

Distributed Optimization of Continuoustime Multi-agent Networks

Yiguang Hong

Academy of Mathematics & Systems Science Chinese Academy of Sciences

Outline

- 1. Background
- 2. Formulation
- 3. Continuous-time optimization
 - 1. Fundamental problem
 - 2. Optimization for physical systems
- 4. Conclusions

1. Background

Convex optimization: min f(y), $y \in \mathbb{R}^m$

where f is convex

If f(y) is differentiable, the discrete-time dynamics:

$$y(t+1) = y(t) - k \nabla f(y(t)), k > 0$$

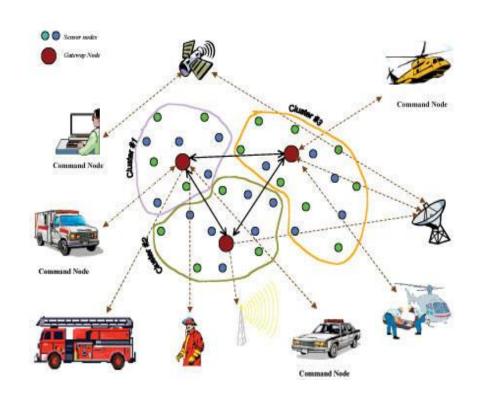
or continuous-time dynamics:

$$\dot{y}(t) = -k \nabla f(y(t)), \quad k > 0$$

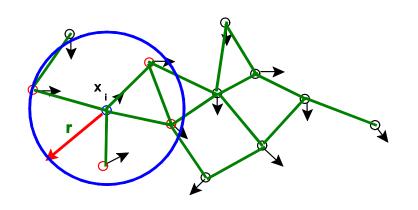
Distributed design

Agent → Multi-agent systems (MAS): distributed design in a network without a center

- Network topology and Information flow
- Design of protocols and algorithms
- Complexity (unbalanced, uncertain, asynchronous, heterogeneous, ...)



Consensus: the basic problem



Agent dynamics: $dx_i/dt = u_i$ i = 1,...2Leader (or desired position): x_0

Neighbor-based communication (N_i : the neighbor set of agent i)

Distributed control: $u_i = \sum_j (x_j - x_i), j \in N_i$

Neighbor Graph

Multi-agent consensus (agreement, synchronization):

•Leader-following: $x_i - x_0 \rightarrow 0$

•Leaderless: x_i - $x_i \rightarrow 0$

Distributed optimization

- <u>Distributed optimization</u>: Optimization (task) + distributed design (consensus)
- Distributed convex optimization → distributed matrix optimization, distributed MPC and dynamic programming, ...
- <u>Applications</u>: industry and energy (smart grids, sensor network, manufacture), economics and society (social networks, marketing, traffic), biology and ecology

2. Formulation

Convex optimization: $\min_{z \in R^m} f(z)$

with f(z) convex

→ Distributed version: $f(z) = \sum_{i=1}^{\infty} f_i(z)$

- each agent i knows its own cost function f_i or its gradient ∇f_i
- Local cost function f_i may not have the same optimal solution of f

Distribution formulation

Convex optimization: $\min_{z \in R^m} f(z)$

Constraints: $g(z) \le 0$; $z \in \Omega$, with g(z), Ω : convex

 \rightarrow Distributed version: $f(z) = \sum_{i=1}^{n} f_i(z)$ Constraints:

- Global: known by every agent → conventional one
- Local: for agent $i: g_i(z_i) \le 0$ and/or $z_i \in \Omega_i$ (with $\Omega =$ nonempty intersection of all local constraint sets Ω_i)
- Coupled: $g(z_1, z_2 ... z_n) \le 0$

Preliminaries: convex analysis

• A function f(x) is **convex** if

$$f(cx + (1-c)y) \le cf(x) + (1-c)f(y)$$

for any x, y and 0 < c < 1.

