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The Internet-of-Things (loT) Vision
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¢ |nterconnecting perhaps|00s of billions of devices

e Key enabler: wireless communications



Salient Characteristics of loT

Massive connectivity
High energy efficiency
Low complexity

High reliability

Short packets

Low latency



Requirements for URLLC in 5G

Table 7.2.2-1 Performance requirements for low-latency and high-reliability scenarios.

[3GPPTS22.261]

Scenario End-to- Jitter Survival Communication Reliability User Payload Traffic Connection Service area
time service (note 4) experienced size density density dimension
availability data rate (note 5) (note 6) (note 7) (note 8)
(note 4)
Discrete automation — 1us 0ms 99,9999% 99,9999% 1 Mbps Small 1 Tops/km® 100 000/km” 100 x 100 x 30 m
motion control up to 10 Mbps
(note 1)
Discrete automation 4/ 10 ms 100 ps 0 ms 99,99% 99,99% 10 Mbps Small to big 1 Tbps/km® 100 000/km” 1000 x 1000 x 30 m
Process automation — 50 ms 20 ms 100 ms 99,9999% 99,9999% 1 Mbps Small to big 100 Gbps/km® 1 000/km’ 300 x 300 x 50 m
remote control up to 100
Mbps
Process automation 50 ms 20 ms 100 ms 99,9% 99,9% 1 Mbps Small 10 Gbps/km2 10 000/km? 300 x 300 x 50
monitoring
Electricity distributiolf — 25ms 25ms 25ms 99,9% 99,9% 10 Mbps Small to big 10 Gbps/km® 1 000/km” 100 km along power
medium voltage line
Electricity distributiofl — 5ms 1ms 10 ms 99,9999% 99,9999% 10 Mbps Small 100 Gbps/km’ 1 000/km” 200 km along power
high voltage (note 9) line
(note 2)
Intelligent transport 10 ms 20 ms 100 ms 99,9999% 99,9999% 10 Mbps Small to big 10 Gbps/km® 1 000/km” 2 km along a road
systems —
infrastructure backhaul
Tactile interaction \ 0,5ms TBC TBC [99,999%] [99,999%)] [Low] [Smaill] [Low] [Low] TBC
(note 1)
Remote control TBC [99,999%] [99,999%)] [From low to [Small to [Low] [Low] TBC
10 Mbps] big]

NOTE 1:
NOTE 2:
NOTE 3:
NOTE 4:
NOTE 5:
NOTE 6:
NOTE 7:

NOTE 9:

e to the end-user may be helpful in reaching the lowest latency values.

This is the end-to-end latency the service requires. The end-to-end latency is not completely allocated to the 5G system in case other networks are in the communication path.

Communication service availability relates to the service interfaces, reliability relates to a given node. Reliability should be equal or higher than communication service availability.
Small: payload typically < 256 bytes
Based on the assumption that all connected applications within the service volume require the user experienced data rate.
Under the assumption of 100% 5G penetration.
NOTE 8 Estimates of maximum dimensions; the last figure is the vertical dimension.
In dense urban areas.
NOTE 10: All the values in this table are targeted values and not strict requirements.




Talk Outline

Traditional information theory - asymptotic performance
Basics of finite blocklength information theory: point-to-point
Multipoint - network models

Age-of-Information (briefly)

Conclusion



Traditional Information
Theory



Traditional Information Theory

Point-to-point: Shannon’s pioneering work
e Data transmission
e Data compression

Network information theory

® Broadcast, multiple access, relay
e Secure transmission (wiretap), secure compression

Asymptotic: characterizes fundamental limits when delay is
unimportant

Benefit: characterizes operational, engineering problems in terms
of elegant mathematical formulas

Limitation: not suitable for low-latency applications as in loT



Data Transmission

Source W Xn yn
1,2 .., M Encoder Channel

V
V

Decoder

Y

Capacity: largest rate in the asymptotic regime of
® Blocklength n — oo

® Probability of error P (W + W) — 0

C = maxI(X;Y)



Data Compression

Vv

Decoder

V

> Encoder

¢ Entropy: smallest asymptotic rate for lossless compression

Z Px (z)log Xl(a:)

reX

e Rate-distortion function: smallest asymptotic rate for lossy
compression

R(d) = min I(X;Y)
Py x : E[d(X,Y)]<d



Basics of Finite-Blocklength
Information Theory



How do we characterize non-asymptotic limits?

