Regulating Transportation Network Companies: Should Uber and Lyft Set Their Own Rules?

Sen Li, Hamidreza Tavafoghi, Kameshwar Poolla and Pravin Varaiya

UC Berkeley

Rise of the TNCs

- Rapid growth of Transportation Network Companies (TNC)
- Uber founded in 2009, San Francisco
- Estimated value of Uber in 2019: \$80B
- Lyft founded in 2012, San Francisco, IPO valuation in 2019 \$24B
- 45,000 TNC drivers in SF, 487,000 SF labor force
- Competitors: DiDi (China, Latin America), Ola (India), Grab (Singapore) ...
- TNCs have disrupted urban transportation:
- Aug 2018 in NYC, 558K TNC trips vs 275K taxi trips per day [1]
- 97K registered TNC vehicles vs 16K yellow cabs in NYC [1]
- 3 million active Uber drivers globally, 750K in US [1]
- 15M Uber rides daily in 2017 [1]
- Average NYC business trip cost $\$ 24.22+\$ 4.03$ tip
- Uber generated US consumer surplus estimated at $\$ 6.8 \mathrm{~B}$ in 2015 [2].
[1] Iqbal, Mansoor, Uber Revenue and Usage Statistics (2018).
[2] Cohen, Peter, et al. Using big data to estimate consumer surplus: The case of uber. No. w22627. National Bureau of Economic Research, 2016.

Criticisms and Regulation

- TNC criticisms
- Taxi drivers are hurt by TNC competition
- TNC drivers paid sub-minimum wage:
- after expenses, drivers earn $\$ 14.25 /$ hour in NYC [3] (minimum wage $\$ 15 /$ hour) while facing most of the business risk
- Public transit loses passengers
- Private car owners are unhappy
- TNCs caused 50\% of increase in congestion in SF during 2010-2016 [4].
- Cities starting to regulate TNC
- In Dec 2018, New York became the first US city to
- freeze new TNC vehicle registrations for one year
- set minimum wage for TNC drivers at $\$ 17.22 /$ hour
- London court ruled TNC drivers as employees; under appeal
- CA supreme court ABC test for gig workers
- Seattle considering similar rules to raise driver pay
[3] Parrott and Reich, An earning standard for new york city's app based drivers: economic analysis and policy assessment, 2018
[4] SF transportation authority, TNC\&Congestion, 2018
[5] Schaller Consulting, Empty seats, full streets, 2017

Lyft Financials for 2018

- Bookings = \$8.1B, Drivers get \$5.9B (72\%), Revenues = \$2.2B. Driver net wages = 62\% of gross = \$3.7B
- Total rides in $2018=619 \mathrm{M}$

	Total	Per ride
Bookings (Fares collected)	$\$ 8.1 \mathrm{~B}$	$\$ 13.00$
Drivers gross (net)	$\$ 5.9 \mathrm{~B}(\$ 3.7 \mathrm{~B})$	$\$ 9.50(\$ 5.90)$
Revenues	$\$ 2.2 \mathrm{~B}$	$\$ 3.50$
Cost of revenues	$\$ 1.24 \mathrm{~B}$	$\$ 2.00$
Loss	$\$ 0.91 \mathrm{~B}$	$\$ 1.47$
Total cost $=$ Rev + Loss	$\$ 3.06 \mathrm{~B}$	$\$ 4.97$

Cost of revenue = insurance costs required under TNC and city regulations for ridesharing + payment processing charges, including merchant fees and chargebacks (returns), + hosting and platform related technology costs (AWS). Driver + Cost of revenues $=$ minimum cost of service $=88 \%$ of bookings. So gross margin is 12%. To make this 50% need to raise fares by 77%

Scope of this Talk

- This talk will:
- explain how regulations affect the TNC marketplace (platforms, drivers, passengers, etc)
- Earning of drivers
- Cost to passengers
- Profit of platform
- Focus on three regulations:
- Cap on number of TNC vehicles
- Minimum wage of TNC drivers
- Congestion surcharge on TNC rides

Big Picture

- The big picture

- Goal:
- predict the decisions of platform, passengers, drivers
- calculate how decisions are affected by exogenous regulation
- Focus:
- platform pricing
- market response

