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Resource allocation

Consumers above, Resources below
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Balanced resource allocation

Let f be a convex function on the nonnegative reals.

Over assignments θ, the objective is to minimize

J(θ) :=
M∑
i=1

f (∂θ(i)) .

where ∂θ(i) is the load at resource i and M is the number of
resources.

Theorem ( Hajek): The assignment θ minimizes J(θ) i� for all
pairs of resources i , i ′ available to consumer u we have θu(i) = 0
whenever ∂θ(i) > ∂θ(i ′).

Note that the condition for an assignment to be balanced does
not depend on f .
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Uniqueness of the balanced loads

The assignment θ need not be unique, but ∂θ(i) is unique
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Many consumers and resources

We want to understand the local environment of a typical agent
(consumer, resource) in resource allocation problem with many
agents.

We will �rst describe how this can be done for the basic load
balancing problem in the case of large sparse graphs .
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Graphs

A graph corresponds to a load balancing problem where each
consumer has access to two resources.

Each edge is a consumer with one unit of load and has to decide
how to distribute its load between the two vertices that de�ne
the edge.

Multiple edges between a pair of vertices are okay.
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Load percolation
Note that the local structure of the balanced allocation depends
on the global structure of the graph, not just on its local
structure.

Figure: Graph A Figure: Graph B

The marked vertex in graph A has the same depth-1
neighborhood as the root in graph B .
However the induced balanced load is 3

2
at each vertex in graph

A and is 4
5
in graph B .

The phenomenon underlying this is called load percolation by
Hajek.
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Load percolation as nonuniqueness in the limit
An in�nite sparse graph can exhibit nonuniqueness in its
balanced allocations.

In this in�nite 3-regular tree, start by assigning the load of each
edge to the vertex that is furthest from the marked vertex.

This gives induced load 1 at all vertices except for the marked
one, which has induced load 0.
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Nonuniqueness: an example due to Hajek
Pick a path from in�nity to the marked node and �ip the
allocations of edges along this path.

This allocation is balanced. Each vertex has induced load 1.

Now �ip the allocation of each edge.
This is another balanced allocation !! . The induced load at
each vertex is 2.
These examples are due to Hajek.
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Another look at the Hajek counterexample
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Hajek's conjectures

To develop insight into the structure of the balanced load
allocation in large graphs Hajek carried out simulations.

He picked random graphs according to a sparse Erd®s-Rényi
model and studied the corresponding balanced allocations.
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A sparse Erd®s-Rényi graph

Venkat Anantharam Large networks March 10, 2017 16 / 70



Numerics on Erd®s-Rényi graphs (Hajek)

αM consumers and M resources; edges picked at random
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Numerics on Erd®s-Rényi graphs (Hajek) (cont'd)
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Large Erd®s Rényi graphs

G(n, α/n)

(n − 1)Ber(α/n) ≈ Poi(α)

(n − 3)α
2

n2
= O(1/n)
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The Poisson Galton-Watson tree

Poisson Galton-Watson tree :
� Start with a root.
� Pick a Poisson (λ) number of neighbors (at depth 1).
� For each of these, independently pick a Poisson (λ) number of
neighbors (at depth 2).
...
Etc.

The local environment of a typical vertex in an Erd®s - Rényi
graph converges to a Poisson Galton-Watson tree as M →∞.
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A recursive distributional equation

The numerics suggest that there should be a well de�ned
limiting distribution (M →∞) for the induced load (in a
balanced allocation) at a typical vertex.

Natural guess: the limiting induced load distribution obeys a
�xed point equation (a recursive distributional equation ).

This was conjectured by Hajek.
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Our contribution

We verify this conjecture of Hajek as a special case of a broader
result.

Our results are in the language of local weak convergence of
sequences of graphs, also called the objective method .

In this theory graphs are viewed through the lens of probability
distributions on rooted graphs.
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What we prove (with Justin Salez)

There is a uniquely de�ned balanced allocation associated to any
probability distribution on in�nite rooted graphs that can arise as
a local weak limit of a sequence of �nite graphs.

The unique balanced allocation on the �nite graphs converges to
the corresponding unique balanced allocation on its local weak
limit.

