

Censor, Sketch, and Validate for Learning from Large-Scale Data

Georgios B. Giannakis

Acknowledgments: D. Berberidis, F. Sheikholeslami, P. Traganitis; and Prof. G. Mateos NSF 1343860, 1442686, 1514056, NSF-AFOSR 1500713, MURI-FA9550-10-1-0567, and NIH 1R01GM104975-01

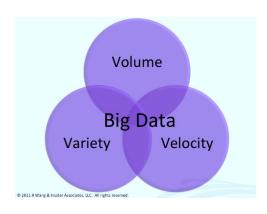
ISR, U. of Maryland March 4, 2016

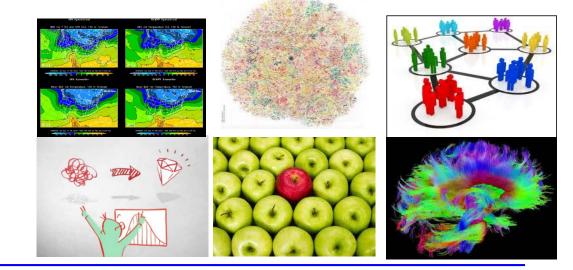
Learning from "Big Data"

- Challenges
 - > Big size ($D \gg \text{and/or } N \gg$)
 - Fast streaming
 - Incomplete
 - Noise and outliers

- Opportunities in key tasks
 - Dimensionality reduction
 - Online and robust regression, classification and clustering
 - Denoising and imputation

Internet





Roadmap

- Context and motivation
- □ Large-scale linear regressions
 - Random projections for data sketching
 - Adaptive censoring of uninformative data
 - Tracking high-dimensional dynamical data
- Large-scale nonlinear function approximation
- Large-scale data and graph clustering
- Leveraging sparsity and low rank for anomalies and tensors
- Closing comments

Random projections for data sketching

Ordinary least-squares (LS) Given $\mathbf{y} \in \mathbb{R}^D$, $\mathbf{X} \in \mathbb{R}^{D \times p}$ $\boldsymbol{\theta}_{\mathrm{LS}} := \arg \min_{\boldsymbol{\theta} \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2^2$ If $\mathrm{rank}(\mathbf{X}) = p \implies \boldsymbol{\theta}_{\mathrm{LS}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$

Given SVD incurs complexity $\mathcal{O}(Dp^2)$ **Q:** What if $D \gg p$?

 \Box LS estimate via (pre-conditioning) random projection matrix $\mathbf{R}_{d \times D}$

$$\check{oldsymbol{ heta}}_{ ext{LS}} = rg \min_{oldsymbol{ heta} \in \mathbb{R}^p} \| \mathbf{S}_d \mathbf{H}_D \mathbf{B}_D (\mathbf{y} - \mathbf{X} oldsymbol{ heta}) \|_2^2 \qquad d \ll L$$

□ For
$$d = \mathcal{O}(p \log p \cdot \log D + \epsilon^{-1} D \log p)$$
 complexity reduces to $o(D \otimes p)$

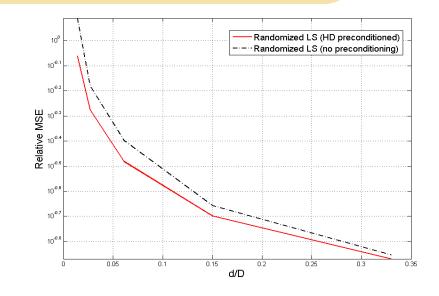
M. W. Mahoney, Randomized Algorithms for Matrices and Data, *Foundations and Trends In Machine Learning*, vol. 3, no. 2, pp. 123-224, Nov. 2011.

Performance of randomized LS

Based on the Johnson-Lindenstrauss lemma [JL'84]

Theorem. For any
$$\epsilon > 0$$
, if $d = \mathcal{O}(p \log p/\epsilon^2)$ then w.h.p.
 $\|\mathbf{y} - \mathbf{X}\check{\boldsymbol{\theta}}_{\mathrm{LS}}\|_2 \leq (1+\epsilon)\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}_{\mathrm{LS}}\|_2$
 $\|\boldsymbol{\theta}_{\mathrm{LS}} - \check{\boldsymbol{\theta}}_{\mathrm{LS}}\|_2 \leq \sqrt{\epsilon} \kappa(\mathbf{X}) \sqrt{\gamma^{-2} - 1} \|\boldsymbol{\theta}_{\mathrm{LS}}\|_2$
 $\kappa(\mathbf{X})$ condition number of \mathbf{X} ; and $\gamma = \|\hat{\mathbf{y}}\|_2 / \|\mathbf{y}\|$

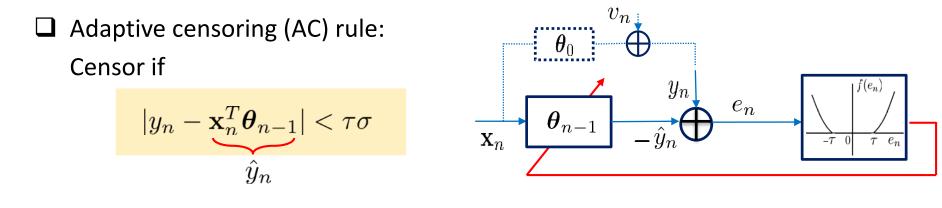
- Uniform sampling versus
 Hadamard preconditioning
 - ➤ D = 10,000 and p = 50
 - Performance depends on X



D. P. Woodruff, "Sketching as a Tool for Numerical Linear Algebra," *Foundations and Trends in Theoretical Computer Science*, vol. 10, pp. 1-157, 2014.

Online censoring for large-scale regressions

Key idea: Sequentially test and update LS estimates **only** for informative data



Criterion

$$f_n(\boldsymbol{\theta}) = f(e_n) := \begin{cases} \frac{e_n^2}{2} - \frac{\tau^2 \sigma^2}{2} & |e_n| > \tau \sigma \\ 0 & |e_n| \le \tau \sigma \end{cases}$$

] Threshold controls avg. data reduction: $\tau \approx Q^{-1}(\frac{1}{2}(1-\frac{d}{D})), D \gg p$

D. K. Berberidis, G. Wang, G. B. Giannakis, and V. Kekatos, "Adaptive Estimation from Big Data via Censored Stochastic Approximation," *Proc. of Asilomar Conf.*, Pacific Grove, CA, Nov. 2014.

