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1.  Background

Convex optimization: min f(y), y Rm

where f is convex 

If f(y) is differentiable, the discrete-time dynamics:

y(t+1)=  y(t)k f(y(t)),   k>0

or continuous-time dynamics:

ẏ(t)= k f(y(t)),   k>0



Agent Multi-agent 

systems (MAS): 

distributed design in a 

network without a center

• Network topology and 
Information flow

• Design of protocols and 
algorithms

• Complexity (unbalanced, 
uncertain, asynchronous, 
heterogeneous, …)

Distributed design



Consensus: the basic problem

Agent dynamics: dxi/dt= ui i =1,…2

Leader (or desired position): x0

Neighbor-based communication (Ni :  the 

neighbor set of agent i) 

Distributed control: ui=j (xj-xi), jNi

Multi-agent consensus (agreement, synchronization):

•Leader-following: xi-x0 0

•Leaderless: xi-xj 0



Distributed optimization

 Distributed optimization:  Optimization (task) +

distributed design (consensus) 

 Distributed convex optimization distributed 

matrix optimization, distributed MPC and 

dynamic programming, …

 Applications: industry and energy (smart grids, 

sensor network, manufacture), economics and 

society (social networks, marketing, traffic), 

biology and ecology ……



2. Formulation

Convex optimization: 

with f(z) convex

Distributed version:

 each agent i knows its own cost function fi or its 

gradient  f i 

 Local cost function fi may not have the same optimal 

solution of f



Distribution formulation

Convex optimization: 

Constraints: g(z)  0; z , with g(z) , : convex

 Distributed version:

Constraints: 

 Global: known by every agent  conventional one

 Local: for agent i: gi(zi)  0   and/or zi i (with =

nonempty intersection of all local constraint sets i) 

 Coupled: g (z1,z2 …zn) 0 



Preliminaries: convex analysis

 A function f(x) is convex if

for any x, y and 0<c<1.

 It is strictly convex if it is convex and “=” 

holds iff x=y.

 It is strongly convex if it is strictly convex and 

there is  such that 



Convex set

K is a convex set if, for

d(x,K) : distance between set K and x



Preliminaries: graph

Node (agent for computation)

Link (information flow)

Graph for the 

interaction between 

agents  Laplacian or 

stochastic matrices

• Undirected or 

directed graph 

(balanced) 

• Fixed or switched 

graph



Joint connection: union graph in [t, ) is 

connected for any t: a necessary condition

Uniform joint connection: T, union graph 

on [t,t+T] is connected

……

Union graph is connected

Graph 1 Graph 3Graph 2 Graph m

Switching  joint connection



 Many extensions …

• Non-convex optimization  constrained convex 

problem …

• Online or robust optimization: regret analysis …

• Zero-sum game (saddle point): minmax f(x,y)

• Aggregative game

• Coverage: search/rescue, evasion/pursuit

• Machine learning ……



Discrete-time optimization

Joint work with students (Y. Lou, G. Shi, Y. Zhang, P. Yi) and 
professors (Profs. Xie, Jonhasson, and Liu, et al)

Convex intersection computation with approximate projection 
(IEEE TAC 2014, full paper): accurate projection  approximate 
projection set; the critical approximate angle.

Non-convex intersection computation (IEEE Trans Wireless 
Communications 2015, full paper): ring intersection with 
application to localization even when the intersection set is empty

Random sleep algorithms (SCL 2013, CTT 2015): update with 
random sleep procedure, due to random failure, or sleep to save 
energy, or stochastic disturbance, etc



 Zero-sum game (IEEE TAC 2016, full paper)：the parties 
against each other to solve the saddle point problem; adaptive 
heterogeneous stepsizes for unbalanced graphs

 Optimization with quantization (IEEE TCNS 2014, full paper): 
exact optimization can be achieved with one bit when the 
graph is fixed, with at most 3 bits when it is switching

 Optimization with constraints (SIAM Control & Optimization, 
2016, IEEE TAC, under review): convergence rate for 
stochastic algorithm, nonmsooth optimization with equality 
constraints

Discrete time optimization



Recent Attention: continuous-time

Conventional optimization algorithm:  discrete time

Recent years: analysis and design of continuous-time algorithm

 Few works done for continuous-time approximation or 
constrained optimization in the past: Arrow et al (1958), Ljung
(1977), Brockett (1988) , …

 A way to connect discrete-time decision and continuous-time 
control



3. Continuous-time optimization

Fundamental Problems:
 Connectivity: time-varying graphs, balanced weights

 Uncertainty: communication, measurement, environment 

 Constraints: local, coupled, …

Cyber-physical (hybrid) problems:
 Communication cost: random sleep, event-based, quantization …

 Disturbance rejection hybrid/hierarchical computation

 Complicated dynamics: nonlinear physical agents



Why continuous-time model?