The induced load distribution at the root in the in�nite limit
rooted graph obeys the expected recursive distributional
equation.
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Stochastic processes as a model for data samples

A stochastic process is a model for the structure of data samples.

−N N

0 0 0 0 0 0 0 0 01 1 1 1 1 1

L

1

2(N + 1)− L

N−L+1∑
i=−N

δxi ,...,xi+L−1 ⇒ PX0,...,XL−1 .
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�Empirical distribution� of a marked graph
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Rooted marked graph process from a marked graph
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U(G )

G∗: space of unlabelled marked rooted graphs

A process with values in rooted marked graphs: µ ∈ P(G∗)
We will �rst consider the unmarked case.
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The space of rooted graphs

G∗ denotes the set of locally �nite connected rooted graphs
considered up to rooted isomorphism.

The distance between two elements of G∗ is 1
1+r

, where r is the
largest depth of a neighborhood around the root up to which
they agree.

This distance makes G∗ into a complete separable metric space.
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Local weak limit of a sequence of graphs

A �xed �nite graph G corresponds to a probability distribution
on G∗ by picking the root at random from the vertices of G .

A sequence of �nite graphs is said to converge in the sense of
local weak convergence if the corresponding probability
distributions on G∗ converge weakly.

The de�nitions extend naturally to marked graphs , i.e. graphs where
each edge and each vertex carries an element of some other separable
metric space.
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The space of (edge, vertex) rooted graphs

G∗∗ denotes the set of locally �nite connected graphs with a
distinguished oriented edge, considered up to isomorphism
(preserving the distinguished oriented edge).

G∗∗ can be metrized to give a complete separable metric space,
just as for G∗.
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Moving between G∗ and G∗∗

A function f : G∗∗ 7→ R gives rise to a function ∂f : G∗ 7→ R
via

∂f (G , o) =
∑
i∼o

f (G , i , o) .

A probability distribution µ on G∗ gives rise to a measure ~µ on
G∗∗ via∫

G∗∗
fd~µ =

∫
G∗
∂fdµ , for all bounded continuous f .

Note that ~µ(G∗∗) = deg(µ) :=
∫
G∗ deg(root)dµ .
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Unimodularity

Given f : G∗∗ 7→ R, de�ne f ∗ : G∗∗ 7→ R via

f ∗(G , i , o) = f (G , o, i) .

A probability distribution µ on G∗ is called unimodular if∫
G∗∗

fd~µ =

∫
G∗∗

f ∗d~µ , for all bounded continuous f .

It is known that the local weak limit of any sequence of �nite
graphs is unimodular (Aldous and Lyons).
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Asymptotic notion of a balanced allocation

A function Θ : G∗∗ 7→ [0, 1] is called an allocation if
Θ + Θ∗ = 1.

An allocation Θ is called a balanced allocation for a given
unimodular µ if for ~µ almost all (G , i .o) it holds that

∂Θ(G , i) < ∂Θ(G , o) =⇒ Θ(G , i , o) = 0 .
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Formal statement of the main results

We prove that for any unimodular µ with deg(µ) <∞ there is a
Θ0 that is a balanced allocation for µ with the property that it
simultaneously minimizes

∫
G∗ f (∂Θ)dµ over allocations Θ for

every convex real valued function f on R+.

Further, Θ0 is µ-almost surely unique.

For any sequence of �nite graphs with local weak limit µ, the
empiricial distribution of the induced load in the unique balanced
allocation on these graphs converges weakly to the law of ∂Θ0

(for the Θ0 of the limit).
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Variational characterization of the limit

Given unimodular µ on G∗ with deg(µ) <∞, de�ne, for each
t ≥ 0,

Φµ(t) :=

∫
G∗

(∂Θ0 − t)+dµ .

t 7→ Φµ(t) is the mean-excess function of the almost surely
unique balanced allocation associated to µ.

We have the variational characterization

Φµ(t) = max
f : G∗→[0,1],Borel

{1
2

∫
G∗∗

f̂ d~µ− t

∫
G∗
fdµ} ,

for each t, where

f̂ (G , i , o) := f (G , i) ∧ f (G , o) .
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Intuition behind the variational characterization

The optimizing function is f = 1(∂Θ0 > t).