6

Censoring algorithms and performance

□ AC least mean-squares (LMS)

$$\hat{\boldsymbol{\theta}}_n = \hat{\boldsymbol{\theta}}_{n-1} + \mu(1 - c_n) \mathbf{x}_n (y_n - \mathbf{x}_n^T \hat{\boldsymbol{\theta}}_{n-1}) \qquad c_n = \begin{cases} 1, & \frac{|y_n - \mathbf{x}_n^T \boldsymbol{\theta}_{n-1}|}{\sigma} \leq \tau \\ 0, & \text{otherwise.} \end{cases} \leq \tau$$

 \Box AC recursive least-squares (RLS) at complexity $\mathcal{O}(dp^2)$

$$\hat{\boldsymbol{\theta}}_{n} = \hat{\boldsymbol{\theta}}_{n-1} + (1 - \boldsymbol{c}_{n}) \frac{1}{n} \hat{\mathbf{C}}_{n} \mathbf{x}_{n} (y_{n} - \mathbf{x}_{n}^{T} \hat{\boldsymbol{\theta}}_{n-1})$$

$$\hat{\mathbf{C}}_{n} = \frac{n}{n-1} \left[\hat{\mathbf{C}}_{n-1} - (1 - \boldsymbol{c}_{n}) \hat{\mathbf{C}}_{n-1} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \hat{\mathbf{C}}_{n-1} \left(n - 1 + \mathbf{x}_{n}^{T} \hat{\mathbf{C}}_{n-1} \mathbf{x}_{n} \right)^{-1} \right]$$

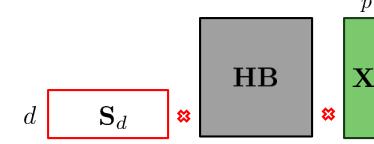
$$\begin{aligned} & \operatorname{Proposition 1 \ AC-RLS} \quad \frac{1}{n} \operatorname{tr} \left(\mathbf{R}_{\mathbf{x}}^{-1} \right) \sigma^{2} \leq \mathbf{E} \left[\| \hat{\boldsymbol{\theta}}_{n} - \boldsymbol{\theta}_{0} \|_{2}^{2} \right] \leq \frac{1}{n} \frac{\operatorname{tr} \left(\mathbf{R}_{\mathbf{x}}^{-1} \right) \sigma^{2}}{2Q(\tau)} \ \forall n \geq k \\ & \operatorname{AC-LMS} \mathbb{E} \left[\| \hat{\boldsymbol{\theta}}_{n} - \boldsymbol{\theta}_{0} \|_{2}^{2} \right] \leq \frac{\exp(4L^{2}/\alpha^{2})}{n^{2}} \left(\| \boldsymbol{\theta}_{1} - \boldsymbol{\theta}_{0} \|_{2}^{2} + \frac{\Delta}{L^{2}} \right) + 8 \frac{\Delta}{\alpha^{2}} \frac{\log n}{n} \end{aligned}$$

D. K. Berberidis, and G. B. Giannakis, "Online Censoring for Large-Scale Regressions," *IEEE Trans. on SP*, July 2015 (submitted); also *Proc. of ICASSP*, Brisbane, Australia, April 2015.

Censoring vis-a-vis random projections

□ RPs for linear regressions [Mahoney '11], [Woodruff'14]

> Data-agnostic reduction; preconditioning costs $O(pD \log D)$



- □ AC for linear regressions
 - Data-driven measurement selection
 - Suitable also for streaming data
 - Minimal memory requirements
- □ AC interpretations
 - Reveals 'causal' support vectors
 - > Censors data with low LLRs: $\log[p(y_n; \theta_o) / p(y_n; \theta_{n-1})] < \tau$

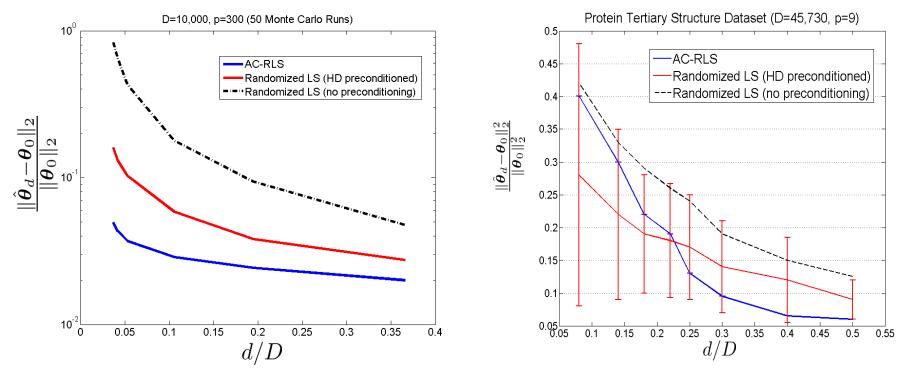
$$\begin{array}{c}
\mathbf{A} \quad \mathbf{y} \\
\mathbf{x} \\
\mathbf$$

 $D \implies \hat{\boldsymbol{\theta}}_d = \arg\min_{\boldsymbol{\theta}} \|\mathbf{S}_d \mathbf{HB}(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})\|_2^2$

Performance comparison

Synthetic: *D=10,000, p=300* (50 MC runs); **Real data**: θ_0 , σ estimated from full set

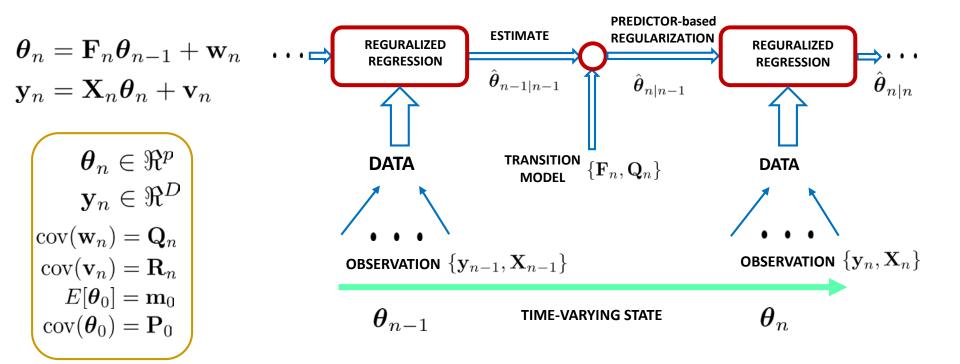
Highly non-uniform data



AC-RLS outperforms alternatives at comparable complexity

 \Box Robust to uniform (all "important") rows of X ; Q: Time-varying parameters?

