown parameter: $W \in \{0,1\}^{\frac{B}{\delta}}$, $||W||_0 = 1$ Actions $A(t) \in \mathcal{A} \subset \{0,1\}^{\frac{B}{\delta}}$ chosen sequentially $Y(t) = A(t)(\mathbf{W} + \mathbf{Z}) = A(t)\mathbf{W} + \hat{Z}$ - Observation noise variance increases w |A(t)| $\underline{time} \qquad 1 \qquad \dots \qquad \tau - 1 \qquad \tau$ sample $A(1) \qquad \dots \qquad A(\tau - 1)$ observation $Y(1) \qquad \dots \qquad Y(\tau - 1)$ declaration $\hat{W} = d(Y^{\tau-1}, x^{\tau-1})$

error

Objective:

Find τ , $A(0), \ldots, A(\tau - 1)$, and $d(\cdot)$ that minimize $\mathbb{E}[\tau]$ s.t. $\text{Pe} \leq \epsilon$

 $\mathbf{1}_{\{\hat{W}\neq W\}}$

Motivation & Setup	_	
Examles		Uknc
Noisy Search		Actic
➢ Problem Setup		Y(t)
Questions		- (0)
Analysis I		_ 0
Analysis II		- 0
Summary Result		t
Code to Search		
Break		S
Experiment Design		C
		d

Uknown parameter: $W \in \{0, 1\}^{\frac{B}{\delta}}$, $||W||_0 = 1$ Actions $A(t) \in \mathcal{A} \subset \{0, 1\}^{\frac{B}{\delta}}$ chosen sequentially $Y(t) = A(t)(\mathbf{W} + \mathbf{Z}) = A(t)\mathbf{W} + \hat{Z}$ - Observation noise variance increases w |A(t)| $\underline{time} \qquad 1 \qquad \dots \qquad \tau - 1 \qquad \tau$ sample $A(1) \qquad \dots \qquad A(\tau - 1)$

time	1	• • •	$\tau - 1$	au
sample	A(1)		$A(\tau - 1)$	
observation	Y(1)		$Y(\tau - 1)$	
declaration				$\hat{W} = d(Y^{\tau-1}, x^{\tau-1})$
error				$1_{\{\hat{W} eq W\}}$

Objective:

Find τ , $A(0), \ldots, A(\tau - 1)$, and $d(\cdot)$ that minimize $\mathbb{E}[\tau]$ s.t. $\text{Pe} \leq \epsilon$

□ Numerical solution via a dynamic programming equation

Simpler Questions of General Consequence

Motivation & Setup	Role of allow	wable actions	s set ${\cal A}$	
Examles <u>Noisy Search</u> Problem Setup ▷ Questions Analysis I Analysis II				
Summary Result <u>Code to Search</u>				
Break Experiment Design				

Simpler Questions of General Consequence

Motivation & Setup

 \square

Examles

Noisy Search Problem Setup

 \triangleright Questions

Analysis I

Analysis II

Summary Result

Code to Search

 Break

Experiment Design

Role of allowable actions set ${\cal A}$

- Designing \mathcal{A} can significantly reduce the overhead

Simpler Questions of General Consequence

Motivation & Setup

Examles

Noisy Search

Problem Setup

 \triangleright Questions

Analysis I

Analysis II

Summary Result

Code to Search

Break

Experiment Design

Role of allowable actions set ${\cal A}$

- Designing \mathcal{A} can significantly reduce the overhead
 - \triangleright Even though noise variance increases w |a| linearly!

Motivation	&	Setup	
------------	---	-------	--

Examles

Problem Setup

 \triangleright Questions

Analysis I

Analysis II

Summary Result

Code to Search

В	rea	k
D	IEd	n

Experiment Design

Role of allowable actions set ${\cal A}$

- Designing \mathcal{A} can significantly reduce the overhead
 - \triangleright Even though noise variance increases w |a| linearly!

Selecting A(t) based on past observations (a feedback scheme) or off-line (non-adaptively)?

Motivation & Setup

 \square

Examles

Noisy Search

Problem Setup

 \triangleright Questions

Analysis I

Analysis II

Summary Result

Code to Search

Break

Experiment Design

Role of allowable actions set $\mathcal A$

- Designing \mathcal{A} can significantly reduce the overhead
 - \triangleright Even though noise variance increases w |a| linearly!

Selecting A(t) based on past observations (a feedback scheme) or off-line (non-adaptively)?

- What is the adaptivity gain?
- Feedback policies are computationally expensive

Motivation & Setup	Role of allowable actions set ${\cal A}$
Examles	
Noisy Search	
Problem Setup	
Questions	
Analysis I	
Analysis II	
Summary Result	
Code to Search	
Break	
Experiment Design	

 \square

Motivation & Setup

Examles

Noisy Search

Problem Setup

Questions

▷ Analysis I

Analysis II

Summary Result

Code to Search

 Break

Experiment Design

Role of allowable actions set ${\cal A}$

Advantages of group testing

 \square

Motivation & Setup

Examles

Noisy Search

Problem Setup

Questions

▷ Analysis I

Analysis II

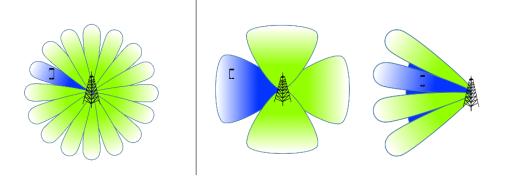
Summary Result

Code to Search

 Break

Experiment Design

- Role of allowable actions set \mathcal{A}
 - Advantages of group testing



Motivation & Setup

Examles

Noisy Search

Problem Setup

Questions

▷ Analysis I

Analysis II

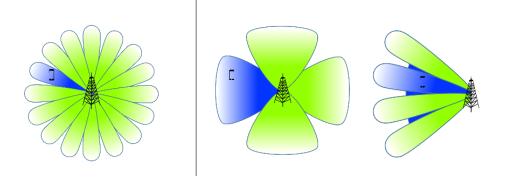
Summary Result

Code to Search

Break

Experiment Design

- Role of allowable actions set \mathcal{A}
 - Advantages of group testing



- If \mathcal{A} only singletons $(||A(t)|| = 1) \Rightarrow$ search time $\mathcal{O}(B/\delta)$
- If \mathcal{A} includes intervals, can be $\mathcal{O}\left(\log(B/\delta\epsilon)\right)$

 \square

Motivation & Setup

Examles

Noisy Search

Problem Setup

Questions

▷ Analysis I

Analysis II

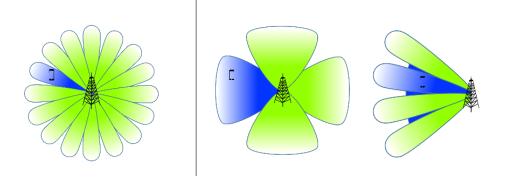
Summary Result

Code to Search

Break

Experiment Design

- Role of allowable actions set \mathcal{A}
 - Advantages of group testing



- If \mathcal{A} only singletons (||A(t)|| = 1) \Rightarrow search time $\mathcal{O}(B/\delta)$
- If \mathcal{A} includes intervals, can be $\mathcal{O}\left(\log(B/\delta\epsilon)\right)$

Observation: X

If
$$Y^a = \overbrace{\mathbf{1}_{\{\text{object in }a\}}}^{} + Z$$
, $Z \sim \mathcal{N}(0, \sigma_z^2)$, $\Rightarrow \mathbb{E}[\tau] \approx \frac{\log B/\delta \epsilon}{I(X, Y^a)}$

Motivation & Setup Examles Noisy Search Problem Setup Questions Analysis I ▷ Analysis II Summary Result Code to Search Break Experiment Design	Selecting $A(t)$ based of scheme) is computation

Selecting A(t) based on past observations (a feedback scheme) is computationally expensive

 \square

Motivation & Setup

Examles

Noisy Search

Problem Setup Questions

Analysis I

▷ Analysis II

Summary Result

Code to Search

 Break

Experiment Design

Selecting A(t) based on past observations (a feedback scheme) is computationally expensive

Critical to quantify the Adaptivity (feedback) gain $\mathbb{E}[\tau_{\epsilon}]$:

$$\mathbb{E}\left[\tau_{\epsilon}^{na}\right] - \mathbb{E}\left[\tau_{\epsilon}^{*}\right]$$

 \square

Motivation & Setup Examles

Noisy Search

Problem Setup Questions

Analysis I

▷ Analysis II

Summary Result

Code to Search

Break

Experiment Design

Selecting A(t) based on past observations (a feedback scheme) is computationally expensive

Critical to quantify the Adaptivity (feedback) gain $\mathbb{E}[\tau_{\epsilon}]$:

$$\mathbb{E}\left[\tau_{\epsilon}^{na}\right] - \mathbb{E}\left[\tau_{\epsilon}^{*}\right]$$

Asymptotic analysis when B/δ grows

 \square

Motivation & Setup Examles

Noisy Search

Problem Setup Questions

Analysis I

▷ Analysis II

Summary Result

```
Code to Search
```

Break

Experiment Design

 \Box Selecting A(t) based on past observations (a feedback scheme) is computationally expensive

