Regulating Transportation Network Companies: Should Uber and Lyft Set Their Own Rules?

> Sen Li, Hamidreza Tavafoghi, Kameshwar Poolla and Pravin Varaiya UC Berkeley

arXiv:1902.01076v1 [math.OC] 4 Feb 2019

Rise of the TNCs

- Rapid growth of Transportation Network Companies (TNC)
 - Uber founded in 2009, San Francisco
 - Estimated value of Uber in 2019: \$80B
 - Lyft founded in 2012, San Francisco, IPO valuation in 2019 \$24B
 - 45,000 TNC drivers in SF, 487,000 SF labor force
 - Competitors: DiDi (China, Latin America), Ola (India), Grab (Singapore) ...
- TNCs have disrupted urban transportation:
 - Aug 2018 in NYC, 558K TNC trips vs 275K taxi trips per day [1]
 - 97K registered TNC vehicles vs 16K yellow cabs in NYC [1]
 - 3 million active Uber drivers globally, 750K in US [1]
 - 15M Uber rides daily in 2017 [1]
 - Average NYC business trip cost \$24.22 + \$4.03 tip
 - Uber generated US consumer surplus estimated at \$6.8B in 2015 [2].

[1] Iqbal, Mansoor, Uber Revenue and Usage Statistics (2018).

[2] Cohen, Peter, et al. Using big data to estimate consumer surplus: The case of uber. No. w22627. National Bureau of Economic Research, 2016.

Criticisms and Regulation

- TNC criticisms
 - Taxi drivers are hurt by TNC competition
 - TNC drivers paid sub-minimum wage:
 - after expenses, drivers earn \$14.25/hour in NYC [3] (minimum wage \$15/hour) while facing most of the business risk
 - Public transit loses passengers
 - Private car owners are unhappy
 - TNCs caused 50% of increase in congestion in SF during 2010-2016 [4].
- Cities starting to regulate TNC
 - In Dec 2018, New York became the first US city to
 - freeze new TNC vehicle registrations for one year
 - set minimum wage for TNC drivers at \$17.22/hour
 - London court ruled TNC drivers as employees; under appeal
 - CA supreme court ABC test for gig workers
 - Seattle considering similar rules to raise driver pay

[3] Parrott and Reich, An earning standard for new york city's app based drivers: economic analysis and policy assessment, 2018

[4] SF transportation authority, TNC&Congestion, 2018

[5] Schaller Consulting, Empty seats, full streets, 2017

Lyft Financials for 2018

- Bookings = \$8.1B, Drivers get \$5.9B (72%), Revenues = \$2.2B.
 Driver net wages = 62% of gross = \$3.7B
- Total rides in 2018 = 619M

	Total	Per ride
Bookings (Fares collected)	\$8.1B	\$13.00
Drivers gross (net)	\$5.9B (\$3.7B)	\$9.50 (\$5.90)
Revenues	\$2.2B	\$3.50
Cost of revenues	\$1.24B	\$2.00
Loss	\$0.91B	\$1.47
Total cost = Rev + Loss	\$3.06B	\$4.97

Cost of revenue = insurance costs required under TNC and city regulations for ridesharing + payment processing charges, including merchant fees and chargebacks (returns), + hosting and platform related technology costs (AWS). Driver + Cost of revenues = minimum cost of service = 88% of bookings. So gross margin is 12%. To make this 50% need to raise fares by 77%

Scope of this Talk

- This talk will:
 - explain how regulations affect the TNC marketplace (platforms, drivers, passengers, etc)
 - Earning of drivers
 - Cost to passengers
 - Profit of platform
- Focus on three regulations:
 - Cap on number of TNC vehicles
 - Minimum wage of TNC drivers
 - Congestion surcharge on TNC rides

Big Picture

The big picture

- Goal:
 - predict the decisions of platform, passengers, drivers
 - calculate how decisions are affected by exogenous regulation
- Focus:
 - platform pricing
 - market response

Market Response-Demand Model

- Passenger model:
 - Each passenger faces a trip cost = value of pickup time + trip price [6]

 $c=\alpha t+\beta p_1$

- t is pickup waiting time
- p₁ is the per-mile price
- Each passenger has a reservation cost
 - captures the cost of alternatives (public transit, walking, etc)
 - CDF function: $F_p(c)$
- Demand function:

arrival rate of TNC passengers = arrival rate of all potential passegners × proportion of passengers who take *TNC*

[6] Mohring, H. Optimization and Scale Economies in Urban Bus Transportation, *American Economic Review*, 62 (4) (1972), pp. 591-604

Market Response-Demand Model

- Passenger model:
 - Each passenger faces a trip cost = value of pickup time + trip price [6]