Market Response-Demand Model

- Passenger model:
- Each passenger faces a trip cost = value of pickup time + trip price [6]

$$
c=\alpha t+\beta p_{1}
$$

- t is pickup waiting time
- p_{1} is the per-mile price
- Each passenger has a reservation cost
- captures the cost of alternatives (public transit, walking, etc)
- CDF function: $F_{p}(c)$
- Demand function:
arrival rate of TNC passengers $=$ arrival rate of all potential passegners \times proportion of passengers who take TNC
[6] Mohring, H. Optimization and Scale Economies in Urban Bus Transportation, American Economic Review, 62 (4) (1972), pp. 591-604

Market Response-Demand Model

- Passenger model:
- Each passenger faces a trip cost = value of pickup time + trip price [6]

$$
c=\alpha t+\beta p_{1}
$$

- t is pickup waiting time
- p_{1} is the per-mile price
- Each passenger has a reservation cost
- captures the cost of alternatives (public transit, walking, etc)
- CDF function: $F_{p}(c)$
- Demand function (new passengers per minute) β includes average trip length:

$$
\lambda=\lambda_{0}\left(1-F_{p}\left(\alpha t+\beta p_{1}\right)\right)
$$

Market Response-Supply Model

- Driver model:
- The hourly earning (wage rate) of each driver is:

$$
r=p_{2} \lambda / N
$$

- p_{2} : per-mile payment to drivers
- N : total number of TNC drivers
- Each driver has a reservation wage
- CDF function: $F_{d}(r)$
- Supply function

$$
N=N_{0} F_{d}\left(p_{2} \lambda / N\right)
$$

- Market equilibrium equation

$$
\begin{aligned}
& \lambda=\lambda_{0}\left(1-F_{p}\left(\alpha t+\beta p_{1}\right)\right) \\
& N=N_{0} F_{d}\left(p_{2} \lambda / N\right)
\end{aligned}
$$

Market Response-Supply Model

- Driver model:
- The hourly earning of each driver is:

$$
r=p_{2} \lambda / N
$$

- p_{2} : per-mile payment to drivers
- N : total number of TNC drivers
- Each driver has a reservation wage.
- CDF function: $F_{d}(r)$
- Supply function

$$
N=N_{0} F_{d}\left(p_{2} \lambda / N\right)
$$

- Market equilibrium equation

$$
\begin{aligned}
& \lambda=\lambda_{0}\left(1-F_{p}\left(\alpha t+\beta p_{1}\right)\right) \\
& N=N_{0} F_{d}\left(p_{2} \lambda / N\right)
\end{aligned}
$$

- Proposition: the pickup time satisfies

$$
t=\frac{c}{\sqrt{N-\lambda / u}}
$$

Market Response-Supply Model

- Driver model:
- The hourly earning of each driver is:

$$
r=p_{2} \lambda / N
$$

- p_{2} : per-mile payment to drivers
- N : total number of TNC drivers
- Each driver has a reservation wage.
- CDF function: $F_{d}(r)$
- Supply function

$$
N=N_{0} F_{d}\left(p_{2} \lambda / N\right)
$$

- Market equilibrium equation

$$
\lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \quad \begin{aligned}
& \text { Proposition: the pickup time satisfies } \\
& t=\frac{C}{\sqrt{N-\lambda / u}}
\end{aligned}
$$

Numerical Solutions

$$
\begin{aligned}
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}} & \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & =N_{0} F_{d}\left(p_{2} \lambda / N\right)
\end{aligned}
$$

- solve under different λ_{0}
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

Real Data of San Francisco City [1]

- Number of passenger / minute: $\lambda=141$
- Average number of drivers: $N=3200$
- Ride price: 11.4 \$/ trip
- Driver pay: $6.9 \$ /$ trip
- Driver hourly wage: $18.3 \$ /$ hour

Numerical Solutions (unregulated case)

$$
\max _{\mathbf{p}_{1}, \mathbf{p}_{2}} \lambda\left(p_{1}-p_{2}\right)
$$

s.t. $\lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right)$
$N=N_{0} F_{d}\left(p_{2} \lambda / N\right)$

(In SF, potential passenger 989/min)

- solve under different λ_{0}
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

As potential passengers double

- Cost per ride p_{1} increases by 15\% from \$9.9 to \$11.4
- Driver payment p_{2} increases 13% from $\$ 6.1$ to $\$ 6.9$ per ride

Numerical Solutions (unregulated case)

$$
\max _{\mathbf{p}_{1}, \mathbf{p}_{2}} \lambda\left(p_{1}-p_{2}\right)
$$

s.t. $\lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right)$

$$
N=N_{0} F_{d}\left(p_{2} \lambda / N\right)
$$

- solve under different λ_{0}
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