New era  new problems:

 Optimization solved not with digital computers, but by 
physical systems

 Cyber-physical system: hybrid model with discrete-time 
communication and continuous-time physical systems

 New design viewpoint from continuous-time dynamics

 Maybe quantum computation?



Comparison

Discrete-time

Design

Tools 

Continuous-time

Variational inequality,

monotone property,  

fixed point …

Theory
Convex optimization, 

saddle-point 

dynamics,  …

Dynamic compensation, 

autonomous equation, 

singular perturbation …

Lyapunov function, 

passivity,  input-output 

stability …

Time-varying stepsize,  

ADMM, dual 

variable,  …

Nonlinear control, 

differential inclusion, 

robust control …



Continuous-time optimization

Joint work with G. Shi, Y. Lou, P. Yi, X. Wang, Z. Deng, Y. 

Zhang, X. Zeng, et al

1. Convex intersection computation: IEEE TAC 2013; and 

approximate projection: Automatica 2016

2. Optimization with constraints: SCL 2014, Automatica 2016, 

IEEE TAC 2017 

3. Optimization with disturbance rejection: IEEE T-

Cybernetics 2015, CTT 2014, IET CTA 2017

4. High order/nonlinear agent dynamics: Unmanned 

Systems 2016, Automatica 2017



3.1 Distributed convex intersection

• Basic formulation: Agent dxi/dt= ui only 

knows the information of its own closed 

convex set Xi and its neighbor xj the 

agents achieve consensus within X0  

(=∩Xi), which is not empty

• Aim: distributed algorithm with 

switching interaction topologies



Find a point in the intersection set of a group of convex set

 The problem originally studied by Aronszajn 1950, Gubin, 

et al 1967, Deutsch, 1983: alternating projection 

algorithm (APA: a centralized solution)

 Projected consensus algorithm (PCA: a decentralized 

version of APC) with time-varying directed 

interconnection, or its randomized version; Nedic et al 

2010, Shi et al, 2012… 

Formulation



PCA for continuous-time system: accurate projection for 

optimization + neighbor-based rule for consensus

 Centralized design  Distributed design: neighbor-based rule, 

not completely connected

 Conventional analysis  set analysis (non-smoothness)

 Switching interaction topology (non-smoothness): common 

Lyapunov function

Projected consensus algorithm (PCA)



Main Results (TAC 2013)

Result 1: Global convex intersection of MAS 

 uniformly jointly strongly connected

Consistent with the existing discrete time results

Result 2: In the bidirectional case, MAS 

achieves global convex intersection = [t, )

joint connection

PCA: local projection for intersection

+ neighbor-based rule for consensus



Numerical simulation



PCA  APCA: 

approximate projection 

with 0*</2 (APCA)

Approximate PCA

In practice, it is hard or 

expensive to get 

accurate projection 

Approximately 

projected consensus 

algorithm (APCA) for 

unknown projection: 

IEEE TAC 2014

agent



Critical approximate angle



Approximate projection performs better 
than the accurate one! (IEEE TAC 2014)



Continuous-time case

Accurate projection: hard to obtain in practice

Approximate projection is a cheap choice 

Approximate angle: 0*</2; modified projection sets

v



Main Results

 Connectivity: uniformly jointly-connected for balanced 

graph in continuous-time case  

 Approximate projection + consensus rule + stepsize

condition  optimal consensus (Automatica 2016)

 Difference between continuous and discrete time cases:

Definition of approximate projection  virtual stepsize

based on finite curvature, 

 The intersection set X0=∩Xi may be empty but the aim 

can be achieved by one algorithm

No critical approximate angle (essential difference 

between continuous-time and discrete-time cases)



 Constraints：from multiple objectives and condition 

limitations   analysis and design of distributed 

optimization algorithms

 Application：smart grids, sensor network, social 

systems，wireless communciation, …

Given constraints: global, local, coupled …

Active constraints: invariance, bounds … 

3.2 Optimization with constraints



Well known constraints

Constraints for

1. Local inequality constraint:

2. Resource allocation:

3. Local equality constraints:

4. Constraint sets:

 Various combinations of constraints:  2+4 & 3+4 
with some conditions …

 Applications to sensor networks or smart grids



Remarks

Start with simple cases: Lipschitz of the gradient  + undirected 
graph +

 Strict convexity  asymptotical stability

 Strong convexity  exponential stability

Extensions with many challenges:

 Convexity  non-unique solution, multiple equilibria

 Nonsmooth functions  nonsmooth analysis

 Directed time-varying graph  auxillary? dynamics to estimate 
unbalanced weights, analysis based on common bound

 Communication cost  quantization, random sleep, event-based



Local inequality constraints

Problem: 

 Distributed control:

 Convergence based on a hybrid LaSalle invariance 
principle (SCL 2015).