Critical to quantify the Adaptivity (feedback) gain $\mathbb{E}[au_{\epsilon}]$:

$$\mathbb{E}\left[\tau_{\epsilon}^{na}\right] - \mathbb{E}\left[\tau_{\epsilon}^{*}\right]$$

Asymptotic analysis when B/δ grows

– Qualitative difference when B grows versus δ shrinks

 \square

Motivation & Setup

Examles

Noisy Search

Problem Setup Questions

Analysis I

▷ Analysis II

Summary Result

```
Code to Search
```

Break

Experiment Design

 \Box Selecting A(t) based on past observations (a feedback scheme) is computationally expensive

Critical to quantify the Adaptivity (feedback) gain $\mathbb{E}[au_{\epsilon}]$:

 $\mathbb{E}\left[\tau_{\epsilon}^{na}\right] - \mathbb{E}\left[\tau_{\epsilon}^{*}\right]$

Asymptotic analysis when B/δ grows

- Qualitative difference when B grows versus δ shrinks
 - $_{\triangleright}$ When B grows overall noise variance grows
 - $_{\triangleright}$ Overall noise is constant even when $1/\delta$ grows

 \square

Motivation & Setup

Examles

Noisy Search

Problem Setup Questions

Analysis I

▷ Analysis II

Summary Result

```
Code to Search
```

Break

Experiment Design

 \Box Selecting A(t) based on past observations (a feedback scheme) is computationally expensive

Critical to quantify the Adaptivity (feedback) gain $\mathbb{E}[au_{\epsilon}]$:

 $\mathbb{E}\left[\tau_{\epsilon}^{na}\right] - \mathbb{E}\left[\tau_{\epsilon}^{*}\right]$

Asymptotic analysis when B/δ grows

- Qualitative difference when B grows versus δ shrinks
 - $_{\triangleright}$ When B grows overall noise variance grows
 - $_{\triangleright}$ Overall noise is constant even when $1/\delta$ grows
- Need for a fairly **tight non-asymptotic** analysis

Motivation & Setup	Searching with codebooks with feedback over a stateful
Examles	channel
Noisy Search	
Problem Setup	
Questions	
Analysis I	
Analysis II	
Summary Result	
Code to Search	
Break	
Experiment Design	

Motivation	&	Setup

Examles

Noisy Search

Problem Setup

Questions

Analysis I

Analysis II

▷ Summary Result

Code to Search

Break

Experiment Design

Searching with codebooks with feedback over a stateful channel

n (1) 0 0 1 1 ... 0 2 1 0 1 ... (2) Y_n 0 0 3 1 1 ••• ... 0 0 1 0 Μ ... (r) Z_n

Motivation & Setup

Examles

Noisy Search

Problem Setup

Questions

Analysis I

Analysis II

Summary Result

Code to Search

Break

Experiment Design

- Searching with codebooks with feedback over a stateful channel (K = 1)
 - Reduces the non-adaptive case to known IT problems
 - Adaptive strategy as a variant of feedback code

 \square

Examles

Noisy Search

Problem Setup

Questions

Analysis I

Analysis II

Summary Result

Code to Search

Break

Experiment Design

- Searching with codebooks with feedback over a stateful channel (K = 1)
 - Reduces the non-adaptive case to known IT problems
 - Adaptive strategy as a variant of feedback code

Non-asymptotic achievability analysis for an adaptive scheme

- Sorted Posterior Matching (SortPM) search strategy

 \square

Examles

Noisy Search

Problem Setup

Questions

Analysis I

Analysis II

Summary Result

Code to Search

Break

Experiment Design

- Searching with codebooks with feedback over a stateful channel (K = 1)
 - Reduces the non-adaptive case to known IT problems
 - Adaptive strategy as a variant of feedback code

Non-asymptotic achievability analysis for an adaptive scheme

- Sorted Posterior Matching (SortPM) search strategy
- Characterize daptivity gain with two distinct asymptotic regimes $B/\delta \to \infty$

Examles

Noisy Search

Problem Setup

Questions

Analysis I

Analysis II

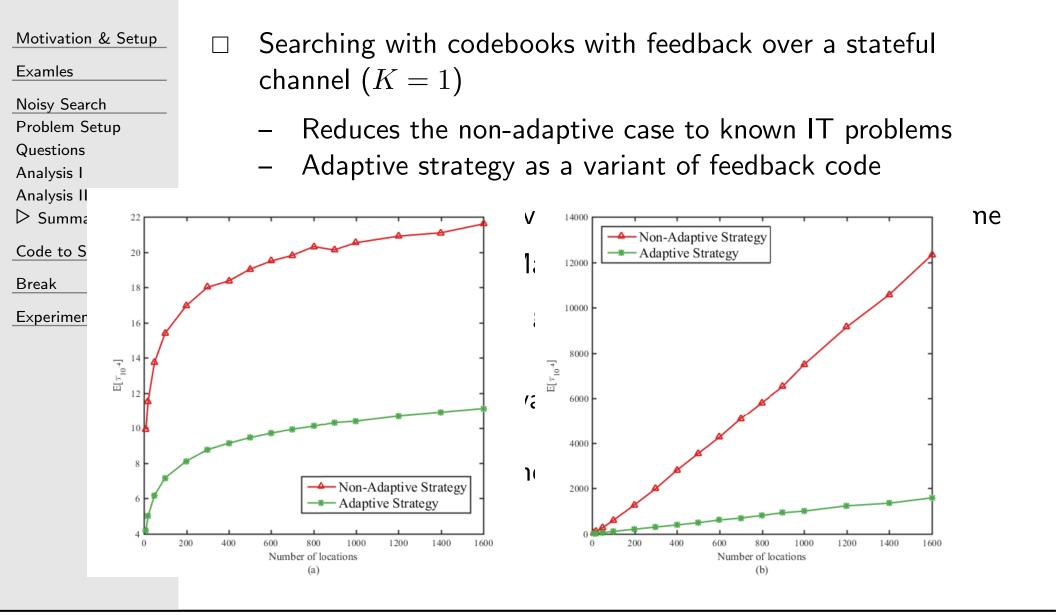
Summary Result

Code to Search

Break

Experiment Design

- Searching with codebooks with feedback over a stateful channel (K = 1)
 - Reduces the non-adaptive case to known IT problems
 - Adaptive strategy as a variant of feedback code
- Non-asymptotic achievability analysis for an adaptive scheme
 - Sorted Posterior Matching (SortPM) search strategy
- Characterize daptivity gain with two distinct asymptotic regimes $B/\delta \to \infty$
 - Fixed search interval and increasing resolution (initial access)
 - Fixed resolution and increasing search (primary user detection)



Examles

Noisy Search

▷ Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

 Break

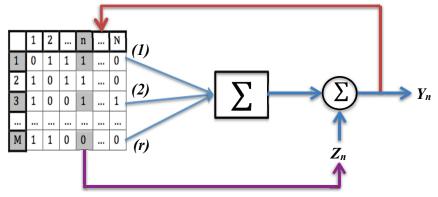
Experiment Design

Analysis

Motivation & Setup	Searching via coding over a stateful channel
Examles	
Noisy Search	
Code to Search ▷ Non-adaptive	
Search Strategies	
Upper Bound Prior Work	
Generalizations I	
Generalizations II Generalization III	
Break	
Experiment Design	

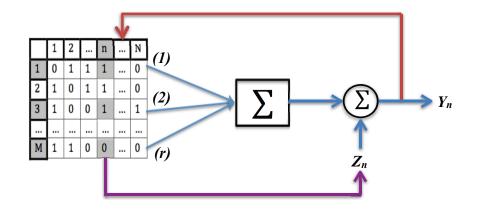
Motivation & Setup	Searching	via co
Examles	0	
Noisy Search		
Code to Search ▷ Non-adaptive Search Strategies Upper Bound Prior Work		1 2 3 M
Generalizations I Generalizations II Generalization III		
Break Experiment Design		

Searching via coding over a stateful channel



Motivation & SetupExamlesNoisy SearchCode to Search▷ Non-adaptiveSearch StrategiesUpper BoundPrior WorkGeneralizations IGeneralizations IIGeneralization IIIBreakExperiment Design

Searching via coding over a stateful channel



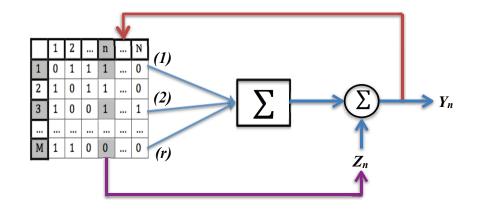
Reduces non-adaptive case to known IT problem:

$$Y = X^q + Z^q$$
, $X^q \sim \text{Ber}(q)$, $Z^q \sim \mathcal{N}(0, \frac{qB}{\delta}\sigma^2)$

Motivation & SetupExamlesNoisy SearchCode to Search▷ Non-adaptiveSearch StrategiesUpper BoundPrior WorkGeneralizations IGeneralizations IIGeneralization IIIBreak

