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Learning from “Big Data” 

 Big size ( and/or )

 Challenges

 Incomplete

 Noise and outliers

 Fast streaming

 Opportunities in key tasks 
 Dimensionality reduction
 Online and robust

regression, classification  
and clustering

 Denoising and imputation
Internet
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Roadmap

 Closing comments

 Large-scale nonlinear function approximation 

 Large-scale data and graph clustering

 Large-scale linear regressions

 Context and motivation

 Random projections for data sketching 

 Adaptive censoring of uninformative data  

 Tracking high-dimensional dynamical data 

 Leveraging sparsity and low rank for anomalies and tensors
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Random projections for data sketching

 SVD incurs complexity                 Q: What if                ?  

M. W. Mahoney, Randomized Algorithms for Matrices and Data, Foundations and Trends
In Machine Learning, vol. 3, no. 2, pp. 123-224, Nov. 2011.

If

Ordinary least-squares (LS) Given

 For                                                                          complexity reduces to                           

 LS estimate via (pre-conditioning) random projection matrix Rd x D
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Performance of randomized LS

 Uniform sampling versus 
Hadamard preconditioning 

 D = 10,000 and p =50
 Performance depends on X 

D. P. Woodruff, ''Sketching as a Tool for Numerical Linear Algebra,''
Foundations and Trends in Theoretical Computer Science, vol. 10, pp. 1-157, 2014.

condition number of     ; and 

For any            , if                                     , then w.h.p.Theorem.

 Based on the Johnson-Lindenstrauss lemma [JL’84] 
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Online censoring for large-scale regressions

D. K. Berberidis, G. Wang, G. B. Giannakis, and V. Kekatos, "Adaptive Estimation from Big Data via Censored  
Stochastic Approximation," Proc. of Asilomar Conf., Pacific Grove, CA, Nov. 2014.

 Key idea: Sequentially test and update LS estimates only for informative data

 Adaptive censoring (AC) rule: 
Censor if

 Criterion   

 Threshold controls avg. data reduction:   

6



Censoring algorithms and performance

Proposition 1  AC-RLS

AC-LMS

 AC recursive least-squares (RLS) at complexity  

 AC least mean-squares (LMS)   

D. K. Berberidis, and G. B. Giannakis, "Online Censoring for Large-Scale Regressions,"
IEEE Trans. on SP, July 2015 (submitted); also Proc. of ICASSP, Brisbane, Australia, April 2015.
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Censoring vis-a-vis random projections

 RPs for linear regressions [Mahoney ‘11], [Woodruff’14]

 AC for linear regressions

 Data-agnostic reduction; preconditioning costs  

 Data-driven measurement selection
 Suitable also for streaming data
 Minimal memory requirements

 AC interpretations
 Reveals ‘causal’ support vectors
 Censors data with low LLRs: 
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Highly  non-uniform data

 AC-RLS outperforms alternatives at comparable complexity 

 Robust to uniform (all “important”) rows of  X ; 

Performance comparison
 Synthetic: D=10,000, p=300  (50 MC runs); Real data:           estimated from full set  

Q: Time-varying parameters?
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Tracking high-dimensional dynamical data

ESTIMATE
PREDICTOR-based 
REGULARIZATION

TRANSITION
MODEL

DATA DATA

REGURALIZED
REGRESSION

REGURALIZED
REGRESSION

OBSERVATION OBSERVATION

TIME-VARYING STATE

 Low-complexity, reduced-dimension KF with large-scale (            ) correlated data 

Prediction:

Correction:
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Data at time

Dimensionality
Reduction

-based KF
Predictor
Corrector

Sketching for dynamical processes  

 Our economical KF: Sketch informative

 Weighted LS correction incurs prohibitive complexity for 

PP

 Related works either costly at fusion center [Varshney etal’14]
 Data-agnostic with model-driven ensemble optimality [Krause-Guestrin’11] 
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RP-based KF
 Same predictor and sketched corrector  

 Sketched correction

 RP-based sketching 

Proposition 2. With

if for , then whp

D. K. Berberidis and G. B. Giannakis, “Data sketching for tracking large-scale dynamical processes,"
Proc. of Asilomar Conf., Pacific Grove, CA, Nov. 2015.
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Simulated test

 AC-KF outperforms RP-KF and KF with greedy design of experiments (DOE)!

 AC-KF complexity is              much lower than                   of greedy DOE-KF 

A. Krause, C. Guestrin. “Submodularity and its Applications in Optimized Information Gathering:
An Introduction,” ACM Trans. on Intelligent Systems and Technology, vol. 2, July 2011. 13



Roadmap

 Closing comments

 Large-scale nonlinear function approximation 

 Large-scale linear regressions

 Context and motivation

 Large-scale data and graph clustering

 Online kernel regression on a budget   

 Online kernel classification on a budget  

 Leveraging sparsity and low rank for anomalies and tensors
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Linear or nonlinear functions for learning?   

e.g.,

 Regression or classification: Given                        , find     

 Memory requirement , and  complexity  

 Pre-select kernel (inner product) function 

 RKHS basis expansion  

 Lift via nonlinear map                        to linear 

 Kernel-based nonparametric ridge regression 
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Low-rank lifting function approximation
 Low-rank (r) subspace learning [Mardani-Mateos-GG’14] here on lifted data

group-sparsity 
regularizer

S1. Find projection coefficients via regularized least-squares

S2. Find subspace factor via (in) exact group shrinkage solutions

 BCD solver: at Iteration            ,           and           available 

 Low-rank subspace tracking via stochastic approximation (also with a “budget”)
F. Sheikholeslami and G. B. Giannakis, "Scalable Kernel-based Learning via Low-rank Approximation 
of Lifted Data," Proc. of Intl. Conf. on Machine Learning, New York City, submitted Feb. 2016.