Tracking high-dimensional dynamical data



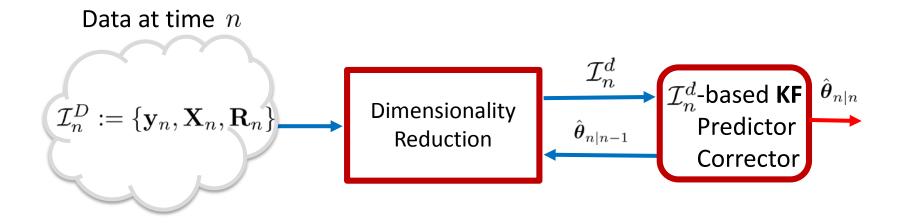
Low-complexity, reduced-dimension KF with large-scale ($D \gg p$) correlated data Prediction: $\hat{\theta}_{n|n-1} = \mathbf{F}_n \hat{\theta}_{n-1|n-1}$ $\mathbf{P}_{n|n-1} := \operatorname{Cov}(\hat{\theta}_{n|n-1})$ Correction: $\hat{\theta}_{n|n} = \arg \min_{\boldsymbol{\theta}} \|\mathbf{y}_n - \mathbf{X}_n \boldsymbol{\theta}\|_{\mathbf{R}_n^{-1}}^2 + \|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_{n|n-1}\|_{\mathbf{P}_{n|n-1}^{-1}}^2$

Sketching for dynamical processes

 $\hfill\blacksquare$ Weighted LS correction incurs prohibitive complexity for $D\gg p$

- Related works either costly at fusion center [Varshney etal'14]
- Data-agnostic with model-driven ensemble optimality [Krause-Guestrin'11]

D Our economical KF: Sketch informative $\mathcal{I}_n^d := \{\check{\mathbf{y}}_n, \check{\mathbf{X}}_n, \check{\mathbf{R}}_n\}$



11

RP-based KF

- □ Same predictor and sketched corrector
- □ RP-based sketching

$$\mathbf{L}_d imes \mathbf{y}_n = \mathbf{X}_n oldsymbol{ heta}_n + \mathbf{v}_n$$

$$\check{\mathbf{y}}_n = \check{\mathbf{X}}_n \boldsymbol{\theta}_n + \check{\mathbf{v}}_n$$
$$\operatorname{cov}(\check{\mathbf{v}}_n) = \check{\mathbf{R}}_n = \mathbf{L}_d \mathbf{R}_n \mathbf{L}_d^T$$

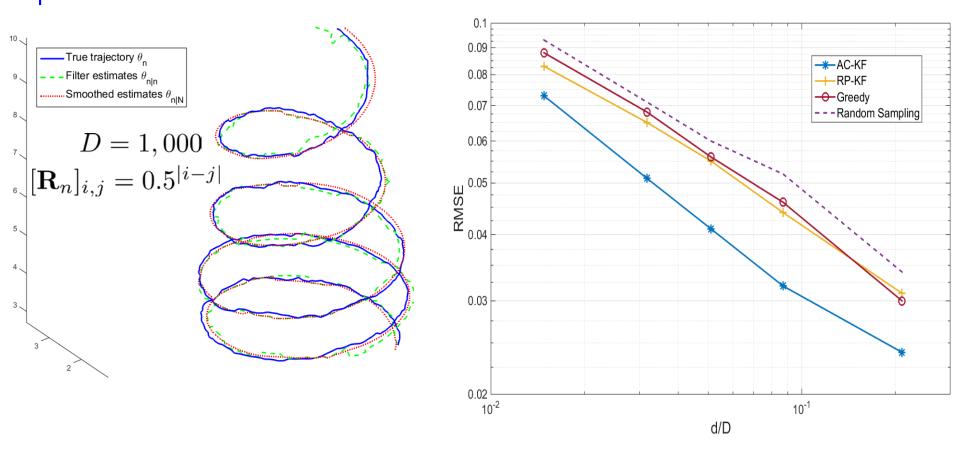
Sketched correction

$$\begin{aligned} \hat{\boldsymbol{\theta}}_{n|n} &= \hat{\boldsymbol{\theta}}_{n|n-1} + \check{\mathbf{K}}_n(\check{\mathbf{y}}_n - \check{\mathbf{X}}_n \hat{\boldsymbol{\theta}}_{n|n-1}) \\ \check{\mathbf{K}}_n &= \mathbf{P}_{n|n-1} \check{\mathbf{X}}_n^T \left(\check{\mathbf{X}}_n \mathbf{P}_{n|n-1} \check{\mathbf{X}}_n^T + \check{\mathbf{R}}_n \right)^{-1} \\ \mathbf{P}_{n|n} &= \left(\mathbf{I}_p - \check{\mathbf{K}}_n \check{\mathbf{X}}_n \right) \mathbf{P}_{n|n-1} \end{aligned}$$

Proposition 2. With
$$\mathbf{b}_n := [\mathbf{P}_{n|n-1}^{-1/2} \hat{\boldsymbol{\theta}}_{n|n-1}, \sigma_n^{-1} \mathbf{y}_n^T]^T$$
, $\mathbf{A}_n := [\mathbf{P}_{n|n-1}^{-1/2}, \sigma_n^{-1} \mathbf{X}_n^T]^T = \mathbf{U}_n \boldsymbol{\Sigma}_n \mathbf{V}_n^T$,
 $\mathbf{R}_n = \sigma_n^2 \mathbf{I}_D$, if $\|\mathbf{U}_n \mathbf{U}_n^T \mathbf{b}_n\|_2 \ge \gamma \|\mathbf{b}_n\|_2$ for $\gamma \in (0, 1]$, $d = \mathcal{O}(p \ln(pD)/\epsilon)$, then whp
 $\|\hat{\boldsymbol{\theta}}_{n|n} - \hat{\boldsymbol{\theta}}_{n|n}^{\star}\|_2 \le \sqrt{\epsilon} \left(\kappa(\mathbf{A}_n)\sqrt{\gamma^{-2}-1}\right) \|\hat{\boldsymbol{\theta}}_{n|n}^{\star}\|_2$

D. K. Berberidis and G. B. Giannakis, "Data sketching for tracking large-scale dynamical processes," *Proc. of Asilomar Conf.*, Pacific Grove, CA, Nov. 2015.

Simulated test



□ AC-KF outperforms RP-KF and KF with greedy design of experiments (DOE)!

 \square AC-KF complexity is $\mathcal{O}(Dp)$ much lower than $\mathcal{O}(Ddp^2)$ of greedy DOE-KF

A. Krause, C. Guestrin. "Submodularity and its Applications in Optimized Information Gathering: An Introduction," *ACM Trans. on Intelligent Systems and Technology*, vol. 2, July 2011.