Experiment Design

Searching via coding over a stateful channel



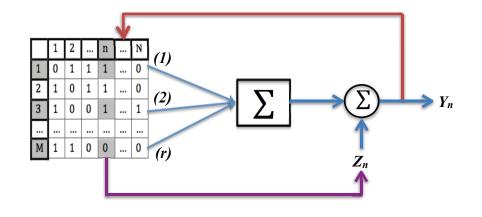
Reduces non-adaptive case to known IT problem:

$$\begin{split} Y &= X^q + Z^q, \qquad X^q \sim \mathsf{Ber}(q), \ Z^q \sim \mathcal{N}(0, \frac{qB}{\delta}\sigma^2) \\ & \mathbb{E}[\tau_{\epsilon}^{\mathsf{NA}}] \geq \frac{(1-\epsilon)\log\frac{B}{\delta} - h(\epsilon)}{C_{\mathsf{BPSK}}(q, \sigma\sqrt{qB/\delta})} \end{split}$$

Motivation & SetupExamlesNoisy SearchCode to Search▷ Non-adaptiveSearch StrategiesUpper BoundPrior WorkGeneralizations IGeneralizations IIGeneralization IIIBreak

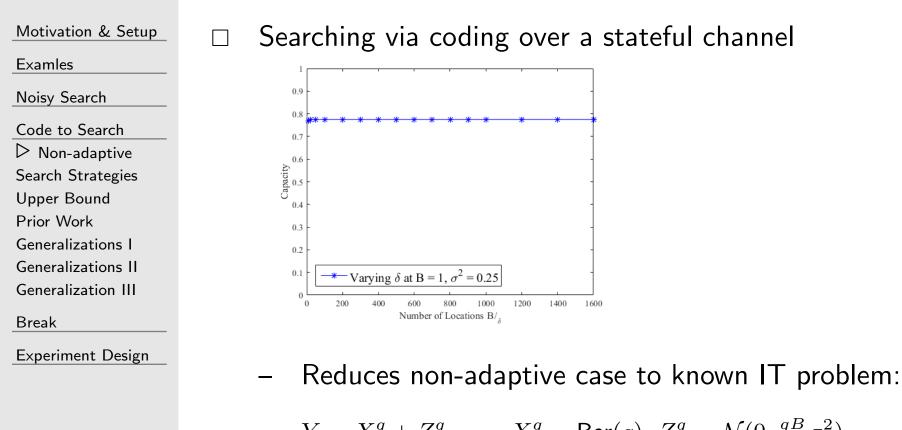
Experiment Design

□ Searching via coding over a stateful channel



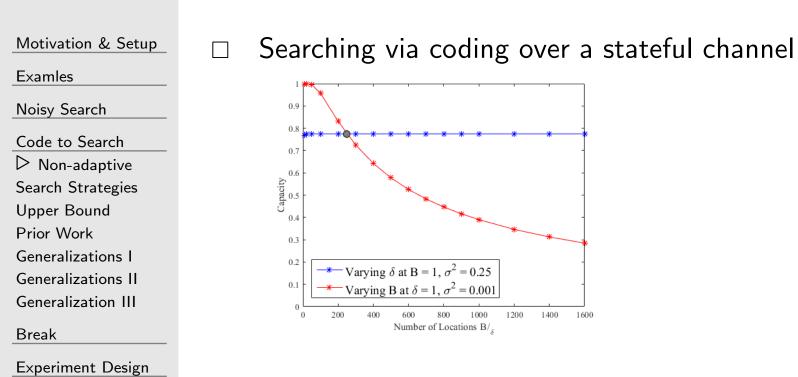
Reduces non-adaptive case to known IT problem:

$$Y = X^{q} + Z^{q}, \qquad X^{q} \sim \operatorname{Ber}(q), \ Z^{q} \sim \mathcal{N}(0, \frac{qB}{\delta}\sigma^{2})$$
$$\mathbb{E}[\tau_{\epsilon}^{\mathsf{NA}}] \geq \frac{(1-\epsilon)\log\frac{B}{\delta} - h(\epsilon)}{C_{\mathsf{BPSK}}(q^{*}, \sigma\sqrt{q^{*}B/\delta})}$$



$$Y = X^q + Z^q, \qquad X^q \sim \mathsf{Ber}(q), \ Z^q \sim \mathcal{N}(0, \frac{qB}{\delta}\sigma^2)$$

$$\mathbb{E}[\tau_{\epsilon}^{\mathsf{NA}}] \ge \frac{(1-\epsilon)\log \frac{B}{\delta} - h(\epsilon)}{C_{\mathsf{BPSK}}(q^*, \sigma\sqrt{q^*B/\delta})}$$



- Reduces non-adaptive case to known IT problem:

$$\begin{split} Y &= X^q + Z^q, \qquad X^q \sim \text{Ber}(q), \ Z^q \sim \mathcal{N}(0, \frac{qB}{\delta}\sigma^2) \\ & \mathbb{E}[\tau_{\epsilon}^{\mathsf{NA}}] \geq \frac{(1-\epsilon)\log\frac{B}{\delta} - h(\epsilon)}{C_{\mathsf{BPSK}}(q^*, \sigma\sqrt{q^*B/\delta})} \end{split}$$

Motivation & Setup
Examles
Noisy Search
Code to Search
Non-adaptive
Search Strategies
Upper Bound
Prior Work
Generalizations I
Generalizations II
Generalization III
Break
Experiment Design
Experiment Design

Motivation & Setup Examles Noisy Search Code to Search Non-adaptive Search Strategies Upper Bound Prior Work Generalizations I Generalizations II Generalization III Break Experiment Design

Non-adaptive Strategy:

Motivation & Setup

Examles

Noisy Search

Code to Search

Non-adaptive

▷ Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

 Break

Experiment Design

Non-adaptive Strategy: Fix the number of samples $\tau = T$

16 / 30

Motivation & Setup

Examles

Noisy Search

Code to Search

Non-adaptive

 \triangleright Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

 Break

Experiment Design

Non-adaptive Strategy:

Fix the number of samples $\tau = T$

 $\square \quad \text{select } T \text{ to be such that } \mathbb{E}\{P_e\} \leq \epsilon$

Examles

Noisy Search

Code to Search

Non-adaptive

 \triangleright Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

Break

Experiment Design

Non-adaptive Strategy:

Fix the number of samples $\tau = T$

 $\Box \quad \text{select } T \text{ to be such that } \mathbb{E}\{P_e\} \leq \epsilon \\ \Box \quad \text{for all } t \leq T \text{ query random set } a \text{ such that } |a| = q^* B / \delta \\ \text{optimized}$

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

 \square

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

Break

Experiment Design

Sorted Posterior Matching (sortPM) Strategy:

Consider prior $\rho(t) := (\mathbb{P}\{W = e_i | A(0:t-1), Y(0,t-1)\})$

 \Box declares *i* as the target, if $\rho_i(t) \ge 1 - \epsilon, \ i \in \Omega$

- observe (noisy) Y
- update the prior (posterior) via the Bayes' rule

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

 \square

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

Break

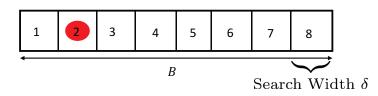
Experiment Design

Sorted Posterior Matching (sortPM) Strategy:

Consider prior $\rho(t) := (\mathbb{P}\{W = e_i | A(0:t-1), Y(0,t-1)\})$

 \Box declares *i* as the target, if $\rho_i(t) \ge 1 - \epsilon, \ i \in \Omega$

- observe (noisy) Y
- update the prior (posterior) via the Bayes' rule



Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

 \square

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

Break

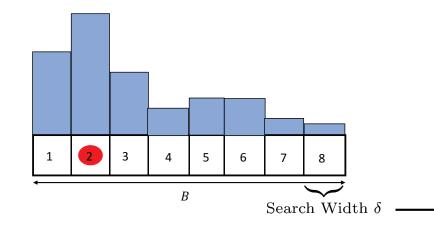
Experiment Design

Sorted Posterior Matching (sortPM) Strategy:

Consider prior $\rho(t) := (\mathbb{P}\{W = e_i | A(0:t-1), Y(0,t-1)\})$

 \Box declares i as the target, if $\rho_i(t) \ge 1 - \epsilon, \ i \in \Omega$

- observe (noisy) Y
- update the prior (posterior) via the Bayes' rule



Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

 \square

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

Break

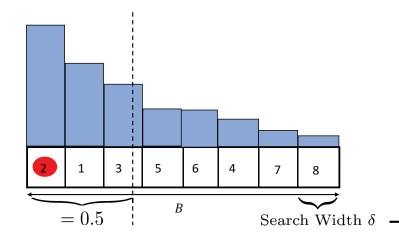
Experiment Design

Sorted Posterior Matching (sortPM) Strategy:

