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1. Background

Convex optimization: min f(y), ye R7
where f Is convex
If f(y) Is differentiable, the discrete-time dynamics:
y(t+1)= y(t) K Vi(y(t)), k=0
or continuous-time dynamics:
yt)= -k Vi(y(t)), k>0




Distributed design

Agent - Multi-agent

systems (MAS): S "
distributed design in a @ = @ @
network without a center

« Network topology and
Information flow

 Design of protocols and
algorithms
« Complexity (unbalanced,

uncertain, asynchronous, ﬁ ,@ @

heterogeneous, ...)




Consensus: the basic problem

Agent dynamics: dx/dt=u; i =1,...2
Leader (or desired position): X,

Neighbor-based communication (N, : the
neighbor set of agent i)

Distributed control: u=%; (x-X;), J €N,

Neighbor Graph

Multi-agent consensus (agreement, synchronization):
Leader-following: x-X, 2 O
Leaderless: x;-x; 2 0




Distributed optimization

e Distributed optimization: Optimization (task) +
distributed design (consensus)

e Distributed convex optimization - distributed
matrix optimization, distributed MPC and
dynamic programming, ...

e Applications: industry and energy (smart grids,
sensor network, manufacture), economics and
society (social networks, marketing, traffic),
biology and ecology ......
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2. Formulation

Convex optimization: min  f(z)
ot

with f(z) convex

~Distributed version:  f(z) =  fi(2)
1=1

e each agent i knows its own cost function f; or its
gradient Vf,
e | ocal cost function f; may not have the same optimal

solution of f
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Distribution formulation

Convex optimization: min  f(z)
ot

Constraints: g(z) <0; ze Q, with g(z) , ©2: convex
— Distributed version: ¢y _ ifi(z)
Constraints: =
e Global: known by every agent =» conventional one
e | ocal: foragenti: gi(z) <0 and/or z;e Q; (with Q=
nonempty intersection of all local constraint sets €2,)

e Coupled: g(z,,2,...z,)<0
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Preliminaries: convex analysis

e A function f(x) is convex If
flex+(1—c)y) < cf(z)+(1— ¢)f(y)

for any x, y and O<c<1.
e |tisstrictly convex ifitis convex and “="
nolds iff x=y.
e |tisstrongly convex If itis strictly convex and
there Is o such that

flex+(1—c)y) < cf(z)+(1— ¢)f(y)

—Lloc(1—-c)||lz—yl||3




Convex set

@ Kisaconvexsetif, for 0 <\ <1
(I-Nz+Ay e K re Kye K

@ d(x,K) : distance between set K and x

|zl = inf{]lz - y|y € K}
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Preliminaries: graph

Link (information flow)

Graph for the
Interaction between
agents - Laplacian or
stochastic matrices

« Undirected or
directed graph
(balanced)

 Fixed or switched
graph

Node (agent for computation)

- /




Switching = joint connection

@ Joint connection: union graph in [t, ) IS
connected for any t: a necessary condition

@ Uniform joint connection: 3T, union graph
on [t,t+T] Is connected

K Union graph is connected \

Graph1l Graph2 Graph3 Graph m
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=» Many extensions ...

* Non-convex optimization = constrained convex
problem ...

* Online or robust optimization: regret analysis ...

« Zero-sum game (saddle point): minmax f(x,y)

« Aggregative game

« Coverage: search/rescue, evasion/pursuit

« Machine learning ......




Discrete-time optimization

Joint work with students (Y. Lou, G. Shi, Y. Zhang, P. Y1) and
professors (Profs. Xie, Jonhasson, and Liu, et al)

Convex intersection computation with approximate projection
(IEEE TAC 2014, full paper): accurate projection = approximate
projection set; the critical approximate angle.