Resource allocation

Problem:  

 Distributed control: 

 Results: convergence; exponential convergence; additional 

constraint sets  (CCC 2015，Automatica 2016)



3.3  Optimization with disturbance

 Stochastic disturbance (noise, package loss …) discussed 

in some optimization results

 Modeled deterministic disturbance may be considered 

when the agents are physical (UAV, robots) and moving in 

practical environment

 Exact optimization with disturbance rejection：agent 
dynamics + optimization goal + exogenous disturbance



Design：optimization + consensus + internal-

model-based disturbance rejection

Basic Distributed Algorithm



 The exact optimization can be achieved with known

disturbance frequency by internal model (Control Theory & 

Technology, 2014)

 It is also achieved semi-globally with unknown frequency by 

adaptive internal model (CCC 2014)

 The agent dynamics can be extended to a nonlinear case

（IEEE T-Cybernetics, 2015）

 Event-triggered design for both communication and 

gradient measurement (IET CTA, 2016)

Main Results



Simulation（5 agents）

Topology and error trajectories



3.4 Nonlinear/High-order Agent

Motivation: 

▫ Integration of control and 
optimization

▫ Cyber optimization solved by 
physical systems

Results:

1. Euler–Lagrangian (EL) systems: 
nonlinear second order 
systems

2. High order linear systems 
special nonlinear systems

Physical agents 

Cyber: 

optimization

Distributed optimization as 

cyber-physical systems …



Optimization of EL systems

Mechanical systems in the Euler-Lagrange form：

N heterogeneous agents with uncertain parameters

Distributed optimization control design for EL systems：

Task: tracking,  formation, coverage

Constraint: obstacle, energy, resource …



Results for EL systems

 Basic assumptions: Strong convexity & Undirected 
graph

 Result 1 (Unmanned Systems 2016):  Lipschitz of 
gradient  semi global convergence (exponential). 

 Result 2 (Automatica 2017): Global Lipschitz of 
gradient  global convergence (exponential)   
(optimization of double integrator + tracking control of 
EL systems

 Result 3 (Kybernetika 2017): Event-triggered 
optimization design for EL systems

 Result 4 (IFAC conference 2016): Optimization design 
with kinematic constraints (saturation of velocity and 
acceleration)



For agents in the form of n-th integrator:

The algorithm for each agent:

Results: strong convexity + undirected graph + global Lipschitz 

exponential convergence

 minimum phase nonlinear systems and observer-based output 

feedback design

High order system



 Distributed optimization: optimization algorithms based 

on local information  scalability, reliability, and maybe 

security …

 Challenges: operations research + control systems 

+complex network +computational complexity + …

 Applications: estimation (sensor), simultaneous routing 

& resource allocation (wireless communication), opinion 

dynamics (social networks), intersection computation 

(computer), ……

4. Conclusions



Research framework

constraint

Optimiz.

Control

dynamicsuncertainty

Non-holonomic，
saturation, 

event-based …

Network
Communication, 

environment, 

energy …

Data-based, 

online regret, 

robust opti.

Identification, 

adaptive con., 

robust con.

Inequality, 

bounded set, 

equality …

Stochastic, 

time-varying, 

nonlinear …

High order, 

multi-

scale,  …

Link dynamics, 

split/merge, 

switching …

Survivability, 

security, 

failure … 

Phy

sical

Cyber



Some recent results for MAS

 Distributed optimization (IEEE TAC 2013, 2014, 2016; SCL
2013, 2015; IEEE T-Cybernetics 2015; SIAM Con. & Opti. 2016; 
Automatica 2016a, 2016b, 2017)

 Containment control & multiple leaders (Automatica 2014)

 Distributed output regulation (IEEE TAC 2013, 2014, 2016; 
Automatica 2015; IJRNC 2013)：Internal model based design

 Attitude synchronization and formation (Automatica 2014)

 Coverage: cooperative sweeping (Automatica 2013)

 Distributed Kalman filter (IEEE TAC 2013)

 Quantization in control and optimization (IEEE TCNS 2014,  
IEEE TAC 2016)

 Target surrounding (IEEE TAC 2015)

 Opinion dynamics (Physica A 2013, Automatica 2016)

 … …



Thank you！