To check this, observe that

1

2

∫
G∗∗

f̂ d~µ =
1

2

∫
G∗

(∂ f̂ )dµ

=
1

2

∫
G∗

∑
i∼o

1(∂Θ0(G , i) > t and ∂Θ0(G , o) > t)dµ .

Thus ∫
G∗

(∂Θ0 − t)+dµ =
1

2

∫
G∗∗

f̂ d~µ− t

∫
G∗
fdµ ,

for this choice of f .
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Unimodular Galton-Watson trees
Given a probability distribution {π(i) , i ≥ 0} on the
nonnegative integers, with �nite mean

∑
i iπ(i), de�ne

π̂(i) :=
(i + 1)π(i + 1)∑

i iπ(i)
, i ≥ 0 .

{π̂(i) , i ≥ 0} is also a probability distribution.
The unimodular Galton-Watson tree, UGWT(π) is the random
tree constructed as follows: Start with a root and give it a
random number of children (at depth 1) with the number of
children distributed as π. For each child, give it a random
number of children (at depth 2), the number distributed as π̂,
independently. Repeat (using π̂ from now on).
Many standard sequences of bipartite graph models, such as the
pairing model based on half edges and �xed degree distributions
which shows up in the theory of LDPC codes, have a unimodular
Galton-Watson tree as their local weak limit
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Recursive distributional equation characterization

of the limit on unimodular Galton-Watson trees
If µ is the law of UGWT(π), then for every t, we have

Φµ(t) = max
Q=Fπ,t(Q)

{E [D]

2
P(ξ1 + ξ2 > 1)− tP(ξ1 + . . .+ ξD > t)} ,

where Fπ,t(Q) is the law of [1− t + ξ1 + . . . + ξD̂ ]10.

Here [a]10 equals 0 if a < 0, 1 if a > 1 and a otherwise. Also, D̂
has the law π̂, D has the law π, and the ξi are i.i.d. with law Q.
Recall that

t 7→ Φµ(t) :=

∫
G∗

(∂Θ0 − t)+dµ ,

characterizes the limiting distribution of the induced load at the
root.
The above recursive distributional characterization of is in e�ect
the one conjectured by Hajek.
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Intuition behind the RDE

We consider the RDE Q = Fπ,t(Q), where Fπ,t(Q) is the law of
[1− t + ξ1 + . . .+ ξD̂ ]10, where ξ1, ξ2, . . . are i.i.d with the law Q.

Consider an edge (i , o). We are �solving for the load that passes
in the direction from o to i .

For 1 ≤ k ≤ D̂, 1− ξk has the meaning of the amount of load
that can be absorbed by the k-th child of o (think of i as the
parent of o and not as a child), this child of course supporting
its own subtree of children, such as to make the net load at that
child equal to t.

The number [1− (t − ξ1 − . . .− ξD̂)]10 is then the amount that
would be presented in the direction from node o to node i in
order to maintain a total load of t at node o.
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Convergence of the maximum load
Under a mild additional on the degree distributions the
maximum load also converges to the maximum of the limit.
This veri�es the conjecture of Hajek regarding the limit of the
maximum load.
One must exclude �local pockets of high edge density" in the
graph.
Assume that for some λ > 0 we have

sup
n≥1
{1
n

n∑
i=1

eλdn(i)} <∞ .

Let Z
(n)
δ,t denote the number of subsets S of {1, . . . , n} of size

|S | ≤ δn with edge count |E (S)| ≥ t|S | in the given random
pairing model. Then we can show that

P(Z
(n)
δ,t > 0)→ 0 , as n→∞ .

This su�ces.
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Sketch of the proof of the main result
The key idea is to consider so-called ε-balanced allocations, i.e.
allocations θ on a locally �nite graph G that satisfy

θ(i , j) =

[
1

2
+

1

2ε
(∂θ(i)− ∂θ(j))

]1
0

.

There is a built-in contractivity in this de�nition for bounded
degree graphs, which allows one to establish the uniqueness of
ε-balanced allocations for such graphs.

The case of locally �nite graphs can be handled by a truncation
argument.