 $c=\alpha t+\beta p_1$

- t is pickup waiting time
- p₁ is the per-mile price
- Each passenger has a reservation cost
 - captures the cost of alternatives (public transit, walking, etc)
 - CDF function: F_p(c)
- Demand function (new passengers per minute) β includes average trip length:

$$\lambda = \lambda_0 \left(1 - F_p(\alpha t + \beta p_1) \right)$$

Market Response-Supply Model

- Driver model:
 - The hourly earning (wage rate) of each driver is:

 $r=p_2\lambda/N$

- p₂: per-mile payment to drivers
- N: total number of TNC drivers
- Each driver has a reservation wage
 - CDF function: $F_d(r)$
- Supply function

 $N = N_0 F_d(p_2 \lambda / N)$

Market equilibrium equation

$$\lambda = \lambda_0 \left(1 - F_p(\alpha t + \beta p_1) \right)$$
$$N = N_0 F_d(p_2 \lambda / N)$$

Market Response-Supply Model

- Driver model:
 - The hourly earning of each driver is:

 $r = p_2 \lambda / N$

- p₂: per-mile payment to drivers
- N: total number of TNC drivers
- Each driver has a reservation wage.
 - CDF function: $F_d(r)$
- Supply function

 $N = N_0 F_d(p_2 \lambda/N)$

Market equilibrium equation

$$\begin{split} \lambda &= \lambda_0 \left(1 - F_p(\alpha t + \beta p_1) \right) \\ N &= N_0 F_d(p_2 \lambda/N) \end{split}$$

Proposition: the pickup time satisfies $t = \frac{C}{\sqrt{N-\lambda/u}}$

Market Response-Supply Model

- Driver model:
 - The hourly earning of each driver is:

 $r = p_2 \lambda / N$

- p₂: per-mile payment to drivers
- N: total number of TNC drivers
- Each driver has a reservation wage.
 - CDF function: $F_d(r)$
- Supply function

 $N = N_0 F_d(p_2 \lambda/N)$

Market equilibrium equation

$$\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$$
$$N = N_0 F_d(p_2 \lambda/N)$$

Proposition: the pickup time satisfies $t = \frac{C}{\sqrt{N - \lambda/u}}$

Numerical Solutions

$$\max_{p_1, p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{C}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N = N_0 F_d(p_2 \lambda/N)$

- solve under different λ_0
- F_p and F_d uniform distributions
- Parameters tuned to match realistic data of SF city

Real Data of San Francisco City [1]

- Number of passenger / minute: $\lambda = 141$
- Average number of drivers: N = 3200
- Ride price: 11.4 \$/ trip
- Driver pay: 6.9\$/ trip
- Driver hourly wage: 18.3\$/hour

Numerical Solutions (unregulated case)

$$\max_{p_1,p_2} \lambda(p_1 - p_2)$$

s.t.
$$\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{C}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$$

 $N = N_0 F_d(p_2 \lambda / N)$

- solve under different λ₀
- *F_p* and *F_d* uniform distributions
- Parameters tuned to match realistic data of SF city

As potential passengers double

- Cost per ride p₁ increases by 15% from \$9.9 to \$11.4
- Driver payment p₂ increases
 13% from \$6.1 to \$6.9 per ride

Numerical Solutions (unregulated case)

$$\max_{p_1,p_2} \lambda(p_1 - p_2)$$

s.t.
$$\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$$

- solve under different λ₀
- *F_p* and *F_d* uniform distributions
- Parameters tuned to match realistic data of SF city

As potential passengers double

 Driver wage increases by 41% from \$13.2 to \$18.6 per hour

Numerical Solutions (unregulated case)

$$\max_{p_1,p_2} \lambda(p_1 - p_2)$$

s.t.
$$\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$$

$$N = N_0 F_d(p_2 \lambda/N)$$

- F_p and F_d uniform distributions
- Parameters tuned to match realistic data of SF city

As potential passengers double

 Occupancy increases 23% from 43% to 53%

TNC scale economies (NYC, unregulated)

- As number of potential passengers doubles from 500 to 1,000 rides per minute, the cost per ride increases by 11 percent from \$2.4 to \$2.7 per mile, driver payment increases by 6.6 percent from \$1.4 to \$1.5 per mile, platform share increases 20 percent from \$1 to \$1.2 per mile
- Driver wages increase 29 percent from \$17 to \$24 per hour because driver utilization increases by 25 percent from 0.4 to 0.5
- By the same token, in the absence of a wage floor, a driver's hourly wage declines by 29 percent from peak to off-peak hours. Further, platform share increases 20% from \$1 to \$1.2 per mile

Profit-Maximizing TNC (Cap Constraint)

- Platform profit: $R_p = \lambda(p_1 - p_2)$
- Platform decision:
 - Maximize profit subject to market equilibrium equations and cap constraint

$$\max_{p_1,p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N = N_0 F_d(p_2 \lambda/N)$
 $N \le Cap$