As potential passengers double

- Driver wage increases by 41% from $\$ 13.2$ to $\$ 18.6$ per hour

Numerical Solutions (unregulated case)

$$
\begin{array}{r}
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}} \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N=N_{0} F_{d}\left(p_{2} \lambda / N\right)
\end{array}
$$

- solve under different λ_{0}
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

As potential passengers double

- Occupancy increases 23\% from 43\% to 53\%

TNC scale economies (NYC, unregulated)

- As number of potential passengers doubles from 500 to 1,000 rides per minute, the cost per ride increases by 11 percent from $\$ 2.4$ to $\$ 2.7$ per mile, driver payment increases by 6.6 percent from $\$ 1.4$ to $\$ 1.5$ per mile, platform share increases 20 percent from $\$ 1$ to $\$ 1.2$ per mile
- Driver wages increase 29 percent from $\$ 17$ to $\$ 24$ per hour because driver utilization increases by 25 percent from 0.4 to 0.5
- By the same token, in the absence of a wage floor, a driver's hourly wage declines by 29 percent from peak to off-peak hours. Further, platform share increases 20% from $\$ 1$ to $\$ 1.2$ per mile

Profit-Maximizing TNC (Cap Constraint)

- Platform profit:

$$
R_{p}=\lambda\left(p_{1}-p_{2}\right)
$$

- Platform decision:
- Maximize profit subject to market equilibrium equations and cap constraint

$$
\begin{aligned}
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}} & \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & =N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
N & \leq \operatorname{Cap}
\end{aligned}
$$

- Theorem:
- First order condition is sufficient for global optimality.
- First order conditions admits a unique solution.

Numerical Solutions (Cap Constraint)

- Results under cap constraints

$$
\begin{aligned}
\max _{\mathrm{p}_{1} \mathrm{p}_{2}} & \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & =N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
N & \leq \operatorname{Cap}
\end{aligned}
$$

Numerical Solutions (Cap Constraint)

- Results under cap constraints

$$
\begin{aligned}
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}} & \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & =N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
N & \leq \operatorname{Cap}
\end{aligned}
$$

Numerical Solutions (Cap Constraint)

- Results under cap constraints

$$
\begin{aligned}
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}} & \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & =N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
N & \leq \operatorname{Cap}
\end{aligned}
$$

- solve under different caps
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

Numerical Solutions (Cap Constraint)

- Results under cap constraints

$$
\begin{aligned}
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}} & \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & =N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
N & \leq \operatorname{Cap}
\end{aligned}
$$

- solve under different caps
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

Numerical Solutions (Cap Constraint)

- Results under cap constraints

$$
\begin{aligned}
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}} & \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & =N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
N & \leq \operatorname{Cap}
\end{aligned}
$$

- solve under different caps
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

Profit-Maximizing TNC (wage floor)

- Platform profit:

$$
R_{p}=\lambda\left(p_{1}-p_{2}\right)
$$

- Platform decision:
- Maximize profit subject to market response equations and wage constraint

$$
\begin{aligned}
& \max _{\mathrm{p}_{1}, \mathrm{p}_{2}} \quad \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & =N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
\mathrm{w} & \leq p_{2} \lambda / N
\end{aligned}
$$

Profit-Maximizing TNC (wage floor)

- Platform profit:

$$
R_{p}=\lambda\left(p_{1}-p_{2}\right)
$$

- Platform decision:
- Maximize profit subject to market response equations and wage constraint

$$
\begin{aligned}
& \max _{\mathrm{p}_{1}, \mathrm{p}_{2}} \quad \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
\mathrm{w} & \leq p_{2} \lambda / N
\end{aligned}
$$

Profit-Maximizing TNC (wage floor)

- Platform profit:

$$
R_{p}=\lambda\left(p_{1}-p_{2}\right)
$$

- Platform decision:
- Maximize profit subject to market response equations and wage constraint

$$
\begin{aligned}
& \quad \max _{\mathrm{p}_{1}, \mathrm{p}_{2}} \lambda\left(p_{1}-p_{2}\right) \\
& \text { s.t. } \lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
& N \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
& \mathrm{W} \leq p_{2} \lambda / N
\end{aligned}
$$

- Theorem:
- First order condition is sufficient for global optimality.
- First order conditions admits a unique solution.