The claimed Θ0 can then be shown to exist as a limit in L2 of
the ε-balanced allocations as ε→ 0.

The ε-relaxation can be roughly thought of as analogous to
working at �nite temperature (versus zero temperature) in
statistical mechanics.
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Load Balancing on a hypergraph
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H∗ and H∗∗

i

H∗ = {[H , i ]}

e
i

H∗∗ = {[H , e, i ]}

Simple, connected, �nite edges, locally �nite
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Unimodularity

Finite Hn

U(H) =
1

|V (H)|
∑

i∈V (H)

δ[H,i ] ∈ P(H∗)

Hn
lwc→ µ when U(Hn)⇒ µ

Not all µ can be local weak limits of �nite hypergraphs

For f : H∗∗ → R, let

∂f : H∗ → R ∂f (H , i) =
∑
e3i

f (H , e, i)
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Unimodularity (cont'd)
For µ ∈ P(H∗), de�ne ~µ ∈M(H∗∗) as∫

fd~µ =

∫
∂fdµ

for all Borel function f on H∗∗.

For f : H∗∗ → R, let

∇f : H∗∗ → R ∇f (H , e, i) =
1

|e|
∑
j∈e

f (H , e, j).

µ ∈ P(H∗) is called unimodular if∫
fd~µ =

∫
∇fd~µ

If Hn
lwc→ µ, µ is unimodular
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|e|
∑
j∈e

f (H , e, j).
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fd~µ =

∫
∇fd~µ

If Hn
lwc→ µ, µ is unimodular

Venkat Anantharam Large networks March 10, 2017 46 / 70

U



Unimodularity (cont'd)
For µ ∈ P(H∗), de�ne ~µ ∈M(H∗∗) as∫

fd~µ =

∫
∂fdµ

for all Borel function f on H∗∗.
For f : H∗∗ → R, let

∇f : H∗∗ → R ∇f (H , e, i) =
1

|e|
∑
j∈e

f (H , e, j).

µ ∈ P(H∗) is called unimodular if∫
fd~µ =

∫
∇fd~µ

If Hn
lwc→ µ, µ is unimodular

Venkat Anantharam Large networks March 10, 2017 46 / 70

U



Borel Allocations and Balancedness

Θ : H∗∗ → [0, 1] is called a Borel allocation if∑
j∈e

Θ(H , e, j) = 1 ∀[H , e, i ] ∈ H∗∗

Θ is balanced w.r.t. µ ∈ P(H∗) if for ~µ�almost all
[H , e, i ] ∈ H∗∗

j ∈ e ∂Θ(H , i) > ∂Θ(H , j) ⇒ Θ(H , e, i) = 0.
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Main results (with Payam Delgosha)

Theorem
Take µ ∈ P(H∗) unimodular, deg(µ),Var(µ) <∞, then

1 (existence) ∃ a balanced allocation Θ0

2 (uniqueness) Θ1,Θ2 two balanced allocations, then ∂Θ1 = ∂Θ2, µ�a.s.

3 (continuity) Hn
lwc→ µ then Ln ⇒ L

4 (optimality) Θ is balanced i� it minimizes
∫
f (∂Θ)dµ for strictly convex

f : [0,∞)→ R.

5 (variational characterization) t ∈ R and Θ balanced, then∫
(∂Θ− t)+dµ = max

f∈H∗
Borel→ [0,1]

∫
f̃mind~µ− t

∫
fdµ

where f̃min(H, e, i) = 1

|e| minj∈e f (H, j).
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Response Function

i

...
...

↓ x

ρT ,i(x) = total load at i with baseload x

x

ρ(x)

i

...
...

↓ ?
t

ρ−1T ,i(t): the amount of extra load
so that the total load becomes t
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Recursion of Response Function

i

j2j1 j3 j4

e1 e2

Te1,j2Te1,j1 Te2,j3 Te2,j4

ρ−1T ,i(t) =?
↓ ?

t

t t tt θ(e1, j1) = ρ−1Te1,j1
(t)

θ(e1, i) = 1−
∑

j∈e1
j 6=i

ρ−1Te1,j
(t)

ρ−1T ,i (t) = t −
∑
e3i

(
1−

∑
j∈e
j 6=i

ρ−1Te,j
(t)
)

ρ−1T ,i (t) = t −
∑
e3i

[
1−

∑
j∈e
j 6=i

ρ−1Te,j
(t)+

]1
0
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Unimodular Galton Watson Hypertrees

All the hyperedges have size c (say 3)

distribution P on non�negative integers

P

P̂

...
...