- Theorem:
 - First order condition is sufficient for global optimality.
 - First order conditions admits a unique solution.

$$\max_{p_1, p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N = N_0 F_d(p_2 \lambda/N)$
 $N \le Cap$

- solve under different caps
- *F_p* and *F_d* uniform distributions
- Parameters tuned to match realistic data of SF city

$$\max_{p_1, p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N = N_0 F_d(p_2 \lambda/N)$
 $N \le Cap$

- solve under different caps
- *F_p* and *F_d* uniform distributions
- Parameters tuned to match realistic data of SF city

$$\max_{p_1, p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N = N_0 F_d(p_2 \lambda/N)$
 $N \le Cap$

- solve under different caps
- *F_p* and *F_d* uniform distributions
- Parameters tuned to match realistic data of SF city

$$\max_{p_1, p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N = N_0 F_d(p_2 \lambda/N)$
 $N \le Cap$

- solve under different caps
 - F_p and F_d uniform distributions
- Parameters tuned to match realistic data of SF city

$$\max_{p_1, p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N = N_0 F_d(p_2 \lambda/N)$
 $N \le Cap$

- solve under different caps
- F_p and F_d uniform distributions
- Parameters tuned to match realistic data of SF city

Profit-Maximizing TNC (wage floor)

Platform profit:

$$R_p = \lambda (p_1 - p_2)$$

- Platform decision:
 - Maximize profit subject to market response equations and wage constraint

$$\max_{p_1,p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N = N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

Profit-Maximizing TNC (wage floor)

Platform profit:

 $R_p = \lambda (p_1 - p_2)$

- Platform decision:
 - Maximize profit subject to market response equations and wage constraint

$$\max_{p_1,p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

Profit-Maximizing TNC (wage floor)

Platform profit:

$$R_p = \lambda (p_1 - p_2)$$

- Platform decision:
 - Maximize profit subject to market response equations and wage constraint

$$\max_{p_1,p_2} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

- Theorem:
 - First order condition is sufficient for global optimality.
 - First order conditions admits a unique solution.

$$\max_{p_1, p_2, N} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{C}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

- solve under different wage floors
- F_p and F_d uniform distributions
- Parameters tuned to match realistic data of SF city

$$\max_{p_1, p_2, N} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

- solve under different wage floors
- F_p and F_d uniform distributions
- Parameters tuned to match realistic data of SF city

$$\max_{p_1, p_2, N} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

- F_p and F_d uniform distributions
- Parameters tuned to match realistic data of SF city

$$\max_{p_1, p_2, N} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

- solve under different wage floors
- *F_p* and *F_d* uniform distributions
- Parameters tuned to match realistic data of SF city

Numerical Solutions (congestion surcharge)

Results under congestion surcharge

$$\max_{p_1, p_2, N} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 + p_3 \right) \right)$
 $N = N_0 F_d(p_2 \lambda/N)$

- Solve this problem for different values of congestion surcharge
- Tune parameter to match SF data

Numerical Solutions (wage floor + surcharge)

Results under congestion surcharge and wage floor

$$\max_{p_1, p_2, N} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 + p_3 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

- Fix wage floor w=17.2\$/hour
- Solve this problem for different values of tax

Numerical Solutions (wage floor + surcharge)

Results under wage floor and a congestion surcharge

$$\max_{p_1, p_2, N} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 + p_3 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le n_0 \lambda/N$

21111

- Fix wage floor w=17.2\$/hour
- Solve this problem for different values of tax

Numerical Solutions (wage floor + surcharge)

With surcharge

$$\max_{p_1, p_2, N} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 + p_3 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

Without surcharge

$$\max_{p_1, p_2, N} \lambda(p_1 - p_2)$$

s.t. $\lambda = \lambda_0 \left(1 - F_p \left(\alpha \frac{c}{\sqrt{N - \lambda/u}} + \beta p_1 \right) \right)$
 $N \le N_0 F_d(p_2 \lambda/N)$
 $w \le p_2 \lambda/N$

Extensions of the Model

- Platform subsidy
 - Objective is to maximize market share for fixed subsidy or loss, decrease p_1 or/and increase p_2
 - Subsidize passengers more than drivers
- Platform competition
 - More than one platform
 - Need behavior model
- Autonomous vehicles
 - Cost of AV today much higher than driver cost
 - AV today not safe enough

Conclusion

- TNC business model requires market power and unorganized driver pool
- Higher minimum wage (up to a limit) increases number of drivers and passengers, and reduces platform rents
- Cap on number of drivers hurts drivers, passengers and platform
- Congestion charge reduces number and wage of drivers
- But with minimum wage congestion charge does not reduce number of drivers

Thank you!