Consider prior $\rho(t) := (\mathbb{P}\{W = e_i | A(0:t-1), Y(0,t-1)\})$

 \Box declares i as the target, if $\rho_i(t) \ge 1 - \epsilon, \ i \in \Omega$

- observe (noisy) Y
- update the prior (posterior) via the Bayes' rule



Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

 \square

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

Break

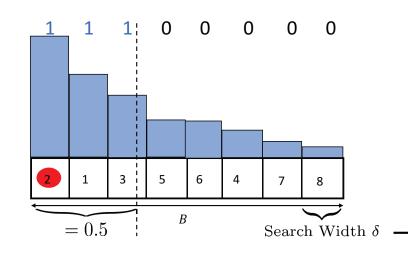
Experiment Design

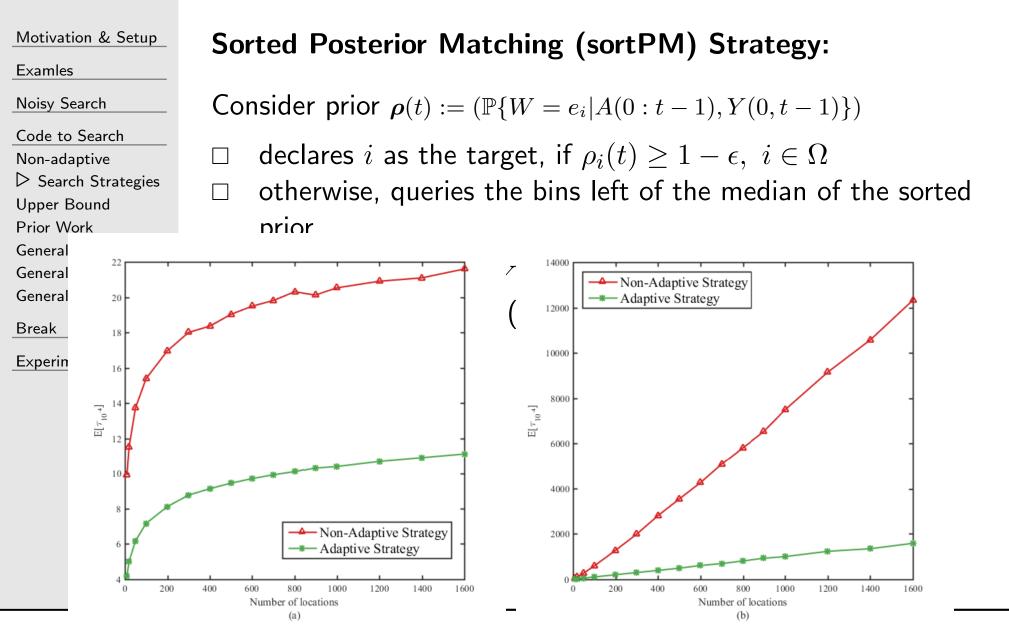
Sorted Posterior Matching (sortPM) Strategy:

Consider prior $\rho(t) := (\mathbb{P}\{W = e_i | A(0:t-1), Y(0,t-1)\})$

 \Box declares i as the target, if $ho_i(t) \geq 1 - \epsilon, \ i \in \Omega$

- observe (noisy) Y
- update the prior (posterior) via the Bayes' rule





SortPM: Upper Bound

Motivation & Setup

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

▷ Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

 Break

Experiment Design

Theorem. [Lalitha, Ronquillo and J. 17] Under SortPM, we have

$$\mathbb{E}[\tau_{SPM}] \leq \min_{\alpha} \frac{\log B/\delta\epsilon + \max\{\log \log B/\delta, \log \log \frac{1}{\epsilon}\}}{1 - h(Q((\sigma^2 \alpha B/\delta)^{-1/2}))} + K(\alpha).$$

where

$$\begin{split} h(p) &= p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}, \\ K(\cdot) \text{ is non-increasing function} \end{split}$$

SortPM: Upper Bound

Motivation & Setup

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

▷ Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

Break

Experiment Design

Theorem. [Lalitha, Ronquillo and J. 17] Under SortPM, we have

$$\mathbb{E}[\tau_{SPM}] \leq \min_{\alpha} \frac{\log B/\delta\epsilon + \max\{\log\log B/\delta, \log\log \frac{1}{\epsilon}\}}{1 - h(Q((\sigma^2 \alpha B/\delta)^{-1/2}))} + K(\alpha).$$

where

$$\begin{split} h(p) &= p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}, \\ K(\cdot) \text{ is non-increasing function} \end{split}$$

 \checkmark Analysis is based on a Lyapunov drift

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

▷ Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

Break

Experiment Design

Corollary. [Lalitha, Ronqullio and J. 17] Relying on hard-detected output symbols, the asymptotic adaptivity gain for $B/\delta \rightarrow \infty$ is:

$$\lim_{\delta \to 0} \frac{\tau_{opt}^{NA} - \mathbb{E}[\tau_{opt}^{A}]}{\log \frac{B}{\delta}} = \frac{1}{C_{BPSK}(q^*, B\sigma^2)} - 1.$$

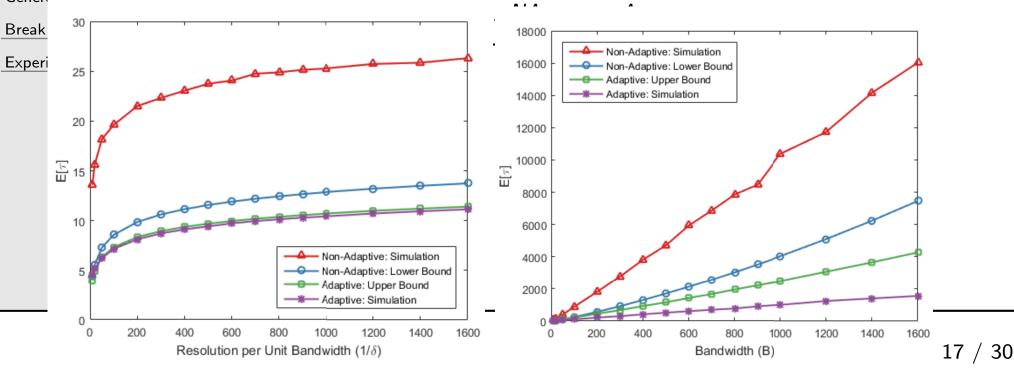
$$\lim_{B \to \infty} \frac{\tau_{opt}^{NA} - \mathbb{E}[\tau_{opt}^{A}]}{\frac{B}{\delta} \log \frac{B}{\delta}} \ge \frac{\sigma^{2} \delta}{\log e}.$$

SortPM: Upper Bound

Motivation & Setup Examles Noisy Search Code to Search Non-adaptive Search Strategies ▷ Upper Bound Prior Work Generalizations I Generalizations II Generalized III 30 Break Experi 25 20 도 비 15 10 5

Corollary. [Lalitha, Ronqullio and J. 17] Relying on hard-detected output symbols, the asymptotic adaptivity gain for $B/\delta \to \infty$ is:

$$\lim_{\delta \to 0} \frac{\tau_{opt}^{NA} - \mathbb{E}[\tau_{opt}^{A}]}{\log \frac{B}{\delta}} = \frac{1}{C_{BPSK}(q^*, B\sigma^2)} - 1.$$



Prior Work: Measurement Independent Noise

Motivation & Setup		
Examles		
Noisy Search		
Code to Search		
Non-adaptive		
Search Strategies		
Upper Bound		
▷ Prior Work		
Generalizations I		
Generalizations II		
Generalization III		
Break		
Experiment Design		

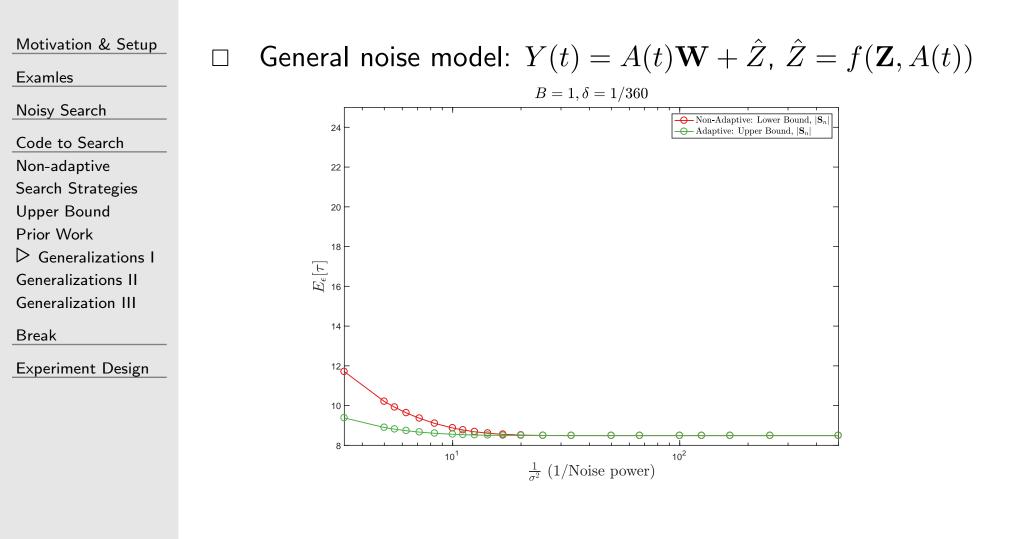
Generalized binary search [Burnashev and Zigangirov '74]