e Data transmission: the information density

Pxy(x,y)
Px (z) Py (y)

1x;y (23 y) = log

® Expectation of the information density is mutual information
I(X;Y) =E[ix.y (X;Y)]

e Similarly, for lossless and lossy compression: information and d-
tilted information, respectively



Example: Data Transmission

smallest error for a code

e Upper (achievability) bound: of length n and M information density

</C:)dewords/

e (M,n) < glf[P’[zXn yn (X Y"™) <log M + nvy| + exp(—nv)

“fudge” parameter, can be

e Lower (converse) bound: any positive number \

e (M,n) > glf[P’[zXn yn (X Y"™) <log M — nvy| — exp(—nv)



Non-asymptotic Information Theory

® Non-asymptotic fundamental limits are characterized by
information density (data transmission), information (lossless
compression), etc.

e Good upper (converse) and lower (achievability) bounds

o Refined asymptotic limits: better characterize fundamental
limits when delay is important



Data Transmission Revisited

Source W X0 yn W
1,2 .., M > Encoder Channel Decoder ——

Vv
Vv

(n.M.e) code: P(W#W) <¢

Fundamental limit: M*(n,e) = max{M: 3 an (n,M,¢) code}

E[zxy (X;Y)] Var ix.v(X;Y))

—log M™(n, €) — 4/ Q
=
non-asymptotic

fundamental limit

1

[Polyanskiy, et al. (2010)]

channel capac:ty channel dispersion



Example: AWGN (SNR = 0 dB; € = [0-3)
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Example: BSC (crossover = 0.11; €

0.5

Rate, bit/ch.use
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[Polyanskiy, et al. (2010)]



Example: Energy/Spectral Efficiency Tradeoff

1.5

|—Shannon limit
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[Gorce, et al. (2016)]



Lossy Compression Revisited

e Refined asymptotic limit: stationary source with per-letter

distortion
R(d) = min I(X;Y)
Ple E[d(X,Y)]<d
R(n,d, e
non-asymptotic € is the probablhty that the rate-dispersion function

fundamental limit  distortion incurred by the
reproduction exceeds d

Note: plus not minus

[Kostina, et al. (2012)]



Compression of Memoryless N(0,1) Source;d = 1/4 ;&€ = |04
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[Kostina, et al. (2012)]



Lossless Compression Revisited

® Refined asymptotic limit: memoryless source with entropy H(X)

02(X) = Var (1x (X))

\
R (n,q ~ HX) +/ "?X)@l(e)

/

non-asymptotic best Called varentropy

achievable rate encoding failure
probability

[Kontoiannis, et al. (2014)]



Example: Bernoulli-0.1 1 source € = 10-

070 —

0.65 - normal approximation

rate [
(bits) (.60

0.55

osoL— .. 7

[Kontoiannis, et al. (2014)]



Extensions to Networks



Network Information Theory (MAC - “Uplink™)

W1 Xln
— Encoder 1 >
W2 in
—> Encoder 2 >

Channel

Yn

V

( I/l|‘/1/ WZ)
Decoder >

e Capacity: largest rate region in the asymptotic regime of
e Blocklength 1 — OO

¢ Probability of error P ((W1, W) # (W, Wg)) — 0

Ry
C =col R,

< I(X1;Y]X5)
< I(X2;Y|X1)

Ri+ Ry <I(X1,X5Y)

for some p(x1)p(x2)

|

A2

=V



Non Asymptotic Version:
Gaussian MAC

¢ An Achievability Result:

4

\

for some Ay + Ag + A3 = 1.

Where

1

log(M) log(M>)

n n

V(P)

V (P, P2) = (log(e))

PO < O(Pr) =/ FR2Q M (o) + O (3)
loalMa) < C(Py) — 4/ XL Q=1(Xge) + O (2)
loggan! + loggrri\lgg < C(Pl —I—P2) . \/V(P1+Pz);—V(P1,Pz) Q—l(}\3€)+0 (%)

C(P) = %log(l + P)
~ (log(e))* P(1+ P)

2 (1+ P)?
PP
(14 P+ Py)?