Roadmap

- Context and motivation
- □ Large-scale linear regressions
- Large-scale nonlinear function approximation
 - Online kernel regression on a budget
 - Online kernel classification on a budget
- □ Large-scale data and graph clustering
- Leveraging sparsity and low rank for anomalies and tensors
- Closing comments

Linear or nonlinear functions for learning?

D Regression or classification: Given $\{y_n, \mathbf{x}_n\}_{n=1}^N$, find $\hat{f}: \mathbf{x} \to y = f(\mathbf{x}) + v$

 \Box Lift via nonlinear map $\mathbf{x} \to \boldsymbol{\phi}(\mathbf{x})$ to linear $y_n = \boldsymbol{\phi}^{\top}(\mathbf{x}_n)\bar{\boldsymbol{\theta}} + v_n$

- Pre-select kernel (inner product) function $\mathbf{x}_{i}^{\top}\mathbf{x}_{j} \rightarrow \frac{k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \boldsymbol{\phi}^{\top}(\mathbf{x}_{i})\boldsymbol{\phi}(\mathbf{x}_{j})}{e.g., \ k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \exp(\frac{-\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2}}{2\sigma^{2}})} \xrightarrow{\mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times}} \left(\underbrace{\mathbf{x}_{i}^{\times} \mathbf{x}_{i}}_{\mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times}} \right) = \exp(\frac{-\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2}}{2\sigma^{2}}) \xrightarrow{\mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times}} \left(\underbrace{\mathbf{x}_{i}^{\times} \mathbf{x}_{i}}_{\mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times}} \right) = \exp(\frac{-\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2}}{2\sigma^{2}}) \xrightarrow{\mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times}} \left(\underbrace{\mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times}}_{\mathbf{x}_{i}^{\times} \mathbf{x}_{i}^{\times}} \right)$ \geq
 - **RKHS** basis expansion

 $\hat{f}(\mathbf{x}) = \sum_{n=1}^{N} \alpha_n k(\mathbf{x}, \mathbf{x}_n)$

 $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$ $(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{(2)}x_1x_2, x_2^2)$

Kernel-based nonparametric ridge regression

$$\mathbf{y} = \mathbf{K} \boldsymbol{\alpha} + \mathbf{v} \rightarrow \boldsymbol{\alpha} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$$

 \blacktriangleright Memory requirement $\mathcal{O}(N^2)$, and complexity $\mathcal{O}(N^3)$

Low-rank lifting function approximation

Low-rank (r) subspace learning [Mardani-Mateos-GG'14] here on lifted data

$$\min_{\mathbf{A},\{\mathbf{q}_{\nu}\}_{\nu=1}^{n}} \frac{1}{n} \sum_{\nu=1}^{n} \left(\|\boldsymbol{\phi}(\mathbf{x}_{\nu}) - \boldsymbol{\Phi}_{n} \mathbf{A} \mathbf{q}_{\nu}\|_{\mathcal{H}}^{2} + \lambda \|\mathbf{q}_{\nu}\|_{2}^{2} + \eta \|\mathbf{a}_{\nu}\|_{2} \right)$$

$$\ell_{n}(\mathbf{x}_{\nu}; \mathbf{A}, \mathbf{q}_{\nu}; \mathbf{x}_{1:n}) \coloneqq \mathbf{group-sparsity}$$

$$k(\mathbf{x}_{\nu}, \mathbf{x}_{\nu}) - 2\mathbf{k}_{\nu}^{\top} \mathbf{A} \mathbf{q}_{\nu} + \mathbf{q}_{\nu}^{\top} \mathbf{A}^{\top} \mathbf{K}_{n} \mathbf{A} \mathbf{q}_{\nu}$$

$$\mathbf{A} \coloneqq \begin{bmatrix} \mathbf{a}_{1}^{\top} \\ \mathbf{a}_{2}^{\top} \\ \vdots \\ \mathbf{c}_{n}^{\top} \end{bmatrix}$$

 \square BCD solver: at Iteration k+1, $\mathbf{Q}[k]$ and $\mathbf{A}[k]$ available

S1. Find projection coefficients via regularized least-squares

$$\mathbf{q}_i[k+1] = (\mathbf{A}^{\top}[k]\mathbf{K}\mathbf{A}[k] + \lambda \mathbf{I}_r)^{-1}\mathbf{A}^{\top}[k]\mathbf{k}_i$$

S2. Find subspace factor via (in) exact group shrinkage solutions

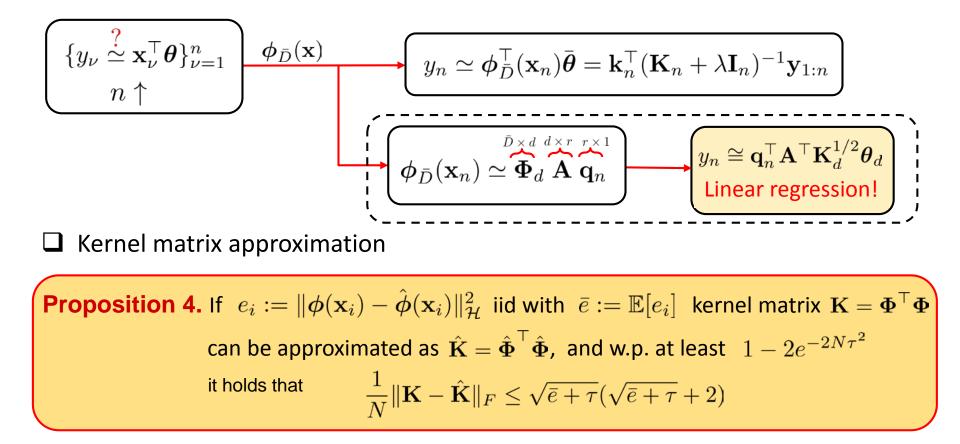
$$\mathbf{a}_{i}[k+1] = \arg\min_{\mathbf{a}_{i}} \mathbf{a}_{i}^{\top} \mathbf{H}_{i} \mathbf{a}_{i} + \mathbf{p}_{i}^{\top} \mathbf{a}_{i} + (\eta/n) \|\mathbf{a}_{i}\|_{2}$$

> Nystrom approximation: special case with $\mathbf{a}_{\nu}^{\top} = \mathbf{0}^{\top}$ or $\mathbf{a}_{\nu}^{\top} = \mathbf{e}_{i}^{\top}$

Low-rank subspace tracking via stochastic approximation (also with a "budget")

F. Sheikholeslami and G. B. Giannakis, "Scalable Kernel-based Learning via Low-rank Approximation of Lifted Data," *Proc. of Intl. Conf. on Machine Learning*, New York City, submitted Feb. 2016.