- It is strictly convex if it is convex and "=" holds iff x=y.
- It is strongly convex if it is strictly convex and there is σ such that

$$f(cx + (1-c)y) \le cf(x) + (1-c)f(y)$$
$$-\frac{1}{2}\sigma c(1-c)||x-y||_2^2$$

Convex set

• *K* is a convex set if, for $0 < \lambda < 1$

$$(1-\lambda)x + \lambda y \in K$$
 $x \in K, y \in K$

• d(x,K): distance between set K and x

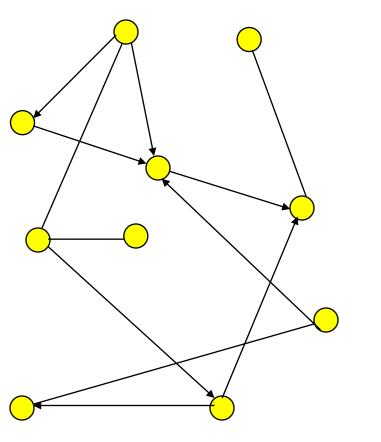
$$||x||_K \triangleq \inf\{||x - y|||y \in K\}$$

Preliminaries: graph

Graph for the interaction between agents → Laplacian or stochastic matrices

- Undirected or directed graph (balanced)
- Fixed or switched graph

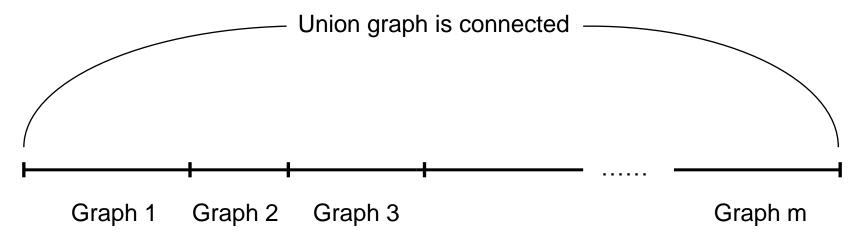
Link (information flow)



Node (agent for computation)

Switching -> joint connection

- Joint connection: union graph in $[t, \infty)$ is connected for any t: a necessary condition
- Uniform joint connection: ∃T, union graph on [t,t+T] is connected



→ Many extensions ...

- Non-convex optimization → constrained convex problem ...
- Online or robust optimization: regret analysis ...
- Zero-sum game (saddle point): minmax f(x,y)
- Aggregative game
- Coverage: search/rescue, evasion/pursuit
- Machine learning

Discrete-time optimization

Joint work with students (Y. Lou, G. Shi, Y. Zhang, P. Yi) and professors (Profs. Xie, Jonhasson, and Liu, et al)

- <u>Convex intersection</u> computation with approximate projection (<u>IEEE TAC 2014</u>, <u>full paper</u>): accurate projection → approximate projection set; the critical approximate angle.
- •Non-convex intersection computation (IEEE Trans Wireless Communications 2015, full paper): ring intersection with application to localization even when the intersection set is empty
- •Random sleep algorithms (SCL 2013, CTT 2015): update with random sleep procedure, due to random failure, or sleep to save energy, or stochastic disturbance, etc

Discrete time optimization

- Zero-sum game (IEEE TAC 2016, full paper): the parties against each other to solve the saddle point problem; adaptive heterogeneous stepsizes for unbalanced graphs
- Optimization with <u>quantization</u> (IEEE TCNS 2014, full paper): exact optimization can be achieved with one bit when the graph is fixed, with at most 3 bits when it is switching
- Optimization with <u>constraints</u> (SIAM Control & Optimization, 2016, IEEE TAC, under review): convergence rate for stochastic algorithm, nonmsooth optimization with equality constraints

Recent Attention: continuous-time

Conventional optimization algorithm: discrete time

Recent years: analysis and design of continuous-time algorithm

- Few works done for continuous-time approximation or constrained optimization in the past: Arrow et al (1958), Ljung (1977), Brockett (1988), ...
- A way to connect discrete-time decision and continuous-time control

3. Continuous-time optimization

Fundamental Problems:

- Connectivity: <u>time-varying</u> graphs, balanced weights
- Uncertainty: communication, measurement, environment
- Constraints: <u>local</u>, <u>coupled</u>, ...

Cyber-physical (hybrid) problems:

- Communication cost: random sleep, event-based, quantization ...
- Disturbance <u>rejection</u> hybrid/hierarchical computation
- Complicated dynamics: nonlinear <u>physical</u> agents

Why continuous-time model?

New era → new problems:

- Optimization solved not with digital computers, but by physical systems
- Cyber-physical system: hybrid model with discrete-time communication and continuous-time physical systems
- New design viewpoint from continuous-time dynamics
- Maybe quantum computation?