...
...

...
...

P̂k = (k+1)Pk+1

E[P]

UGWTc(P) ∈ P(H∗) is unimodular
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Mean Excess Characterization for UGWTc(P)

∫
(∂Θ− t)+dµ = sup

f :H∗→[0,1]

∫
f̃mind~µ− t

∫
fdµ

optimal f = 1 [∂Θ > t]

∂Θ > t ⇔ ρ(0) > t ⇔ ρ−1(t) < 0
x

ρ(x)

∂θ

ρ−1(t)

t

UGWTc(P)

. . . . . .

1 N

∫
fdµ = P

(
t −

∑N
i=1

[
1− X+

i ,1 − · · · − X+
i ,c−1

]1
0
< 0
)

X1,1
X1,c−1

XN,c−1

. . . . . .
X ′1,1

X1,1 = t −
∑N̂

j=1

[
1− X

′+
j ,1 − · · · − X

′+
j ,c−1

]1
0

Q = F c
P,t(Q)
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j ,1 − · · · − X

′+
j ,c−1

]1
0

Q = F c
P,t(Q)
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Mean Excess Characterization for UGWTc(P)

∫
(∂Θ− t)+dµ = sup

f :H∗→[0,1]

∫
f̃mind~µ− t

∫
fdµ

optimal f = 1 [∂Θ > t]

∂Θ > t ⇔ ρ(0) > t ⇔ ρ−1(t) < 0
x
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∂θ
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. . . . . .

1 N

∫
fdµ = P

(
t −

∑N
i=1

[
1− X+

i ,1 − · · · − X+
i ,c−1

]1
0
< 0
)

X1,1
X1,c−1

XN,c−1

. . . . . .
X ′1,1

X1,1 = t −
∑N̂

j=1

[
1− X

′+
j ,1 − · · · − X

′+
j ,c−1

]1
0

Q = F c
P,t(Q)

Venkat Anantharam Large networks March 10, 2017 52 / 70



Mean Excess Characterization for UGWTc(P)

(cont'd)

Theorem

Assume P is a distribution on nonnegative integers with �nite
variance and µ = UGWTc(P). Then, we have∫

(∂Θ− t)+dµ = max
Q:F c

P,t(Q)=Q

E [N]

c
P
(
X+
1

+ · · ·+ X+
c < 1

)
− tP (Y1 + · · ·+ YN > t) ,

where N has distribution P , Xi 's are independent and have

distribution Q and Yi 's are independent and each have distribution of

[1− (X+
1 + · · ·+ X+

c−1)]10 where Xi 's are i.i.d. from Q.
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Sources of big graphical data: The web

≈ 47 billion webpages
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Sources of big graphical data: Social networks

≈ 1.8 billion active users on Facebook

Venkat Anantharam Large networks March 10, 2017 56 / 70



Sources of big graphical data: Biological networks

0.25 million - 1 million estimated human proteins
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Universal compression of marked graphical data

We want to compress down to the �entropy" of the data.

Universality means that the scheme should work irrespective of
the underlying �statistics" of the data.

Ideally, the compressed representation should enable analysis and
querying in the compressed form

The local weak limit theory allows one to precisely formulate the
universal compression problem and to provide a solution.
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The BC entropy: counting typical graphs

Ξ: edge marks, Θ: vertex marks, both �nite

G(n)
mn,un : set of graphs on n vertices with mn(x) many edges with

mark x ∈ Ξ and un(t) many vertices with mark t ∈ Θ.