Online kernel regression and classification

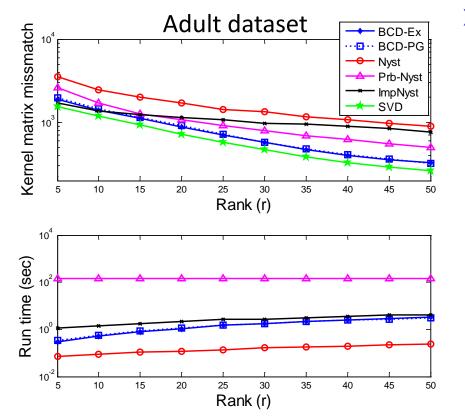


High-performance online kernel-based feature extraction on a budget (OK-FEB)

bounds also on support vector machines for regression and classification

Kernel approximation via low-rank features

- Infer annual income exceeds 50K using as features (education, age, gender,...)
- > $N_{\text{Adult}} = 48,000$



80%-20% split for training-testing

>
$$D_{\text{Adult}} = 123, \ K = 2$$

• Run time for **OK-FEB+LSVM** vs **K-SVM**

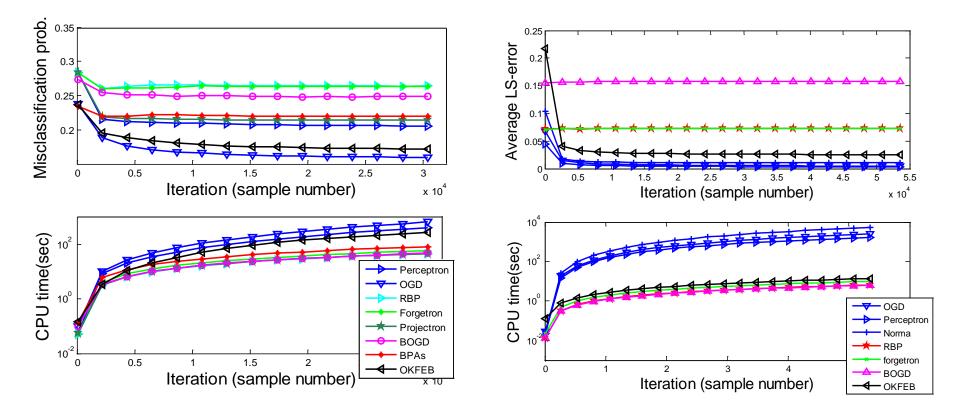
Dataset	Adult
	r = 20
$t_{OK-FEB}(s)$	7
$\mathrm{t_{FE}(s)}$	4
$t_{LSVM-train}(s)$	0.06
$t_{total-train}(s)$	9
$t_{LSVM-test}(s)$	0.005
$t_{\rm KSVM-train}(s)$	34
$t_{\rm KSVM-test}(s)$	5

□ OK-FEB LSVM outperforms K-SVM (LibSVM) in both training and testing phases

C. C. Chang and C. J. Lin, "LIBSVM: A library for support vector machines," *ACM Trans. on Intelligent Systems and Technology*, vol. 2, pp.1-27, April 2011.

OK-FEB with linear classification and regression

☐ Slice dataset (regression)



□ OK-FEB LSVM outperforms budgeted K-SVM/SVR variants in classification/regression

F. Sheikholeslami, D. K. Berberidis, and G. B. Giannakis, "Kernel-based Low-rank Feature Extraction on a Budget for Big Data Streams," *Proc. of Globalsip Conf.*, Dec. 14-16, 2015; also in arxiv:1601.07947.¹⁹

Roadmap

- Context and motivation
- □ Large-scale linear regressions
- Large-scale nonlinear function approximation
- □ Large-scale data and graph clustering
 - Random sketching and validation (SkeVa)
 - SkeVa-based spectral and subspace clustering
- Leveraging sparsity and low rank for anomalies and tensors
- Closing comments

Big data clustering

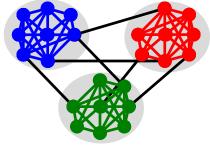
 \Box Clustering: Given $\{\mathbf{x}_n\}_{n=1}^N$, or their distances, assign them to K clusters

$$\min_{\mathbf{C},\mathbf{\Pi}} \sum_{n} \|\boldsymbol{x}_{n} - \mathbf{C}\boldsymbol{\pi}_{n}\|_{2}^{2} + \lambda \|\boldsymbol{\pi}_{n}\|_{1}$$

s.to $\mathbf{1}^{\top} \boldsymbol{\pi}_{n} = 1, \ \boldsymbol{\pi}_{n} \succeq \mathbf{0}, \ n = 1, ...N$
$$\mathbf{C} := [\boldsymbol{c}_{1}, ..., \boldsymbol{c}_{K}]$$

Centroids
$$\mathbf{\Pi} := [\boldsymbol{\pi}_{1}, ..., \boldsymbol{\pi}_{n}]$$

Assignments



➢ Hard clustering: $\pi_n \in \{0,1\}^K$ NP-hard!

$$\succ$$
 Soft clustering: $oldsymbol{\pi}_n \in [0,1]^K$

K-means: locally optimal, but simple; complexity O(*NDKI*)

Probabilistic clustering amounts to pdf estimation

- Gaussian mixtures (EM-based estimation)
- Regularizer can account for unknown K

$$p(\boldsymbol{x}; \boldsymbol{\pi}, \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \underbrace{p(\boldsymbol{x}; \boldsymbol{\theta}_k)}_{p(\boldsymbol{x}|\mathcal{C}_k)}$$

Q. What if $N \gg$ and/or $D \gg$?

A1. Random Projections: Use dxD matrix R to form RX; apply K-means in d-space

C. Boutsidis, A. Zousias, P. Drineas, and M. W. Mahoney, "Randomized dimensionality reduction for K-means clustering," *IEEE Trans. on Information Theory*, vol. 61, pp. 1045-1062, Feb. 2015.