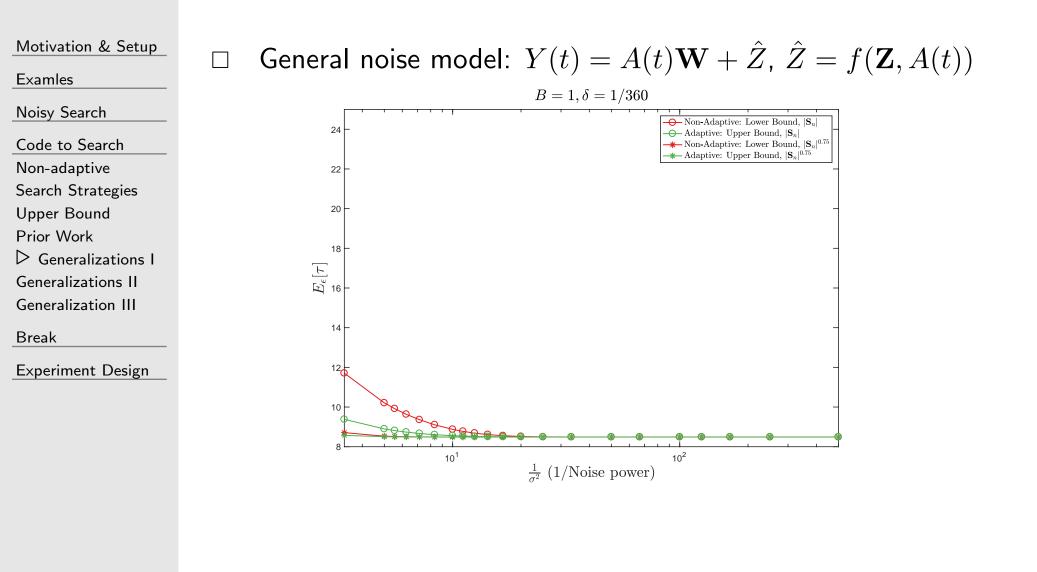
Channel coding over DMC with feedback [Burnashev '75], [Yamamato and Itoh '79], ... [Naghshvar, Wigger and J '13]

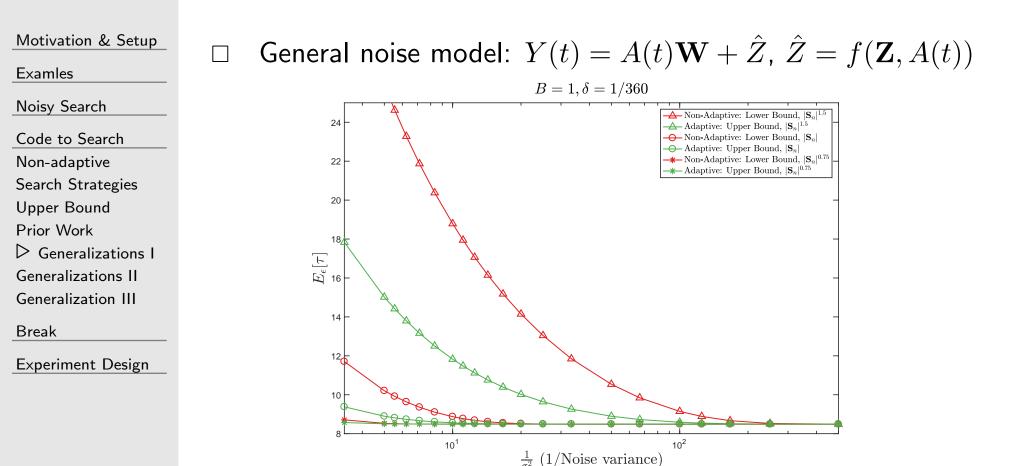
Posterior matching [Shayevitz and Feder '11]

Bisection search with noisy responses [Horstein '63],
 [Waeber, Frazier, Henderson '13]

Motivation & Setup Examles	\Box General noise model: $Y(t) = A(t)\mathbf{W} + \hat{Z}$, $\hat{Z} = f(\mathbf{Z}, A(t))$
Noisy Search	
Code to Search	
Non-adaptive	
Search Strategies	
Upper Bound	
Prior Work	
Dash Generalizations I	
Generalizations II	
Generalization III	
Break	
Experiment Design	







Motivation & Setup

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

Generalization III

 Break

Experiment Design

General noise model: $Y(t) = A(t)\mathbf{W} + \hat{Z}$, $\hat{Z} = f(\mathbf{Z}, A(t))$

Motivation & Setup Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

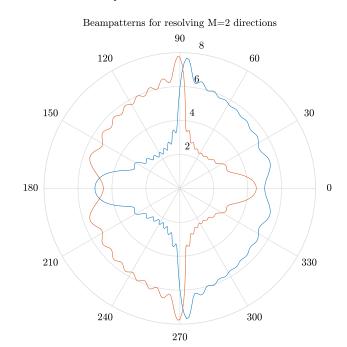
Generalizations II

Generalization III

Break

Experiment Design

General noise model: $Y(t) = A(t)\mathbf{W} + \hat{Z}$, $\hat{Z} = f(\mathbf{Z}, A(t))$



Motivation & Setup Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

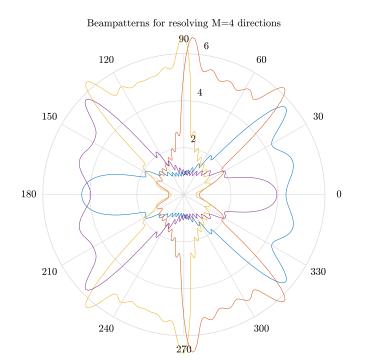
Generalizations II

Generalization III

Break

Experiment Design

General noise model: $Y(t) = A(t)\mathbf{W} + \hat{Z}$, $\hat{Z} = f(\mathbf{Z}, A(t))$



Motivation & Setup

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

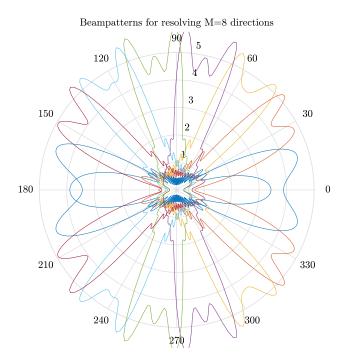
Generalizations II

Generalization III

Break

Experiment Design

General noise model: $Y(t) = A(t)\mathbf{W} + \hat{Z}$, $\hat{Z} = f(\mathbf{Z}, A(t))$



Motivation & Setup Examles	Search for multiple target $(K > 1)$
Noisy Search	
Code to Search Non-adaptive Search Strategies Upper Bound Prior Work	
Generalizations I Generalizations II Generalization III Break	Dynamic case: $W(t)$
Experiment Design	
	Beyond Gaussian

Motivation & SetupExamlesNoisy SearchCode to SearchNon-adaptiveSearch StrategiesUpper BoundPrior WorkGeneralizations I▷ Generalizations IIGeneralization IIIBreakExperiment Design

```
Search for multiple target (K > 1)
```

 ✓ Noisy sequential group testing [Atia and Saligrama '12]; Mapped to an OR MAC [Kaspi, Shayevitz, J '15]

 \Box Dynamic case: W(t)

□ Beyond Gaussian

Motivation & Setup Examles Noisy Search

Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

▷ Generalizations II

Generalization III

Break

Experiment Design

 \Box Search for multiple target (K > 1)

 ✓ Noisy sequential group testing [Atia and Saligrama '12]; Mapped to an OR MAC [Kaspi, Shayevitz, J '15]
 ✓ Factor of ¹/_K in rate, where K bounds (is) the number of targets

 \Box Dynamic case: W(t)

□ Beyond Gaussian

Motivation & SetupExamlesNoisy SearchCode to SearchNon-adaptiveSearch StrategiesUpper BoundPrior WorkGeneralizations I▷ Generalizations IIGeneralization IIIBreakExperiment Design

```
\Box Search for multiple target (K > 1)
```

- ✓ Noisy sequential group testing [Atia and Saligrama '12]; Mapped to an OR MAC [Kaspi, Shayevitz, J '15]
 ✓ Factor of ¹/_K in rate, where K bounds (is) the number of targets
- ‡ Case of an adder channel

```
\Box Dynamic case: W(t)
```

□ Beyond Gaussian

Motivation & SetupExamlesNoisy SearchCode to SearchNon-adaptiveSearch StrategiesUpper BoundPrior WorkGeneralizations I▷ Generalizations IIGeneralization III

Experiment Design

Break

 \Box Search for multiple target (K > 1)

- ✓ Noisy sequential group testing [Atia and Saligrama '12]; Mapped to an OR MAC [Kaspi, Shayevitz, J '15]
- ✓ Factor of $\frac{1}{K}$ in rate, where K bounds (is) the number of targets
- ‡ Case of an adder channel

 \Box Dynamic case: W(t)

- Results generalizes to unknown but constant speed (cut rate by half)
- Beyond Gaussian

Motivation & SetupExamlesNoisy SearchCode to SearchNon-adaptiveSearch StrategiesUpper BoundPrior WorkGeneralizations I▷ Generalizations II

Break

Experiment Design

Generalization III

 \Box Search for multiple target (K > 1)

- ✓ Noisy sequential group testing [Atia and Saligrama '12]; Mapped to an OR MAC [Kaspi, Shayevitz, J '15]
- ✓ Factor of $\frac{1}{K}$ in rate, where K bounds (is) the number of targets
- ‡ Case of an adder channel

 \Box Dynamic case: W(t)

- ✓ Results generalizes to unknown but constant speed (cut rate by half)
- □ Beyond Gaussian
 - ✓ Similar results for the binary symmetric noise (hard decoding) [Kaspi, Shayevitz, J '14]

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

▷ Generalization III

 Break

Experiment Design

Network performance function of network parameter $f : \mathcal{X} \to \mathbb{R}$.