Comparison

	Discrete-time	Continuous-time	
Tools	Variational inequality, monotone property, fixed point	Lyapunov function, passivity, input-output stability	
Design	Time-varying stepsize, ADMM, dual variable,	Dynamic compensation, autonomous equation, singular perturbation	
Theory	Convex optimization, saddle-point dynamics,	Nonlinear control, differential inclusion, robust control	

Continuous-time optimization

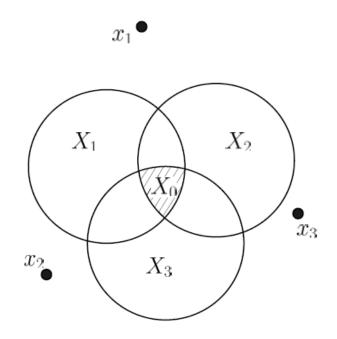
Joint work with G. Shi, Y. Lou, P. Yi, X. Wang, Z. Deng, Y. Zhang, X. Zeng, et al

- Convex intersection computation: IEEE TAC 2013; and approximate projection: Automatica 2016
- 2. Optimization with constraints: SCL 2014, Automatica 2016, IEEE TAC 2017
- 3. Optimization with disturbance rejection: IEEE T-Cybernetics 2015, CTT 2014, IET CTA 2017
- High order/nonlinear agent dynamics: Unmanned Systems 2016, Automatica 2017

3.1 Distributed convex intersection

• Basic formulation: Agent $dx_i/dt = u_i$ only knows the information of its own closed convex set X_i and its neighbor $x_j \rightarrow$ the agents achieve consensus within X_0 (= $\cap X_i$), which is not empty

• Aim: distributed algorithm with switching interaction topologies



Formulation

Find a point in the intersection set of a group of convex set

- The problem originally studied by Aronszajn 1950, Gubin, et al 1967, Deutsch, 1983: alternating projection algorithm (APA: a centralized solution)
- Projected consensus algorithm (PCA: a decentralized version of APC) with time-varying directed interconnection, or its randomized version; Nedic et al 2010, Shi et al, 2012...

Projected consensus algorithm (PCA)

PCA for continuous-time system: accurate projection for optimization + neighbor-based rule for consensus

- Centralized design → Distributed design: neighbor-based rule, not completely connected
- Conventional analysis \rightarrow set analysis (non-smoothness)
- Switching interaction topology (non-smoothness): common Lyapunov function

Main Results (TAC 2013)

PCA: local projection for intersection

+ neighbor-based rule for consensus

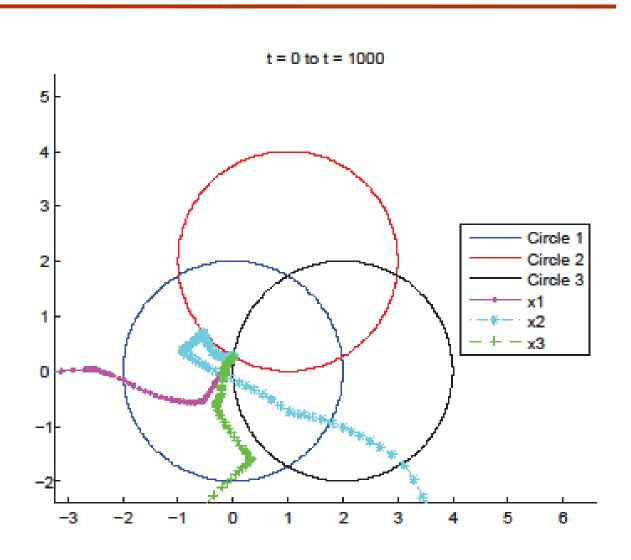
Result 1: Global convex intersection of MAS

uniformly jointly strongly connected

Consistent with the existing discrete time results

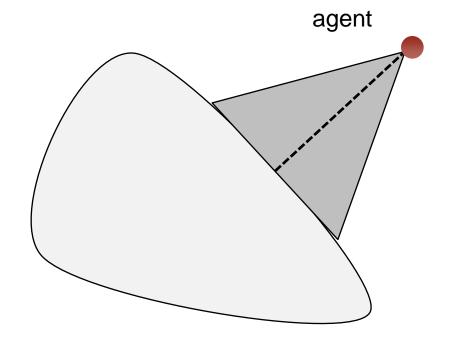
Result 2: In the bidirectional case, MAS achieves global convex intersection = $[t, \infty)$ joint connection