Random sketching and validation (SkeVa)

 \square Randomly select $d \ll D$ "informative" dimensions

Algorithm For $r = 1, ..., R_{max}$

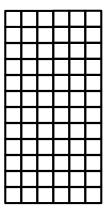
- $\bigstar \text{ Run k-means on } \check{\mathbf{X}}^{(r)} \to \{\check{\mathcal{C}}_k^{(r)}\}_{k=1}^K, \{\check{\mathbf{c}}_k^{(r)}\}_{k=1}^K$
- ♦ Re-sketch $d' \leq D d$ dimensions $\rightarrow \check{\mathbf{X}}^{(r')} \in \mathbb{R}^{d' \times N}$
- $\textbf{ & Augment centroids } \bar{\boldsymbol{c}}_{k}^{(r)} := [\check{\boldsymbol{c}}_{k}^{(r)\top}, \check{\boldsymbol{c}}_{k}^{(r')\top}]^{\top} \quad \forall k, \ \check{\boldsymbol{c}}_{k}^{(r')} = \frac{1}{|\check{\mathcal{C}}_{k}^{(r)}|} \sum_{\check{\boldsymbol{x}}_{n}^{(r)} \in \check{\mathcal{C}}_{k}^{(r)}} \check{\boldsymbol{x}}_{n}^{(r')}$

♦ Validate using consensus set $S^{(r)} = \{ \boldsymbol{x}_n | \check{\boldsymbol{x}}_n^r \in \check{\mathcal{C}}_{k_1}^{(r)}, \, \bar{\boldsymbol{x}}_n^r \in \bar{\mathcal{C}}_{k_2}^{(r)}, \, \text{and} \, k_1 = k_2 \}$

$$\succ r^* = \operatorname{argmax}_r f(\mathcal{S}^{(r)})$$

 \Box Similar approaches possible for $N \gg \Box$ Sequential and kernel variants available

P. A. Traganitis, K. Slavakis, and G. B. Giannakis, "Sketch and Validate for Big Data Clustering," *IEEE Journal on Special Topics in Signal Processing*, vol. 9, pp. 678-690, June 2015.



Divergence-based SkeVa

Idea: "Informative" draws yield reliable estimates of multimodal data pdf!

 \blacktriangleright Compare pdf estimates $\hat{p}(\mathbf{x}) := rac{1}{
u} \sum_{n=1}^{\nu} \kappa(\mathbf{x}_n, \mathbf{x})$ via "distances"

• Integrated square-error (ISE) $\Delta_{ISE}(p_1||p_2) := \int (p_1(\mathbf{x}) - p_2(\mathbf{x}))^2 d\mathbf{x}$

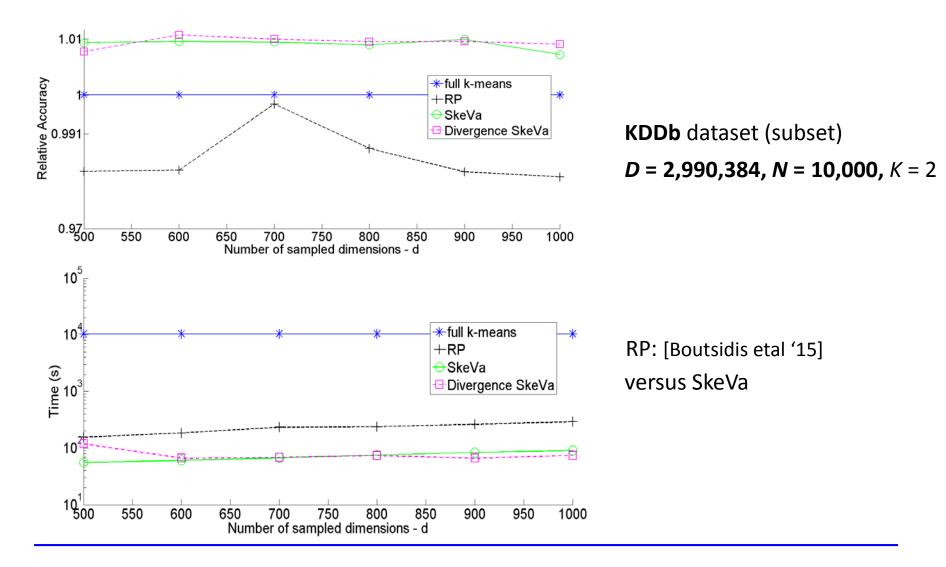
$$\int p_1(\mathbf{x}) p_2(\mathbf{x}) d\mathbf{x} = \frac{1}{\nu_1 \nu_2} \mathbf{1}^\top \mathbf{K}^{(p_1, p_2)} \mathbf{1}$$

 \Box For $r = 1, ..., R_{\max}$

♦ Sketch ν points → X̃^(r) ∈ ℝ^{D×ν} → p̃^(r)(x) := $\frac{1}{ν} \sum_n κ(x_n^{(r)}, x)$

★ If
$$\Delta(\check{p}^{(r)}||\check{p}^{0}) \geq \Delta_{\max}$$
, then re-sketch ν' points
★ If $\Delta(\check{p}^{(r)}||\check{p}^{(r')}) \leq \Delta_{\min}$
✓ $r^* := r$
✓ Cluster $\check{\mathbf{X}}^{(r^*)} \rightarrow \{\check{\mathcal{C}}_{k}^{(r^*)}\}_{k=1}^{K}$; associate $\mathbf{X}/\check{\mathbf{X}}^{(r^*)}$ to $\{\check{\mathcal{C}}_{k}^{(r^*)}\}_{k=1}^{K}$

RP versus SkeVa comparisons



Performance and SkeVa generalizations

Di-SkeVa is fully parallelizable

Q. How many samples/draws SkeVa needs?

A. For independent draws, R_{\max} can be lower bounded

Proposition 5. For a given probability π_s of a successful Di-SkeVa draw r quantified by pdf dist. Δ , the number of draws is lower bounded w.h.p. q by $R_{\max} \ge \frac{\log(1 - \pi_s)}{\log(1 - \Delta_0^{-1}E[\Delta(p_0, \hat{p})])}$

Λ

$$\hat{L}^{(r)}(p_0, \hat{p}) = \frac{1}{r} \sum_{i=1}^r \Delta(p_0^{(i)}, \hat{p}^{(i)}) \qquad \hat{\Delta}_0^{(r)} = (\sqrt{-\frac{2\log(q/2)}{n\sigma_\kappa(4\pi)^{D/2}}} + \bar{\Delta}^{(r)}(\tilde{p}, \hat{p}) + \bar{\Delta}^{(r)}(\tilde{p}, p_0))^2$$