Numerical Solutions (wage floor)

- Results under wage floor

$$
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}, N} \lambda\left(p_{1}-p_{2}\right)
$$

s.t. $\lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{C}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right)$

$$
\begin{aligned}
N & \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
\mathrm{w} & \leq p_{2} \lambda / N
\end{aligned}
$$

- solve under different wage floors
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

Figure 2

Numerical Solutions (wage floor)

- Results under wage floor

$$
\begin{aligned}
\max _{\mathrm{p}_{1} \mathrm{p}_{2}, N} & \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
N & \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
\mathrm{w} & \leq p_{2} \lambda / N
\end{aligned}
$$

- solve under different wage floors
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

Numerical Solutions (wage floor)

- Results under wage floor

$$
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}, N} \lambda\left(p_{1}-p_{2}\right)
$$

s.t. $\lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right)$

$$
\begin{aligned}
N & \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
\mathrm{w} & \leq p_{2} \lambda / N
\end{aligned}
$$

Numerical Solutions (wage floor)

- Results under wage floor

$$
\max _{\mathrm{p}_{1}, \mathrm{p}_{2}, N} \lambda\left(p_{1}-p_{2}\right)
$$

s.t. $\lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right)$

$$
\begin{aligned}
N & \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
\mathrm{w} & \leq p_{2} \lambda / N
\end{aligned}
$$

- solve under different wage floors
- $\quad F_{p}$ and F_{d} uniform distributions
- Parameters tuned to match realistic data of SF city

Numerical Solutions (congestion surcharge)

- Results under congestion surcharge

$$
\begin{aligned}
& \max _{\mathrm{p}_{1}, \mathrm{p}_{2}, N} \lambda\left(p_{1}-p_{2}\right) \\
& \text { s.t. } \lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}+p_{3}\right)\right) \\
& N=N_{0} F_{d}\left(p_{2} \lambda / N\right)
\end{aligned}
$$

- Solve this problem for different values of congestion surcharge
- Tune parameter to match SF data

Numerical Solutions (wage floor + surcharge)

- Results under congestion surcharge and wage floor

$$
\begin{aligned}
& \quad \max _{\mathrm{p}_{1}, \mathrm{p}_{2}, N} \lambda\left(p_{1}-p_{2}\right) \\
& \text { s.t. } \lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}+p_{3}\right)\right) \\
& N \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
& \mathrm{W} \leq p_{2} \lambda / N
\end{aligned}
$$

- Fix wage floor w=17.2\$/hour
- Solve this problem for different values of tax

Numerical Solutions (wage floor + surcharge)

- Results under wage floor and a congestion surcharge

$$
\begin{aligned}
& \max _{\mathrm{p}_{1}, \mathrm{p}_{2}, N} \lambda\left(p_{1}-p_{2}\right) \\
& \text { s.t. } \lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}+p_{3}\right)\right) \\
& N \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
& \mathrm{W} \leq p_{2} \lambda / N
\end{aligned}
$$

- Fix wage floor w=17.2\$/hour
- Solve this problem for different values of tax

Numerical Solutions (wage floor + surcharge)

- With surcharge

$$
\begin{aligned}
\max _{p_{1}, p_{2}, N} & \lambda\left(p_{1}-p_{2}\right) \\
\text { s.t. } \lambda & =\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}+p_{3}\right)\right) \\
N & \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
\mathrm{w} & \leq p_{2} \lambda / N
\end{aligned}
$$

- Without surcharge

$$
\begin{aligned}
& \max _{\mathrm{p}_{1}, \mathrm{p}_{2}, N} \lambda\left(p_{1}-p_{2}\right) \\
& \text { s.t. } \lambda=\lambda_{0}\left(1-F_{p}\left(\alpha \frac{c}{\sqrt{N-\lambda / u}}+\beta p_{1}\right)\right) \\
& N \leq N_{0} F_{d}\left(p_{2} \lambda / N\right) \\
& \mathrm{w} \leq p_{2} \lambda / N
\end{aligned}
$$

Extensions of the Model

- Platform subsidy
- Objective is to maximize market share for fixed subsidy or loss, decrease p_{1} or/and increase p_{2}
- Subsidize passengers more than drivers
- Platform competition
- More than one platform
- Need behavior model
- Autonomous vehicles
- Cost of AV today much higher than driver cost
- AV today not safe enough

Conclusion

- TNC business model requires market power and unorganized driver pool
- Higher minimum wage (up to a limit) increases number of drivers and passengers, and reduces platform rents
- Cap on number of drivers hurts drivers, passengers and platform
- Congestion charge reduces number and wage of drivers
- But with minimum wage congestion charge does not reduce number of drivers

Thank you!