Numerical simulation



Approximate PCA

PCA → APCA: approximate projection with $0 \le \theta \le \theta^* < \pi/2$ (APCA)



In practice, it is hard or expensive to get accurate projection → Approximately projected consensus algorithm (APCA) for unknown projection:

IEEE TAC 2014

Critical approximate angle

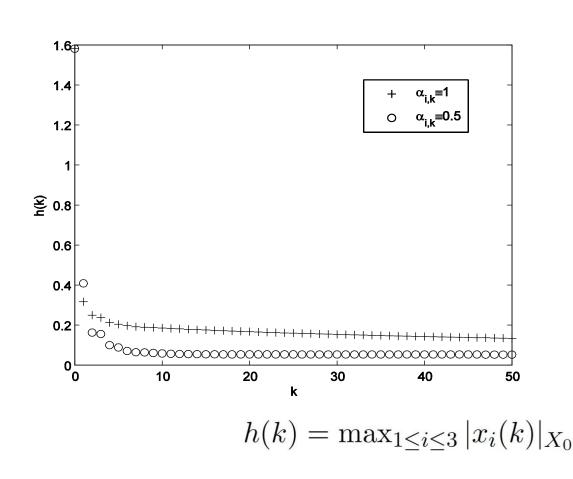
Suppose $\alpha_{ik} = 1$, $\theta_k = \theta \ \forall i, k$ $n \ge 1 \text{ nodes}$

•
$$0 < \theta < \pi/4$$
 implies
$$\sup_{x(0)} \limsup_{k \to \infty} |x_i(k)|_{X_0} < \infty, \ i = 1, ..., n$$

$$n = 1 \text{ node}$$

- $\theta = \pi/4$ implies $\lim \sup_{k \to \infty} |x_*(k)|_{X_*} < \infty$
- $\pi/4 < \theta < \pi/2$ implies $\limsup_{k \to \infty} |x_*(k)|_{X_*} = \infty,$ $|x_*(0)|_{X_*} > \sup_{y_1, y_2 \in X_*} |y_1 y_2|/(\tan \theta 1)$

Approximate projection performs better than the accurate one! (IEEE TAC 2014)



Continuous-time case

Accurate projection: hard to obtain in practice Approximate projection is a cheap choice

Approximate angle: $0 \le \theta \le \theta^* < \pi/2$; modified projection sets



Main Results

- Connectivity: uniformly jointly-connected for balanced graph in continuous-time case
- Approximate projection + consensus rule + stepsize condition → optimal consensus (Automatica 2016)
- Difference between continuous and discrete time cases:
 - Definition of approximate projection → virtual stepsize based on finite curvature,
 - The intersection set $X_0 = \bigcap X_i$ may be empty but the aim can be achieved by one algorithm
 - No critical approximate angle (essential difference between continuous-time and discrete-time cases)

3.2 Optimization with constraints

- Constraints: from multiple objectives and condition limitations → analysis and design of distributed optimization algorithms
- Application: smart grids, sensor network, social systems, wireless communciation, ...

Given constraints: global, local, coupled ... Active constraints: invariance, bounds ...

Well known constraints

Constraints for

$$\min_{x \in \Omega} f(x), \quad f(x) = \sum_{i=1}^{n} f^{i}(x_{i})$$

1. Local inequality constraint:

$$g^i_j(x_i) \le 0$$

2. Resource allocation:

$$\sum_{i=0}^{n} x_i = d_0$$

3. Local equality constraints: $A^{i}x = b^{i}$ i=1

$$A^i x = b^{i}$$

4. Constraint sets: $x_i \in \Omega_i$

$$x_i \in \Omega_i$$

- Various combinations of constraints: 2+4 & 3+4 with some conditions ...
- Applications to sensor networks or smart grids

Remarks

Start with simple cases: Lipschitz of the gradient + undirected graph +

- Strict convexity \rightarrow asymptotical stability
- Strong convexity → exponential stability

Extensions with many challenges:

- Convexity → non-unique solution, multiple equilibria
- Nonsmooth functions \rightarrow nonsmooth analysis
- Directed time-varying graph → auxillary? dynamics to estimate unbalanced weights, analysis based on common bound
- Communication cost \rightarrow quantization, random sleep, event-based