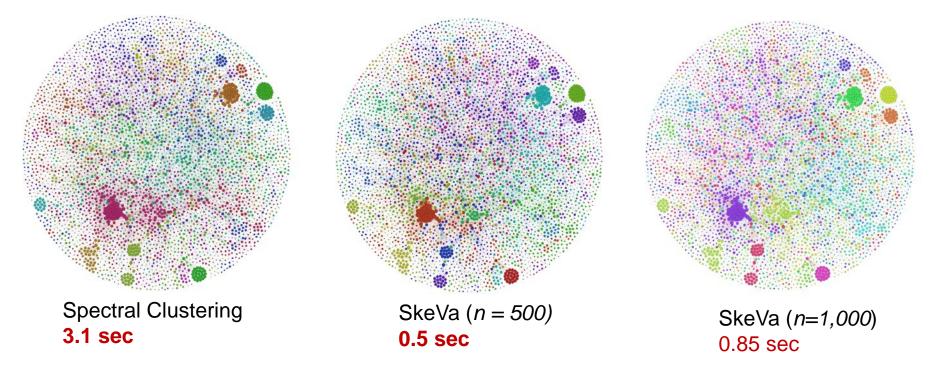
□ SkeVa module can be used for **spectral clustering** and **subspace clustering**

Identification of network communities

□ Kernel K-means instrumental for partitioning of large graphs (spectral clustering)

Relies on graph Laplacian to capture nodal correlations

arXiv collaboration network (General Relativity): N=4,158 nodes, 13,422 edges, K = 36 [Leskovec'11]



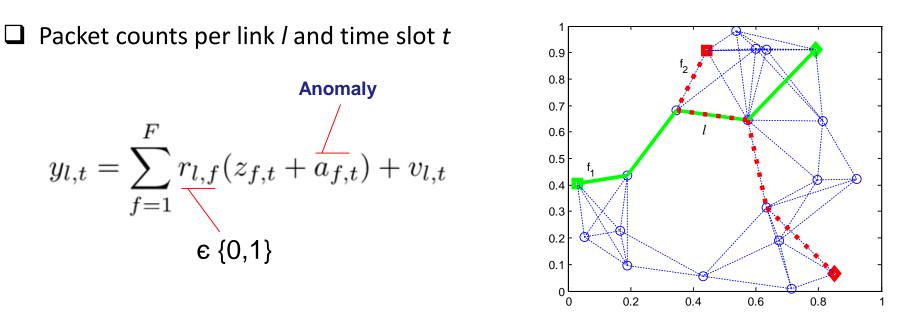
 \Box For $D \gg$, kernel-based SkeVa reduces complexity to $\mathcal{O}(d)$

P. A. Traganitis, K. Slavakis, and G. B. Giannakis, "Spectral clustering of large-scale communities via random sketching and validation," *Proc. Conf. on Info. Science and Systems,* Baltimore, Maryland, March 18-20, 2015. ²⁶

Modeling Internet traffic anomalies

Anomalies: changes in origin-destination (OD) flows [Lakhina et al'04]

- Failures, congestions, DoS attacks, intrusions, flooding
- Graph G (N, L) with N nodes, L links, and F flows (F >> L); OD flow $z_{f,t}$

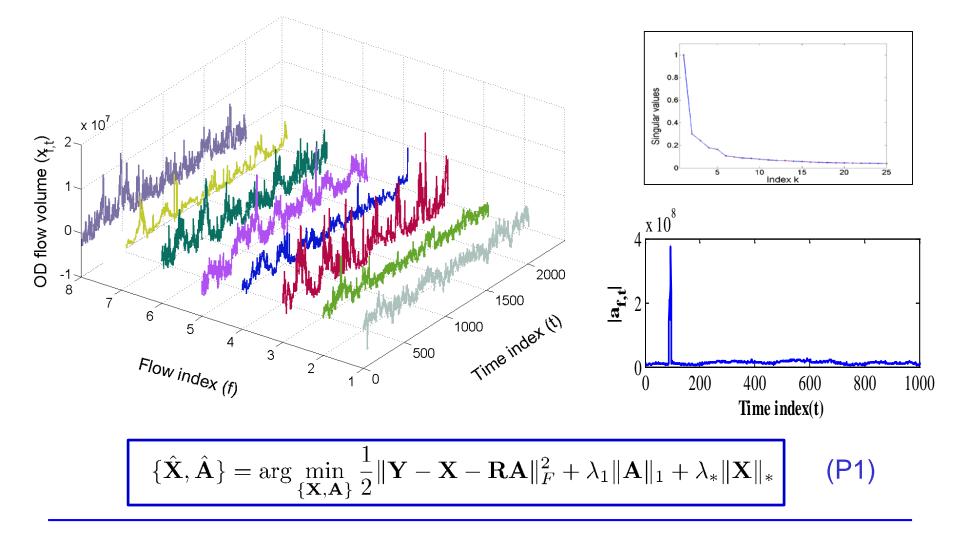


 \Box Matrix model across T time slots: $\mathbf{Y} = \mathbf{R}(\mathbf{Z} + \mathbf{A}) + \mathbf{V}$

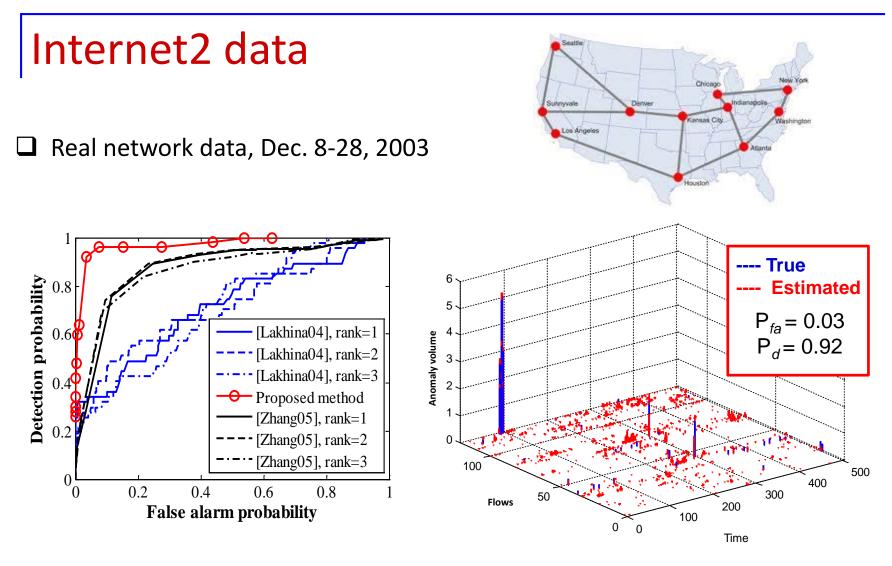
M. Mardani, G. Mateos, and G. B. Giannakis, "Recovery of low-rank plus compressed sparse matrices with application to unveiling traffic anomalies," *IEEE Transactions on Information Theory*, pp. 5186-5205, Aug. 2013. 27

Low-rank plus sparse matrices

Z (and **X**:=**RZ**) low rank, e.g., [Zhang et al'05]; **A** is sparse across time and flows