Assumptions:

 $\Box \quad \mathcal{X} \text{ is the set of network parameters and protocols} \\ \Box \quad f(x) \text{ is the network performance; } f(x_1) \text{ and } f(x_2) \\ \text{"correlated"}$

 $\hfill \quad f \text{ observed w noise: } y = f(x) + \eta(x) \text{, } \eta \text{ non-presistent noise}$

<u>Goal</u>: Design a sequential strategy of selecting n query points x_1, \ldots, x_n to identify a global optimizer of f.

- Simple regret: $S_n = f(x^*) f(x_n^*)$
- Cumulative regret: $\mathcal{R}_n = \sum_{t=1}^n f(x^*) f(x_t)$

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

▷ Generalization III

 Break

Experiment Design

Network performance function of network parameter $f : \mathcal{X} \to \mathbb{R}$.

Assumptions:

 $\Box \quad \mathcal{X} \text{ is the set of network parameters and protocols} \\ \Box \quad f(x) \text{ is the network performance; } f(x_1) \text{ and } f(x_2) \\ \text{"correlated"}$

 $\hfill \quad f \text{ observed w noise: } y = f(x) + \eta(x) \text{, } \eta \text{ non-presistent noise}$

<u>Goal</u>: Design a sequential strategy of selecting n query points x_1, \ldots, x_n to identify a global optimizer of f.

- Simple regret: $S_n = f(x^*) f(x_n^*)$
- Cumulative regret: $\mathcal{R}_n = \sum_{t=1}^n f(x^*) f(x_t)$

Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

▷ Generalization III

 Break

Experiment Design

Network performance function of network parameter $f : \mathcal{X} \to \mathbb{R}$.

Assumptions:

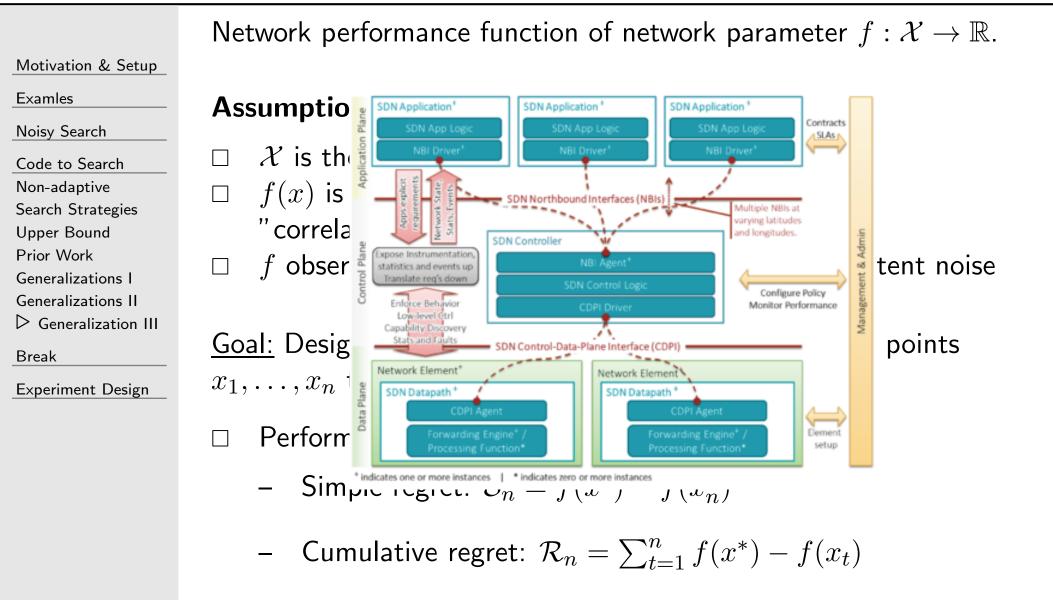
 $\Box \quad \mathcal{X} \text{ is the set of network parameters and protocols} \\ \Box \quad f(x) \text{ is the network performance; } f(x_1) \text{ and } f(x_2) \\ \text{"correlated"}$

 $\hfill \quad f \text{ observed w noise: } y = f(x) + \eta(x) \text{, } \eta \text{ non-presistent noise}$

<u>Goal</u>: Design a sequential strategy of selecting n query points x_1, \ldots, x_n to identify a global optimizer of f.

- Simple regret: $S_n = f(x^*) f(x_n^*)$
- Cumulative regret: $\mathcal{R}_n = \sum_{t=1}^n f(x^*) f(x_t)$

Empirical Network Parameter tuning



Examles

Noisy Search

Code to Search

Non-adaptive

Search Strategies

Upper Bound

Prior Work

Generalizations I

Generalizations II

▷ Generalization III

 Break

Experiment Design

Network performance function of network parameter $f : \mathcal{X} \to \mathbb{R}$.

Assumptions:

 $\Box \quad \mathcal{X} \text{ is the set of network parameters and protocols} \\ \Box \quad f(x) \text{ is the network performance; } f(x_1) \text{ and } f(x_2) \\ \text{"correlated"}$

 $\hfill \quad f \text{ observed w noise: } y = f(x) + \eta(x) \text{, } \eta \text{ non-presistent noise}$

<u>Goal</u>: Design a sequential strategy of selecting n query points x_1, \ldots, x_n to identify a global optimizer of f.

- Simple regret: $S_n = f(x^*) f(x_n^*)$
- Cumulative regret: $\mathcal{R}_n = \sum_{t=1}^n f(x^*) f(x_t)$ [bandit]

Examles

Noisy Search

Code to Search

▷ Break

Experiment Design

Questions?

Examles

Noisy Search

Code to Search

 Break

Experiment

Design

Experiment Design

Intuitive Overview

Heuristic

Approaches

Notations

Mutual Information

EJS

Achievability

Experiment Design: Single-shot

Noisy Search

Examles

Code to Search

 Break

Experiment Design

Experiment

Design

Intuitive Overview

Heuristic

Approaches

Notations

Mutual Information

EJS

Achievability

 $\square \quad M \text{ mutually exclusive hypotheses: } H_i \Leftrightarrow \{\theta = i\}, \\ i = 1, 2, \dots, M$

□ Prior
$$\rho(0) = [\rho_1(0), ..., \rho_M(0)], \ \rho_i(0) = P(\theta = i)$$

Noisy Search

Examles

Code to Search

Break

Experiment Design

 \square

Experiment ▷ Design

Intuitive Overview

Heuristic

Approaches

Notations

Mutual Information

EJS

Achievability

 $\square \quad M \text{ mutually exclusive hypotheses: } H_i \Leftrightarrow \{\theta = i\}, \\ i = 1, 2, \dots, M$

Prior
$$\rho(0) = [\rho_1(0), \dots, \rho_M(0)], \ \rho_i(0) = P(\theta = i)$$

 \Box Experiments \mathcal{A} are available

Motivation & Setup Examles

Noisy Search

Code to Search

 Break

Experiment Design

 \square

Experiment

Design

Intuitive Overview Heuristic

Approaches

Notations

Mutual Information

EJS

Achievability

 $\square \quad M \text{ mutually exclusive hypotheses: } H_i \Leftrightarrow \{\theta = i\}, \\ i = 1, 2, \dots, M$

Prior
$$\rho(0) = [\rho_1(0), \dots, \rho_M(0)], \ \rho_i(0) = P(\theta = i)$$

 \Box Experiments \mathcal{A} are available

 $\square \quad Z|_{\{\theta=i,A=a\}} \sim q_i^a(\cdot): \text{ observation density given } a \in \mathcal{A} \text{ and } H_i$

Motivation & Setup Examles

Noisy Search

Code to Search

 Break

Experiment Design

 \square

Experiment

Design

Intuitive Overview

Heuristic Approaches

Notations

Mutual Information

EJS

Achievability

 $\square \quad M \text{ mutually exclusive hypotheses: } H_i \Leftrightarrow \{\theta = i\}, \\ i = 1, 2, \dots, M$

Prior
$$\rho(0) = [\rho_1(0), \dots, \rho_M(0)], \ \rho_i(0) = P(\theta = i)$$

 \Box Experiments \mathcal{A} are available

 $\square \quad Z|_{\{\theta=i,A=a\}} \sim q_i^a(\cdot): \text{ observation density given } a \in \mathcal{A} \text{ and } H_i$

Objective: What is the best experiment A = a to identify θ ?

Motivation & Setup Examles	\Box Consider a single experiment $a \in \mathcal{A}$
Noisy Search	
Code to Search	
Break	
Experiment Design Experiment Design Intuitive ▷ Overview Heuristic Approaches Notations Mutual Information EJS Achievability	

Examles

Noisy Search

Code to Search

 Break

Experiment Design

Experiment Design

Intuitive

Overview

Heuristic

Approaches

Notations

Mutual Information

EJS

Achievability

 \Box Consider a single experiment $a \in \mathcal{A}$

- Prior $heta \sim oldsymbol{
 ho}$
- Noisy observations subject to $\{q_i^a(\cdot)\}_{i,a}$

Examles

Noisy Search

Code to Search

Break

Experiment Design

Experiment Design

Intuitive

Overview

Heuristic

Approaches

Notations

Mutual Information

EJS

Achievability

 \Box Consider a single experiment $a \in \mathcal{A}$

- Prior $heta \sim oldsymbol{
 ho}$
- Noisy observations subject to $\{q_i^a(\cdot)\}_{i,a}$

What should a be?