G(n)
mn,un(µ, ε) = {G ∈ G(n)

mn,un : U(G ) ∈ B(µ, ε)}.
For µ ∈ P(G∗) and x ∈ Ξ, degx(µ): expected number of edges
connected to the root with mark x ,

t ∈ Θ, Πt(µ): probability of root having mark t.
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The BC entropy: counting typical graphs

Fix sequences mn,un such that mn(x)/n→ degx(µ)/2 and
un(t)/n→ Πt(µ) for all x ∈ Ξ, t ∈ Θ.

log |G(n)
mn,un | = ‖mn‖1 log n + cn + o(n) where

‖mn‖1 =
∑

x∈Ξmn(x).

Σ(µ) := lim
ε↓0

lim sup
n→∞

log |G (n)
mn,un(µ, ε)| − ‖mn‖1 log n

n

Σ(µ) := lim
ε↓0

lim inf
n→∞

log |G (n)
mn,un(µ, ε)| − ‖mn‖1 log n

n

If they are equal, de�ne the common value as Σ(µ)
(Generalizing work of Bordenave and Caputo)
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Our target for the graph regime

Goal: design fn : Gn → {0, 1}∗ and gn : {0, 1}∗ → Gn
gn ◦ fn = Id

µ ∈ P(G∗) a process

Target: typical graphs

Optimal if Gn
lwc→ µ

lim sup
n→∞

l(fn(Gn))−mn log n

n
≤ Σ(µ),

where mn is the total number of edges in Gn.
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A First Step Coding Scheme : Example

Akn,∆n = {[G , o] ∈ G∗ : depth ≤ kn,max deg ≤ ∆n}

n = 4, kn = 1

1 2

4 3

∆n = 2

0 0 0 0 0 0 0 0 0 0 04

Wn := the set of graphs with the same sequence

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3
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Analysis Outline

l(fn(Gn)), the total number of bits we use:
I log n bits for ∆n,
I |Akn,∆n | log n bits for specifying how many times each pattern

appears in the graph
I log |Wn| bits to specify the input graph among the graphs with

the same pattern counts.

We need to show that if Gn
lwc→ µ,

l(fn(Gn))−mn log n

n
≤ Σ(µ).

If |Akn,∆n | = o(n/ log n), we only need to consider the log |Wn|
term.

Graphs in Wn are typical ⇒ yields Σ(µ) as an upper bound.
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First step algorithm: Main Result

Proposition

If parameters kn and ∆n are such that |Akn,∆n | = o( n
log n

) and

kn →∞ as n→∞, for any sequence Gn with maximum degree no

more than ∆n and local weak limit µ ∈ P(G∗) such that Σ(µ) > −∞
we have

lim sup
n→∞

l(fn(Gn))−mn log n

n
≤ Σ(µ), (1)

where mn is the number of edges in Gn.
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General Algorithm

Gn

∆n=5→

G̃n

Tn = {endpoint of removed edges}

Compress G̃n using the �rst step scheme, then compress removed
edges ∆n = log log n kn =

√
log log n

|Tn|/n→ 0 |Akn,∆n | = o(n/ log n) Gn
lwc→ µ⇒ G̃n

lwc→ µ
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Result: Achievability

Theorem

Assume µ ∈ G∗ with degx(µ) <∞ for all x and Σ(µ) > −∞. If Gn

is a sequence of marked graphs with local weak limit µ, we have

lim sup
n→∞

l(fn(Gn))−mn log n

n
≤ Σ(µ),

where mn is the number of edges in Gn.
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Result: Converse

Theorem

Assume µ ∈ P(G∗) with Σ(µ) > −∞ and degx(µ) <∞ for all

x ∈ Ξ. Then there exists a sequence of graph ensembles Gn

converging to µ such that with probability one for any sequence of

compression schemes fn we have

lim inf
n→∞

l(fn(Gn))−mn log n

n
≥ Σ(µ),

where mn is the number of edges in Gn.
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Concuding remarks

Just like a stochastic process is a model for the statistics of a
long string of data, a local weak limit of marked graphs is a
model for the statistics of data that lives on large graphs.

This provides a methodology to address networking problems
and data centric problems arising in networks that parallels how
stochastic processs are used in the study of time series.

This was illustrated with two kinds of applications: resource
allocation in graphs and hypergraphs, and universal losslesss
compression of graph-structured data.

A world of other applications awaits.
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The End
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