*Non-convex intersection computation (IEEE Trans Wireless
Communications 2015, full paper): ring intersection with.
application to localization even when the intersection set is empty

eRandom sleep algorithms (SCL 2013, CTT 2015): update with
random sleep procedure, due to random failure, or sleep to save
energy, or stochastic disturbance, etc




Discrete time optimization

Zero-sum game (IEEE TAC 2016, full paper): the parties
against each other to solve the saddle point problem; adaptive
heterogeneous stepsizes for unbalanced graphs

Optimization with guantization (IEEE TCNS 2014, full paper):
exact optimization can be achieved with one bit when the
graph is fixed, with at most 3 bits when it is switching

Optimization with constraints (SIAM Control & Optimization,
2016, IEEE TAC, under review): convergence rate for
stochastic algorithm, nonmsooth optimization with equality
constraints
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Recent Attention: continuous-time

Conventional optimization algorithm: discrete time

Recent years: analysis and design of continuous-time algorithm

¢ Few works done for continuous-time approximation or
constrained optimization in the past: Arrow et al (1958), Ljung

(1977), Brockett (1988) , ...

o A way to connect discrete-time decision and continuous-time
control




3. Continuous-time optimization

Fundamental Problems:

* Connectivity: time-varying graphs, balanced weights

® Uncertainty: communication, measurement, environment

* Constraints: local, coupled, ...

Cyber-physical (hybrid) problems:

* Disturbance rejection hybrid/ hierarchical computation

° Complicated dynamics: nonlinear physical agents

N

* Communication cost: random sleep, event-based, quantization ...




g

Why continuous-time model?

New era = new problems:

* Optimization solved not with digital computers, but by
physical systems

o Cyber—physical system: hybrid model with discrete-time
communication and continuous-time physical systems

e New design viewpoint from continuous-time dynamics

o Maybe quantum computation?




Comparison

Discrete-time

Continuous-time

Variational inequality,

Lyapunov function,

Tools monotone property, passivity, input-output
fixed point ... stability ...
_ Time-varying stepsize, Dynamic compensation,
Design ADMM, dual autonomous equation,
variable, ... singular perturbation ...
Convex optimization, Nonlinear control,
Theory saddle-point differential inclusion,

dynamics, ...

robust control ...
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Continuous-time optimization

Joint work with G. Shi, Y. Lou, P. Yi, X. Wang, Z. Deng, Y.
Zhang, X. Zeng, et al

Convex intersection computation: IEEE TAC 2013; and
approximate projection: Automatica 2016

Optimization with constraints: SCL 2014, Automatica 2016,
IEEE TAC 2017

Optimization with disturbance rejection: IEEE T-
Cybernetics 2015, CTT 2014, IET CTA 2017

High order/nonlinear agent dynamics: Unmanned
Systems 2016, Automatica 2017
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3.1 Distributed convex intersection

Basic formulation: Agent dxi/dt=u; only
knows the information of its own closed o
convex set X; and its neighbor Xi — the
agents achieve consensus within XO

(=M X;), which is not empty

Aim: distributed algorithm with

switching interaction topologies




Formulation

Find a point in the intersection set of a group of convex set

® The problem originally studied by Aronszajn 1950, Gubin,
et al 1967, Deutsch, 1983: alternating projection
algorithm (APA: a centralized solution)

® Projected consensus algorithm (PCA: a decentralized
version of APC) with time-varying directed

interconnection, or its randomized version; Nedic et al

2010, Shi et al, 2012. ..
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Projected consensus algorithm (PCA)

PCA for continuous-time system: accurate projection for
optimization + neighbor-based rule for consensus

®  Centralized design — Distributed design: neighbor-based rule,

not completely connected
*  Conventional analysis = set analysis (non-smoothness)

¢ Switching interaction topology (non-smoothness): common

Lyapunov function




Main Results (TAC 2013)

PCA: local projection for intersection
+ neighbor-based rule for consensus

Result 1: Global convex intersection of MAS

< uniformly jointly strongly connected
Consistent with the existing discrete time results
Result 2: In the bidirectional case, MAS

achieves global convex intersection = [t, o)
joint connection
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Numerical simulation

t=01%ot=1000

Circle 1
Circle 2
Circle 3
x1

x3




Approximate PCA

PCA = APCA: In practice, it is hard or

approximate projection expensive to get
with 0<0<0*<n/2 (APCA) accurate projection

agent - Approximately
projected consensus
algorithm (APCA) for
unknown projection:
IEEE TAC 2014
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Critical approximate angle