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive

Overview

Heuristic

Approaches

Notations

Mutual Information

EJS

Achievability

 \Box Consider a single experiment $a \in \mathcal{A}$

- Prior $heta \sim oldsymbol{
 ho}$
- Noisy observations subject to $\{q_i^a(\cdot)\}_{i,a}$

 \Box What should *a* be? Compare experiment *a* with *a*'?

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information EJS Achievability \Box Consider a single experiment $a \in \mathcal{A}$

- Prior $\theta \sim oldsymbol{
 ho}$
- Noisy observations subject to $\{q_i^a(\cdot)\}_{i,a}$

What should a be? Compare experiment a with a'?

- Stochastically degraded case [Blackwell '53], [Stein '53]

 \square

Examles

Noisy Search

Code to Search

 Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information EJS Achievability \Box Consider a single experiment $a \in \mathcal{A}$

- Prior $heta \sim oldsymbol{
 ho}$
- Noisy observations subject to $\{q_i^a(\cdot)\}_{i,a}$

What should a be? Compare experiment a with a'?

- Stochastically degraded case [Blackwell '53], [Stein '53]

Given experiment *a*:

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information EJS

Achievability

Consider a single experiment $a \in \mathcal{A}$

- Prior $heta \sim oldsymbol{
 ho}$
- Noisy observations subject to $\{q_i^a(\cdot)\}_{i,a}$

What should a be? Compare experiment a with a'?

- Stochastically degraded case [Blackwell '53], [Stein '53]

 \Box Given experiment *a*:

– True hypothesis heta=i with probability ho_i

 \square

 \square

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information EJS

Achievability

Consider a single experiment $a \in \mathcal{A}$

- Prior $heta \sim oldsymbol{
 ho}$
- Noisy observations subject to $\{q_i^a(\cdot)\}_{i,a}$

What should a be? Compare experiment a with a'?

- Stochastically degraded case [Blackwell '53], [Stein '53] Given experiment *a*:
 - True hypothesis heta = i with probability ho_i
- Output distribution $Z^a \sim \sum_{i=1}^M \rho_i q_i^a(\cdot)$

 \square

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information EJS

Achievability

 \Box Consider a single experiment $a \in \mathcal{A}$

- Prior $\theta \sim \rho$
- Noisy observations subject to $\{q_i^a(\cdot)\}_{i,a}$

What should a be? Compare experiment a with a'?

- Stochastically degraded case [Blackwell '53], [Stein '53] Given experiment *a*:
- True hypothesis heta=i with probability ho_i
- Output distribution $Z^a \sim \sum_{i=1}^M \rho_i q_i^a(\cdot)$
- Posterior upon observation $\theta | Z^a \sim \Phi^a(\rho, Z^a)$

Bayes operator

 \square

 \square

Motivation	&	Setup
------------	---	-------

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information EJS

Achievability

Consider a single experiment $a \in \mathcal{A}$

- Prior $\theta \sim \rho$
- Noisy observations subject to $\{q_i^a(\cdot)\}_{i,a}$

What should a be? Compare experiment a with a'?

- Stochastically degraded case [Blackwell '53], [Stein '53] Given experiment *a*:
- True hypothesis heta=i with probability ho_i
- Output distribution $Z^a \sim \sum_{i=1}^M \rho_i q_i^a(\cdot)$
- Posterior upon observation $\theta|Z^a \sim \Phi^a(\rho, Z^a)$

Bayes operator

– How does $\Phi^a(\cdot, \cdot)$ compare with $\Phi^{a'}(\cdot, \cdot)$

Motivation & Setup

Examles

Noisy Search

Code to Search

 Break

Experiment Design

Experiment Design

Intuitive Overview Heuristic

▷ Approaches

Notations

Mutual Information

EJS

Achievability

Divergence-based Selection

Define a "symmetrized divergence" among $q_1^a, q_2^a, \ldots, q_M^a$

 \square

Motivation & Setup

Examles

Noisy Search

Code to Search

 Break

Experiment Design

Experiment Design

Intuitive Overview Heuristic

▷ Approaches

Notations

Mutual Information

EJS

Achievability

Divergence-based Selection

Define a "symmetrized divergence" among $q_1^a, q_2^a, \ldots, q_M^a$ Best action must maximize the divergence

 \square

 \square

Motivation & Setup

Examles

Noisy Search

Code to Search

 Break

Experiment Design Experiment Design Intuitive Overview Heuristic ▷ Approaches Notations Mutual Information EJS Achievability

Divergence-based Selection

Define a "symmetrized divergence" among $q_1^a, q_2^a, \ldots, q_M^a$ Best action must maximize the divergence

- maximize discrimination among H_1, H_2, \ldots, H_M

 \square

 \square

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic > Approaches Notations Mutual Information EJS Achievability

Divergence-based Selection

Define a "symmetrized divergence" among $q_1^a, q_2^a, \ldots, q_M^a$ Best action must maximize the divergence

- maximize discrimination among H_1, H_2, \ldots, H_M

Information Utility Heuristics:

Measure of uncertainty V [DeGroot 1962]
 Information utility associated with V

 $\mathcal{IU}(a, \boldsymbol{\rho}, \boldsymbol{V}) = \boldsymbol{V}(\boldsymbol{\rho}) - \mathbb{E}[\boldsymbol{V}(\Phi^{a}(\boldsymbol{\rho}, Z))]$

 \square

 \square

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic > Approaches Notations Mutual Information EJS Achievability

Divergence-based Selection

Define a "symmetrized divergence" among $q_1^a, q_2^a, \ldots, q_M^a$ Best action must maximize the divergence

- maximize discrimination among H_1, H_2, \ldots, H_M

Information Utility Heuristics:

Measure of uncertainty V [DeGroot 1962]
 Information utility associated with V

$$\mathcal{IU}(a, \boldsymbol{\rho}, \boldsymbol{V}) = \boldsymbol{V}(\boldsymbol{\rho}) - \mathbb{E}[\boldsymbol{V}(\Phi^{a}(\boldsymbol{\rho}, \boldsymbol{Z}))]$$
Bayes operator

 \square

 \square

Motivation & Setup

Examles

Noisy Search

Code to Search

 Break

Experiment Design Experiment Design Intuitive Overview Heuristic > Approaches Notations Mutual Information EJS Achievability

Divergence-based Selection

Define a "symmetrized divergence" among $q_1^a, q_2^a, \ldots, q_M^a$ Best action must maximize the divergence

- maximize discrimination among H_1, H_2, \ldots, H_M

Information Utility Heuristics:

Measure of uncertainty V [DeGroot 1962]
 Information utility associated with V

$$\mathcal{IU}(a, \boldsymbol{\rho}, \boldsymbol{V}) = \boldsymbol{V}(\boldsymbol{\rho}) - \mathbb{E}[\boldsymbol{V}(\Phi^{a}(\boldsymbol{\rho}, \boldsymbol{Z}))]$$
Bayes operator

 $\square \quad \text{Most informative action } \arg \max_{a} \mathcal{IU}(a, \boldsymbol{\rho}, V)$

 \square

 \square

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic > Approaches Notations Mutual Information EJS Achievability

Divergence-based Selection

Define a "symmetrized divergence" among $q_1^a, q_2^a, \ldots, q_M^a$ Best action must maximize the divergence

- maximize discrimination among H_1, H_2, \ldots, H_M

Information Utility Heuristics:

Measure of uncertainty V [DeGroot 1962]
 Information utility associated with V

$$\mathcal{IU}(a, \boldsymbol{\rho}, \boldsymbol{V}) = \boldsymbol{V}(\boldsymbol{\rho}) - \mathbb{E}[\boldsymbol{V}(\Phi^{a}(\boldsymbol{\rho}, \boldsymbol{Z}))]$$
Bayes operator

 $\Box \quad \text{Most informative action } \arg \max_{a} \mathcal{IU}(a, \boldsymbol{\rho}, V)$ Noisy search reduces to maximizing the $\mathcal{IU}(a, \boldsymbol{\rho}, V^*)$

Recall

Motivation & Setup

 \square

Examles

Noisy Search

Code to Search

 Break

Experiment Design

Experiment Design

Intuitive Overview

Heuristic

Approaches

 \triangleright Notations

Mutual Information

EJS

Achievability

The *Entropy* of $p(\cdot)$ on space \mathcal{Z} :

$$H(p) = \sum_{\mathcal{Z}} p(z) \log \frac{1}{p(z)}$$

The Kullback-Leibler (KL) divergence between $p(\cdot)$ and $q(\cdot)$:

$$D(p||q) = \sum_{\mathcal{Z}} p(z) \log \frac{p(z)}{q(z)}$$

Motivation & Setup Examles

Noisy Search

Code to Search

 Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual > Information EJS Achievability A widely used heuristic

 $\pi_I(\boldsymbol{\rho}) = \arg\max_a I(\theta; Z^a), \quad \text{where } Z^a \sim q^a_{\boldsymbol{\rho}} = \sum_{i=1}^M \rho_i q^a_i$