Local inequality constraints

Problem min
$$f(x)$$
, $f(x) = \sum_{i=1}^{N} f_i(x)$
 $g_i^i(x) \le 0, j = 1, ..., J^i, i = 1, ..., N$

Distributed control:

$$\dot{x}_{i} = -\nabla f_{i}(x_{i}) - \sum_{j \in \mathcal{N}_{i}} a_{ij}(x_{i} - x_{j})
- \sum_{j \in \mathcal{N}_{i}} a_{ij}(v_{i} - v_{j}) - \sum_{j=1}^{J^{i}} \lambda_{ij} \nabla g_{j}^{i}(x_{i})
\dot{v}_{i} = \sum_{j \in \mathcal{N}_{i}} a_{ij}(x_{i} - x_{j});
\dot{\lambda}_{ij} = [g_{j}^{i}(x_{i})]_{\lambda_{ij}}^{+}, j = 1, ..., J^{i}.$$

 Convergence based on a hybrid LaSalle invariance principle (SCL 2015).

Resource allocation

Problem:
$$\min_{x_i \in \mathbb{R}^m, i \in \mathcal{N}} \sum_{i \in \mathcal{N}} f_i(x_i),$$
$$subject \ to \ \sum_{i \in \mathcal{N}} x_i = \sum_{i \in \mathcal{N}} d_i.$$

Distributed control:

$$\dot{x}_i = -\nabla f_i(x_i) + \lambda_i$$

$$\dot{\lambda}_i = -\sum_{j \in \mathcal{N}_i} (\lambda_i - \lambda_j) - \sum_{j \in \mathcal{N}_i} (z_i - z_j) + (d_i - x_i)$$

$$\dot{z}_i = \sum_{j \in \mathcal{N}_i} (\lambda_i - \lambda_j)$$

• Results: convergence; exponential convergence; additional constraint sets (CCC 2015, Automatica 2016)

3.3 Optimization with disturbance

- Stochastic disturbance (noise, package loss ...) discussed in some optimization results
- Modeled deterministic disturbance may be considered when the agents are physical (UAV, robots) and moving in practical environment
- Exact optimization with disturbance rejection: agent dynamics + optimization goal + exogenous disturbance

Basic Distributed Algorithm

Design: optimization + consensus + internalmodel-based disturbance rejection

$$\dot{v}_{i} = \alpha\beta \sum_{j=1}^{N} a_{ij}(x_{i} - x_{j})$$

$$\dot{\eta}_{i} = (I_{n} \otimes F)\eta_{i} + (I_{n} \otimes G)u_{i}$$

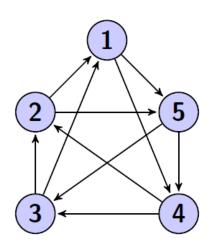
$$u_{i} = -\alpha\nabla f_{i}(x_{i}) - v_{i} - \beta \sum_{j=1}^{N} a_{ij}(x_{i} - x_{j})$$
optimal term
$$-(I_{n} \otimes \Psi)\eta_{i}$$
internal model term

Main Results

- The exact optimization can be achieved with known disturbance frequency by internal model (Control Theory & Technology, 2014)
- It is also achieved semi-globally with unknown frequency by adaptive internal model (CCC 2014)
- The agent dynamics can be extended to a nonlinear case (IEEET-Cybernetics, 2015)
- Event-triggered design for both communication and gradient measurement (IET CTA, 2016)

Simulation (5 agents)

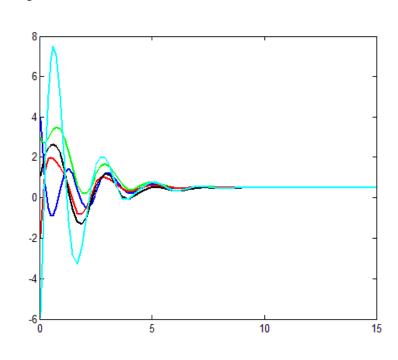
Topology and error trajectories



$$f_1(x) = (x+2)^2, \quad f_2(x) = (x-5)^2$$

 $f_3(x) = x^2 \ln(1+x^2) + x^2$

$$f_4(x) = \frac{x^2}{\sqrt{x^2 + 1}} + x^2, \quad f_5(x) = \frac{x^2}{\ln(2 + x^2)}$$