[Molavian]azi, et al. (201 3)]

/




MAC Rate Region: n = 500; equal powers of
OdB; € = 10-3
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Non Asymptotic Version:
MAC with Degraded Message Sets

e Asymmetric MAC: encoder | knows both messages; encoder 2
only knows its own message.

second-order coding rate for j-th user

number of messages for j-th user as a function of blocklength /

—logM,, i ~R; + —=L;, j=1,2
nog ] J_l_\/ﬁ i J

raction characterizin ndar ity region . . - , ,
fraction characterizing boundary of capacity regio 2-dimensional generalization of inverse Gaussian CDF

BER

dispersion matrix

1)U {% /10@@}

derivatives of asymptotic capacity region

[Scarlett, et al. (2015)]



Non Asymptotic Version:
MAC with Degraded Message Sets

Ly + LJ U {BD (V(p), E)}
BER
Second-Order Region

® Second order region:
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Network Information Theory (BC - “Downlink™)

(Wo W; W5)

N
7

Encoder

Xn

Channel

Yln | | (WOII Wl)

Y,

> Decoder 1 —>

( I/II‘/OZ/ WZ )

> Decoder 2 ——>

e Capacity: largest rate region in the asymptotic regime of

® Blocklength  — OO

e Probability of error P ((W07W1) # (Wor, Wh) or (Wo, Wa) # (W02,W2)) —~0

e Capacity is know only in special cases

e Non asymptotic results sparser here, but include a version of Marton’s
inner bound with a common message.

[Liu, et al. (2015)]



Wiretap Channel and Secrecy Capacity

N

yn W
1 Bob [—
W XN
—1 Alice | Channel
7n Leakage <
> Eve —

® Secrecy capacity: largest rate in the asymptotic regime of
® Blocklengthn — o0

e Probability of error P (W + W) — 0
e Information leakage 6 — ()

C :Irllgax{l(X;Y) —I1(X;2)}

e Limitation: not suitable for low-latency applications as in loT.



Wiretap Channel: Finite Blocklength

" i

> Bob —

—  Alice | Channel

Zn Leakage <&

Eve >

o (M,e,d) secrecy code:
® Message W € {1,..., M}
o Encoder Py : {1,...,M} — A;decoderg: B —{1,..., M}
e Average error probability: [P (W + W) <e€

® Secrecy constraint: information leakage < 0

e R*(n,e€,0) : maximum secret rate at a given blocklength.



Semi-deterministic Wiretap Channel (BSC):6 = ¢ = 107°

® | egitimate channel is deterministic, eavesdropper channel is BSC:

PN (1_€)+0(1°i">

C’s—05

0.5

Converse [Y.-Schaefer-Poor’16]

0.3+ /

091 Achievability
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[Yang, et al. (2017)] Blocklength, n




Latency in Large Networks

Classical Multiple-
Access Channel

(MAC)

A Large Number

of Users

The number of users K(n) is fixed as

the blocklength n goes to infinity.

e Main ldeas:

® Blocklength is proportional to latency
e System latency per user /=

K(n)

¢ When is positive rate possible?

system rate is same
C = system rate decreases but is positive K (n) = O(nP)
system rate is zero

o Message: We pay a rate penalty for low latency.

Many-Access
Channel

(MnAC)

The number of users K(n)
increases with the blocklength n.

[Shahi, et al. (2016)]
[Chen, et al. (2017]
[Cao, et al. (2018)]



Another Approach to Latency:
Age of Information (Aol)

Sensor
......................... > v .)) s
measurements

Aol: time since latest measurement has reached destination
Measures latency from destination’s perspective

Assesses the freshness of data, in addition to distortion/error
Suitable metric for real-time sensing applications in loT

Introduces queueing into the analysis



Example: Aol for Energy Harvesting Sensors

incoming energy

battery

------------------------- > v ‘)) _>
measurements

® Energy harvesting sensors cannot send data all the time

e |ncoming energy needs to be optimally managed to minimize
Aol

e Online threshold policies are age-minimal: send a new update
only if Aol grows above a certain threshold

[Arafa, et al. (2018)]
[Bacinoglu, et al. (2018)



Conclusions

® |n next-gen communications, latency tolerances will be much lower than in current
generations because of time-critical machine-to-machine type applications

® Finite blocklength information theory is well-suited to assess latency in loT
applications, where the physical layer may predominate

®* We examined:
® point-to-point channels

® multi-user channels
® secrecy

® |arge scale networks

e Age-of-Information: another approach is to assess latency via a different metric

® A rich area with much work left to do!