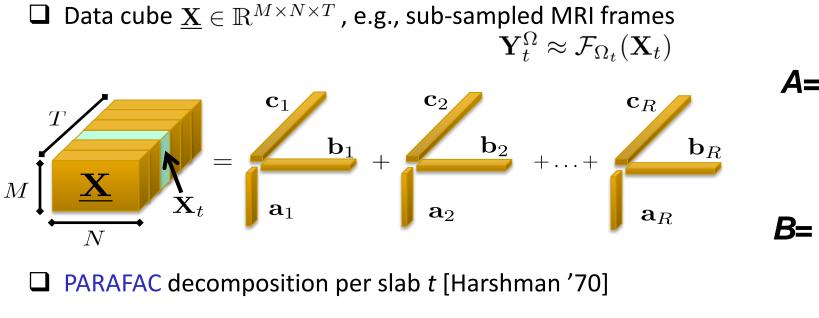


Data: http://math.bu.edu/people/kolaczyk/datasets.html



- Improved performance by leveraging sparsity and low rank
- Succinct depiction of the network health state across flows and time

From low-rank matrices to tensors



$$\mathbf{X}_t = \sum_{r=1}^R \gamma_{t,r} \mathbf{a}_r \mathbf{b}_r^\top = \mathbf{A} \operatorname{diag}(\boldsymbol{\gamma}_t) \mathbf{B}^\top$$

Tensor subspace comprises R rank-one matrices $\{\mathbf{a}_r\mathbf{b}_r^ op\}_{r=1}^R$

Goal: Given streaming $\mathbf{Y}_t^{\Omega} \approx \mathcal{F}_{\Omega_t}(\mathbf{A} \operatorname{diag}(\boldsymbol{\gamma}_t) \mathbf{B}^{\mathsf{T}})$, learn the subspace matrices (\mathbf{A}, \mathbf{B}) recursively, and impute possible misses of \mathbf{Y}_t

J. A. Bazerque, G. Mateos, and G. B. Giannakis, "Rank regularization and Bayesian inference for tensor completion and extrapolation," *IEEE Trans. on Signal Processing*, vol. 61, no. 22, pp. 5689-5703, Nov. 2013.

 \boldsymbol{a}_r

b_r

 $\boldsymbol{\alpha}_i$

 $\boldsymbol{\beta}_i$

Yi

Online tensor subspace learning

Image domain low tensor rank $\mathbf{Y}_t^{\Omega} \approx \mathcal{F}_{\Omega_t}(\mathbf{A} \operatorname{diag}(\boldsymbol{\gamma}_t) \mathbf{B}^{\top})$

$$\begin{aligned} (\hat{\mathbf{A}}_t, \hat{\mathbf{B}}_t) &= \arg\min_{\mathbf{A}, \mathbf{B}} \; \frac{1}{t} \sum_{\tau=1}^t \min_{\boldsymbol{\gamma}_{\tau}} \left\{ \|\mathbf{Y}_{\tau}^{\Omega} - \mathcal{F}_{\Omega_{\tau}}(\mathbf{A} \operatorname{diag}(\boldsymbol{\gamma}_{\tau}) \mathbf{B}^{\top})\|_F^2 + \frac{\lambda}{2} \|\boldsymbol{\gamma}_{\tau}\|^2 \right\} \\ &+ \frac{\lambda}{2t} (\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2) \end{aligned}$$

Tikhonov regularization promotes low rank

Proposition [Bazerque-GG '13]: With $[\boldsymbol{\sigma}]_r = \|\mathbf{a}_r\| \|\mathbf{b}_r\| \|\mathbf{c}_r\|$ $\|\boldsymbol{\sigma}(\underline{X})\|_{2/3}^{2/3} = \min_{\{\mathbf{A}\mathbf{D}_t\mathbf{B}^T = \mathbf{X}_t\}} (\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2 + \|\mathbf{C}\|_F^2)$

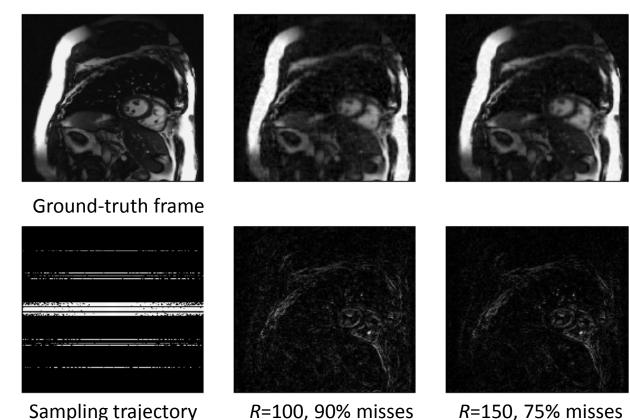
Stochastic alternating minimization; parallelizable across bases

Real-time reconstruction (FFT per iteration) $\hat{\mathbf{X}}_t = \hat{\mathbf{A}}_t \operatorname{diag}(\hat{\gamma}_t) \hat{\mathbf{B}}_t^{\top}$

M. Mardani, G. Mateos, and G. B. Giannakis, "Subspace learning and imputation for streaming big data matrices and tensors," *IEEE Trans. on Signal Processing*, vol. 63, pp. 2663 - 2677, May 2015.

Dynamic cardiac MRI test

in vivo dataset: 256 k-space 200x256 frames



Potential for accelerating MRI at high spatio-temporal resolution

Low-rank $\mathcal{F}_{\Omega_t}(\mathbf{X}_t)$ plus $\mathcal{F}_{\Omega_t}(\mathbf{DS}_t)$ can also capture motion effects

M. Mardani and G. B. Giannakis, "Accelerating dynamic MRI via tensor subspace learning," *Proc. of ISMRM 23rd Annual Meeting and Exhibition*, Toronto, Canada, May 30 - June 5, 2015.

Closing comments

Large-scale learning

- Regression and tracking dynamic data
- Nonlinear non-parametric function approximation
- Clustering massive, high-dimensional data and graphs \geq

Other key Big Data tasks

Visualization, mining, privacy, and security

Enabling tools for Big Data

- Acquisition, processing, and storage
- Fundamental theory, performance analysis decentralized, robust, and parallel algorithms
- Scalable computing platforms

Big Data application domains ...

Sustainable Systems, Social, Health, and Bio-Systems, Life-enriching **Thank You!** Multimedia, Secure Cyberspace, Business, and Marketing Systems ...

K. Slavakis, G. B. Giannakis, and G. Mateos, "Modeling and optimization for Big Data analytics," *IEEE Signal Processing Magazine*, vol. 31, no. 5, pp. 18-31, Sep. 2014.