Suppose o, = 1, 0, = 0 Vi, k
n > 1 nodes

e 0 <0 < m/4implies

sup limsup |z;(k)|x, < oo, i =1,...,n
z(0) k—oo0

n = 1 node

e 0 = /4 implies

lim sup |z4(k)|x, < o0
k—o00

e 7/4 <0 < mw/2 implies
limsup |z«(k)|x, = oo,

k— o0
[2«(0)|x, > sup |y1 — yo|/(tanf — 1)
Y1,y2€ X«
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Approximate projection performs better
than the accurate one! (IEEE TAC 2014)

1.6p

14} + o =1

1.2

h(k)

0.8
0.6
04r©

++
N i
0.2 oo ++_|_|._|_|_H_IL .............................

h(k) = maxi<;<3 |z;(k)| x,
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Continuous-time case

Accurate projection: hard to obtain in practice
Approximate projection is a cheap choice

Approximate angle: 0<6<0*<n/2; modified projection sets




Main Results

Connectivity: uniformly jointly-connected for balanced
graph in continuous-time case

Approximate projection + consensus rule + stepsize
condition = optimal consensus (Automatica 2016)

Difference between continuous and discrete time cases:

Definition of approximate projection -2 virtual stepsize
based on finite curvature,

The intersection set X,=NX; may be empty but the aim
can be achieved by one algorithm

No critical approximate angle (essential difference
between continuous-time and discrete-time cases)
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3.2 Optimization with constraints

= Constraints: from multiple objectives and condition
limitations -> analysis and design of distributed
optimization algorithms

m Application: smart grids, sensor network, social

systems, wireless communciation, ---

Given constraints: global, local, coupled ...
Active constraints: invariance, bounds ...
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Well known constraints

Constraints for

min f(xz), f(z)= Z fi(z)

Q) -
1. Local inequality constraint: Ej{lﬂ <0
2. Resource allocation: i z; = dy
3. Local equality constraints: ~ 4i, — pi =}

4. Constraint sets: x; € Q)

¢ Various combinations of constraints: 2+4 & 3+4
with some conditions ...

© Applications to sensor networks or smart grids
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Remarks

Start with simple cases: Lipschitz of the gradient + undirected
graph +

® Strict convexity - asymptotical Stability

* Strong convexity - exponential stability

Extensions with many challenges:
* Convexity > non-unique solution, multiple equilibria
e Nonsmooth functions = nonsmooth analysis

® Directed time-varying graph - auxillary? dynamics to estimate
unbalanced weights, analysis based on common bound

e Communication cost = quantization, random sleep, event-based




Local inequality constraints

Problem min f(z), f(z) = zt 1fa(fﬂ
G S0, J =T i = 1, N

e Distributed control:

;. = —Vfi(z) =) jeN; Fij (2 - Zj)
J? i
| — D ien; @ig(vi —v5) = 25 Aij Vgj(i)
Vi = ng;x a;j(T; — 2;j); |
}‘a_,'r — [93( ])a j — J_ v_;'”

e Convergence based on a hybrid LaSalle invariance
principle (SCL 2015).




Resource allocation

. min Z (7).
Problem: R A . Jilx;
ieN
sub ject to Z X; = Z d;.
ieN ieN

¢ Distributed control:

z; = =V fi(x;) +
Ni=—3 . 1( j)—zj;_,..a,.q(zi—ﬁj)+(di—1’i)
Zi =) ic ()\ Aj)

® Results: convergence; exponential convergence; additional
constraint sets (CCC 2015, Automatica 2016)
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3.3 Optimization with disturbance

® Stochastic disturbance (noise, package loss ...) discussed

in some optimization results

® Modeled deterministic disturbance may be considered
when the agents are physical (UAV, robots) and moving in

practical environment

® Exact optimization with disturbance rejection: agent

dynamics + optimization goal + exogenous disturbance
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Basic Distributed Algorithm

Design: optimization + consensus + internal-
model-based disturbance rejection

N
v = af ijl aij(x; — ;)

i = (1, @ F)n; + (1, ® G)uy
'“z:_avfz _EE_H}ZJ 1afj }')

Uptll]l 1l term

— (1, @ V)n; .