[Chaloner Verdinelli 1995], [Lindley 1956], [MacKay 1992], [Paninski 2005], [Branson 2010], [Butko Movellan 2009], [Fleuret 2004], [Williams et al. 2007]

Motivation & Setup

Examles

Noisy Search

Code to Search

 Break

Experiment Design

Experiment Design

Intuitive Overview

Heuristic

 ${\sf Approaches}$

Notations

Mutual

 \triangleright Information

EJS

Achievability

A widely used heuristic

$$\pi_I(\boldsymbol{\rho}) = rg\max_a I(\theta; Z^a), \quad \text{where } Z^a \sim q^a_{\boldsymbol{\rho}} = \sum_{i=1} \rho_i q^a_i$$

$$I(\theta; Z^a) = H(\boldsymbol{\rho}) - \mathbb{E}(H(\Phi^a(\boldsymbol{\rho}, Z^a)))$$

 $=\mathcal{IU}(a,\boldsymbol{\rho},H)$

Motivation & Setup

Examles

Noisy Search

Code to Search

 Break

Experiment Design Experiment Design Intuitive Overview

Heuristic

 ${\sf Approaches}$

Notations

Mutual

 \triangleright Information

EJS

Achievability

A widely used heuristic

$$\pi_I(\boldsymbol{\rho}) = rg\max_a I(\theta; Z^a), \quad \text{where } Z^a \sim q^a_{\boldsymbol{\rho}} = \sum_{i=1} \rho_i q^a_i$$

$$I(\theta; Z^a) = H(\boldsymbol{\rho}) - \mathbb{E}(H(\Phi^a(\boldsymbol{\rho}, Z^a)))$$

 $= \mathcal{IU}(a, \boldsymbol{\rho}, H)$

Also

$$I(\theta; Z^a) = \sum_{i=1}^{M} \rho_i D(q_i^a || q_{\boldsymbol{\rho}}^a)$$

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual

Information

EJS

Achievability

A widely used heuristic

$$\pi_I(\boldsymbol{\rho}) = rg\max_a I(\theta; Z^a), \quad \text{where } Z^a \sim q^a_{\boldsymbol{\rho}} = \sum_{i=1} \rho_i q^a_i$$

$$I(\theta; Z^a) = H(\boldsymbol{\rho}) - \mathbb{E}(H(\Phi^a(\boldsymbol{\rho}, Z^a)))$$

 $= \mathcal{IU}(a, \boldsymbol{\rho}, H)$

Also

 $I(\theta; Z^a) = \sum_{i=1}^{M} \rho_i D(q_i^a || q_{\boldsymbol{\rho}}^a)$

Jensen-Shannon divergence [Lin 1991]

Generalizing L divergence: $D_L(f,g) = \frac{1}{2}D(f||\frac{f+g}{2}) + \frac{1}{2}D(g||\frac{f+g}{2})$

Motivation & Setup

Examles

Noisy Search

Code to Search

 Break

Experiment Design Experiment Design Intuitive Overview

Heuristic

 ${\sf Approaches}$

Notations

Mutual

 \triangleright Information

EJS

Achievability

A widely used heuristic

$$\pi_I(\boldsymbol{\rho}) = rg\max_a I(\theta; Z^a), \quad \text{where } Z^a \sim q^a_{\boldsymbol{\rho}} = \sum_{i=1} \rho_i q^a_i$$

$$I(\theta; Z^a) = H(\boldsymbol{\rho}) - \mathbb{E}(H(\Phi^a(\boldsymbol{\rho}, Z^a)))$$

 $= \mathcal{IU}(a, \boldsymbol{\rho}, H)$

Also

$$I(\theta; Z^a) = \sum_{i=1}^{M} \rho_i D(q_i^a || q_{\boldsymbol{\rho}}^a)$$

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches

Notations

Mutual

Information

EJS

Achievability

A widely used heuristic

$$\pi_I(\boldsymbol{\rho}) = rg\max_a I(\theta; Z^a), \quad \text{where } Z^a \sim q^a_{\boldsymbol{\rho}} = \sum_{i=1} \rho_i q^a_i$$

$$I(\theta; Z^a) = H(\boldsymbol{\rho}) - \mathbb{E}(H(\Phi^a(\boldsymbol{\rho}, Z^a)))$$

 $= \mathcal{IU}(a, \boldsymbol{\rho}, H)$

Also

 $I(\theta; Z^a) = \sum_{i=1}^{M} \rho_i D(q_i^a || q_{\boldsymbol{\rho}}^a)$

As $\rho_i \to 1$, $D(q_i^a || q_{\rho}^a) \to D(q_i^a || q_i^a) = 0$ for any experiment a

Motivation & Setup
Examles
Noisy Search
Code to Search
Break
Experiment Design
Experiment Design
Intuitive Overview Heuristic
Approaches
Notations
Mutual Information
⊳ ejs
Achievability

Motivation & Setup Examles	Extrinsic Jensen-Shannon Divergence [Naghshvar, J. ISIT'12]
Noisy Search	
Code to Search	
Break	
Experiment Design	
Experiment Design	
Intuitive Overview Heuristic	
Approaches	
Notations	
Mutual Information	
⊳ ejs	
Achievability	

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information D EJS

Achievability

Extrinsic Jensen-Shannon Divergence [Naghshvar, J. ISIT'12] The *Extrinsic Jensen-Shannon (EJS) divergence* among densities q_1, q_2, \ldots, q_M with respect to $\boldsymbol{\rho} = [\rho_1, \rho_2, \ldots, \rho_M]$ is defined as

$$EJS(\boldsymbol{\rho}; q_1, q_2, \dots, q_M) = \sum_{i=1}^M \rho_i D(q_i || \sum_{k \neq i} \frac{\rho_k}{1 - \rho_i} q_k).$$

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information \triangleright EJS Achievability **Extrinsic Jensen-Shannon Divergence** [Naghshvar, J. ISIT'12] The *Extrinsic Jensen-Shannon (EJS) divergence* among densities q_1, q_2, \ldots, q_M with respect to $\boldsymbol{\rho} = [\rho_1, \rho_2, \ldots, \rho_M]$ is defined as

$$EJS(\boldsymbol{\rho}; q_1, q_2, \dots, q_M) = \sum_{i=1}^M \rho_i D(q_i || \sum_{k \neq i} \frac{\rho_k}{1 - \rho_i} q_k).$$

Bayesian generalization of J-divergence [Jefferys 73]

$$D_J(f,g) = \frac{1}{2}D(f||g) + \frac{1}{2}D(g||f)$$

Motivation & Setup

Examles

Noisy Search

Code to Search

Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information D EJS Achievability **Extrinsic Jensen-Shannon Divergence** [Naghshvar, J. ISIT'12] The *Extrinsic Jensen-Shannon (EJS) divergence* among densities q_1, q_2, \ldots, q_M with respect to $\boldsymbol{\rho} = [\rho_1, \rho_2, \ldots, \rho_M]$ is defined as

$$EJS(\boldsymbol{\rho}; q_1, q_2, \dots, q_M) = \sum_{i=1}^M \rho_i D(q_i || \sum_{k \neq i} \frac{\rho_k}{1 - \rho_i} q_k).$$

Bayesian generalization of J-divergence [Jefferys 73]

$$D_J(f,g) = \frac{1}{2}D(f||g) + \frac{1}{2}D(g||f)$$

Proposition

EJS is the information utility associated with the average likelihood function $U(\rho) = \sum_{i=1}^{M} \rho_i \log \frac{1-\rho_i}{\rho_i}$, i.e.

$$EJS(\boldsymbol{\rho}; q_1^a, \dots, q_M^a) = \mathcal{IU}(a, \boldsymbol{\rho}, U)$$

An Upper Bound on Expected Number of Searches

Motivation & Setup

Examles

Noisy Search

Code to Search

 Break

Experiment Design

Experiment Design

Intuitive Overview

Heuristic

Approaches

Notations

Mutual Information

EJS

▷ Achievability

Theorem (Naghshvar et. al. 13). Suppose there is C > 0 s.t. when a is selected according to SortPM and $|a| \leq \alpha B/\delta$, for all ρ , $EJS(\rho, a) \geq C$. Then

$$\mathbb{E}[\tau^*] \le \mathbb{E}[\tau_{SortPM}] \le \frac{\log M + \max\{\log \log M, \log \frac{1}{\delta}\} + 4\Delta}{C} + K(\alpha).$$

Motivation & Setup

Examles

Noisy Search

Code to Search

 Break

Experiment Design Experiment Design Intuitive Overview Heuristic Approaches Notations Mutual Information EJS

▷ Achievability

Theorem (Naghshvar et. al. 13). Suppose there is C > 0 s.t. when a is selected according to SortPM and $|a| \leq \alpha B/\delta$, for all ρ , $EJS(\rho, a) \geq C$. Then

$$\mathbb{E}[\tau^*] \le \mathbb{E}[\tau_{SortPM}] \le \frac{\log M + \max\{\log \log M, \log \frac{1}{\delta}\} + 4\Delta}{C} + K(\alpha).$$

Lemma. Fix $\alpha \in (0, 1)$. Using hard-decoded observation sequence $\Rightarrow C(\alpha) = 1 - h\left(Q\left(\left(\sigma^2 \alpha B/\delta\right)^{-1/2}\right)\right)$.