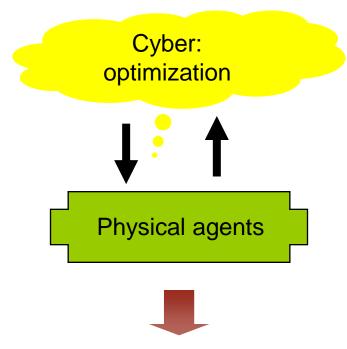
3.4 Nonlinear/High-order Agent

Motivation:

- Integration of control and optimization
- Cyber optimization solved by physical systems

Results:

- 1. Euler-Lagrangian (EL) systems: nonlinear second order systems
- 2. High order linear systems → special nonlinear systems



Distributed optimization as cyber-physical systems ...

Optimization of EL systems

Mechanical systems in the Euler-Lagrange form:

$$M_i(q_i)\ddot{q}_i + C_i(q_i,\dot{q}_i)\dot{q}_i = \tau_i$$

N heterogeneous agents with uncertain parameters Distributed optimization control design for EL systems:

$$\tau_i = -k\dot{q}_i - \alpha\nabla f_i(q_i) - k\sum_{j \in N_i} a_{ij} (q_i - q_j) - kv_i$$

$$\dot{v}_i = \sum_{j \in N_i} a_{ij} \left(q_i - q_j \right)$$

Task: tracking, formation, coverage Constraint: obstacle, energy, resource ...

Results for EL systems

- Basic assumptions: Strong convexity & Undirected graph
- Result 1 (Unmanned Systems 2016): Lipschitz of gradient → semi global convergence (exponential).
- Result 2 (Automatica 2017): Global Lipschitz of gradient → global convergence (exponential) (optimization of double integrator + tracking control of EL systems
- Result 3 (Kybernetika 2017): Event-triggered optimization design for EL systems
- Result 4 (IFAC conference 2016): Optimization design with kinematic constraints (saturation of velocity and acceleration)

High order system

For agents in the form of *n*-th integrator: $x_i^{(n-1)} = v_i$

The algorithm for each agent:

$$v_{i} = -\sum_{i=1}^{n-1} k_{n-i} x_{i}^{(i)} - \beta \sum_{j \in N_{i}} a_{ij} (x_{i} - x_{j}) - \alpha \nabla f_{i}(x_{i}) - w_{i}$$

$$\dot{w_i} = \alpha \beta \sum_{j \in N_i} a_{ij} \left((x_i - x_j) + \sum_{i=1}^{n-1} (x_i^{(i)} - x_j^{(i)}) \right),$$

Results: strong convexity + undirected graph + global Lipschitz → exponential convergence

minimum phase nonlinear systems and observer-based output feedback design

4. Conclusions

- Distributed optimization: optimization algorithms based on local information → scalability, reliability, and maybe security ...
- Challenges: operations research + control systems
 +complex network +computational complexity + ...
- Applications: estimation (sensor), simultaneous routing & resource allocation (wireless communication), opinion dynamics (social networks), intersection computation (computer),

Research framework

	constraint	uncertainty	dynamics
Phy sical Contr	Non-holonomic, saturation, event-based	Identification, adaptive con., robust con.	Stochastic, time-varying, nonlinear
Optim Cyber —	Inequality, bounded set, equality	Data-based, online regret, robust opti.	High order, multi- scale,
Netwo	communication, environment, energy	Survivability, security, failure	Link dynamics, split/merge, switching

Some recent results for MAS

- Distributed optimization (IEEE TAC 2013, 2014, 2016; SCL 2013, 2015; IEEE T-Cybernetics 2015; SIAM Con. & Opti. 2016; Automatica 2016a, 2016b, 2017)
- Containment control & multiple leaders (Automatica 2014)
- Distributed output regulation (IEEE TAC 2013, 2014, 2016; Automatica 2015; IJRNC 2013): Internal model based design
- Attitude synchronization and formation (Automatica 2014)
- Coverage: cooperative sweeping (Automatica 2013)
- Distributed Kalman filter (IEEE TAC 2013)
- Quantization in control and optimization (IEEE TCNS 2014, IEEE TAC 2016)
- Target surrounding (IEEE TAC 2015)
- Opinion dynamics (Physica A 2013, Automatica 2016)
-

Thank you!