Yoy

consensus term

~
internal model term




Main Results

The exact optimization can be achieved with known

disturbance frequency by internal model (Control Theory &
Technology, 2014)

It is also achieved semi- globally with unknown frequency by

adaptive internal model (CCC 2014)

The agent dynarnics can be extended to a nonlinear case

(IEEE T-Cybernetics, 2015)

Event—triggered design for both communication and
gradient measurement (IET CTA, 2016)




Simulation (5 agents)

Topology and error trajectories

fil@) = @+2% fo)=@=5?

fa(z) = x? In(1 + :1?2) 42

2 2
fa(x)

B T 72 5 1) =
_ +a%,  fs(x) In(2 + 22)

va?+1
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3.4 Nonlinear/High-order Agent

Motivation:
o Inte.gr.atio.n of control and opt(i:rzibztzrt.i on
optimization
° Cyber optimization solved by ‘ 1
physical systems
Results: E‘ Physical agents ::|
1. Euler—Lagrangian (EL) systems:
nonlinear second order
systems l
2. High order linear systems > Distributed optimization as
special nonlinear systems cyber-physical systems ...




Optimization of EL systems

Mechanical systems in the Euler-Lagrange form:
M; {’-}'1') g + C; (‘-?a': QE) qi = Ti.

N heterogeneous agents with uncertain parameters
Distributed optimization control design for EL systems:

—_’I‘J[}:_ﬂvft "-Tz _*EHZ N alj Qi_QJ)_"F‘:'E’t’

OF :Z _aij (g — qj) \W
JEN;

. _ 1
Task: tracking, formation, coverage g Qm
Constraint: obstacle, energy, resource ...




Results for EL systems

Basic assumptions: Strong convexity & Undirected
graph
Result 1 (Unmanned Systems 2016): Lipschitz of

gradient = semi global convergence (exponentlal)
Result 2 (Automatica 2017): Global Lipschitz of

gradient = global convergence (exponential)
(optimization of double integrator + tracking control of
EL systems

Result 3 (Kybernetika 2017): Event-triggered

optimization design for EL systems
Result 4 (IFAC conference 2016): Optimization design

with kinematic constraints (saturation of velocity and
acceleration)




High order system

For agents in the form of N-th integrator: =1
T
The algorithm for each agent:

: :_Z,{H L X :”_B Z aij(xi —xj) —aV fi(x;) —w;

JEN;
) (1] (1]
HE—EI,B ZHU( _l'j')—FZ(_yr_ ’I__yl'j.,'))?
JjEN; =1

Results: strong convexity + undirected graph + global Lipschitz -

exponential COHVGI’gGHCG

=» minimum phase nonlinear systems and observer-based output

feedback design

/




4. Conclusions

e Distributed optimization: optimization algorithms based
on local information - scalability, reliability, and maybe
security ...

e Challenges: operations research + control systems
+complex network +computational complexity + ...

e Applications: estimation (sensor), simultaneous routing
& resource allocation (wireless communication), opinion
dynamics (social networks), intersection computation
(computer), ......




Research framework

constraint uncertainty | dynamics
Phy Non-holonomic, | Identification, Stochastic,
sical €ontrol | saturation, adaptive con., time-varying,
event-based ... robust con. nonlinear ...
o Inequality, Data-based, High order,
OptimIZ. | pounded set, online regret, multi-
equality ... robust opti. scale, ...
Cyber
Communication, | Survivability, Link dynamics,
Network | environment, security, split/merge,
energy ... failure ... switching ...
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Some recent results for MAS

e Distributed optimization (IEEE TAC 2013, 2014, 2016; SCL
2013, 2015; IEEE T-Cybernetics 2015; SIAM Con. & Opti. 2016;
Automatica 2016a, 2016b, 2017)

e Containment control & multiple leaders (Automatica 2014)

e Distributed output regulation (IEEE TAC 2013, 2014, 2016;
Automatica 2015; IJRNC 2013): Internal model based design

o Attitude synchronization and formation (Automatica 2014)
e Coverage: cooperative sweeping (Automatica 2013)
e Distributed Kalman filter (IEEE TAC 2013)

e Quantization in control and optimization (IEEE TCNS 2014,
IEEE TAC 2016)

e Target surrounding (IEEE TAC 2015)
e Opinion dynamics (Physica A 2013, Automatica 2016)




Thank you!