 Nystrom approximation: special case with                  or   
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Linear regression!

Online kernel regression and classification

Proposition 4. If iid with                       kernel matrix

can be approximated as    ,  and w.p. at least       
it holds that                                                                  

 High-performance online kernel-based feature extraction on a budget (OK-FEB)

 Kernel matrix approximation

 bounds also on support vector machines for regression and classification 
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 80%-20% split for training-testing

 OK-FEB LSVM outperforms K-SVM (LibSVM) in both training and testing phases

• Run time for OK-FEB+LSVM vs K-SVM

Kernel approximation  via low-rank features

C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector machines,” 
ACM Trans. on Intelligent Systems and Technology, vol. 2, pp.1-27, April 2011.

 Infer annual income exceeds 50K using as features (education, age, gender,…)


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OK-FEB with linear classification and regression

 Adult dataset (classification)  Slice dataset (regression)
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F. Sheikholeslami, D. K. Berberidis, and G. B. Giannakis, "Kernel-based Low-rank Feature Extraction 
on a Budget for Big Data Streams," Proc. of Globalsip Conf., Dec. 14-16, 2015; also in arxiv:1601.07947.

 OK-FEB LSVM outperforms budgeted K-SVM/SVR variants in classification/regression
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Roadmap

 Closing comments

 Large-scale nonlinear function approximation 

 Large-scale linear regressions

 Context and motivation

 Large-scale data and graph clustering

 Random sketching and validation (SkeVa)    

 SkeVa-based spectral and subspace clustering   

 Leveraging sparsity and low rank for anomalies and tensors
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Big data clustering 
 Clustering: Given                  , or their distances, assign them to K clusters     

A1. Random Projections: Use dxD matrix R to form RX; apply K-means in d-space     

 K-means: locally optimal, but simple; complexity O(NDKI)

Centroids

Assignments

 Hard clustering: NP-hard!  Soft clustering:

 Probabilistic clustering amounts to pdf estimation
 Gaussian mixtures (EM-based estimation)
 Regularizer can account for unknown K

Q. What if and/or              ?

C. Boutsidis, A. Zousias, P. Drineas, and M. W. Mahoney, “Randomized dimensionality reduction for K-means 
clustering,” IEEE Trans. on Information Theory, vol. 61, pp. 1045-1062, Feb. 2015. 21
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Random sketching and validation (SkeVa)
 Randomly select               “informative” dimensions  

 Algorithm 

 Sketch dimensions: 

 Similar approaches possible for

For

 Run k-means on 

 Re-sketch                      dimensions  

 Validate using consensus set  



 Augment centroids                                                     , 

 Sequential and kernel variants available

P. A. Traganitis, K. Slavakis, and G. B. Giannakis, "Sketch and Validate for Big Data Clustering,"
IEEE Journal on Special Topics in Signal Processing, vol. 9, pp. 678-690, June 2015.



Divergence-based SkeVa
 Idea: “Informative” draws yield reliable estimates of multimodal data pdf!

Compare pdf estimates                                                        via “distances”

• Integrated square-error (ISE)

 For

 Sketch      points  

 If                                       , then re-sketch     points    

 Cluster                                     ; associate                     to   

 If 
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RP versus SkeVa comparisons

KDDb dataset (subset)
D = 2,990,384, N = 10,000, K = 2

versus SkeVa
RP: [Boutsidis etal ‘15] 
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Performance and SkeVa generalizations 
 Di-SkeVa is fully parallelizable  

A. For independent draws,        can be lower bounded

Proposition 5. For a given probability of a successful Di-SkeVa draw r quantified 
by pdf dist. ∆, the number of draws is lower bounded w.h.p. q by

Q. How many samples/draws SkeVa needs?

 Bound can be estimated online  

 SkeVa module can be used for spectral clustering and subspace clustering 
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Identification of network communities

26
P. A. Traganitis, K. Slavakis, and G. B. Giannakis, “Spectral clustering of large-scale communities via random 
sketching and validation,” Proc. Conf. on Info. Science and Systems, Baltimore, Maryland, March 18-20, 2015.

 Kernel K-means instrumental for partitioning of large graphs (spectral clustering)
 Relies on graph Laplacian to capture nodal correlations

 For           , kernel-based SkeVa reduces complexity to  

arXiv collaboration network (General Relativity): N=4,158 nodes, 13,422 edges, K = 36 [Leskovec’11]

Spectral Clustering
3.1 sec

SkeVa (n = 500)
0.5 sec

SkeVa (n=1,000)
0.85 sec



M. Mardani, G. Mateos, and G. B. Giannakis, “Recovery of low-rank plus compressed sparse matrices with application
to unveiling traffic anomalies," IEEE Transactions on Information Theory, pp. 5186-5205, Aug. 2013.

 Graph G (N, L) with N nodes, L links, and F  flows (F >> L); OD flow zf,t

є {0,1}

Anomaly

 Packet counts per link l and time slot t

 Matrix model across T time slots:
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 Anomalies: changes in origin-destination (OD) flows [Lakhina et al’04]

 Failures, congestions, DoS attacks, intrusions, flooding

Modeling Internet traffic anomalies
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 Z (and X:=RZ)  low rank, e.g., [Zhang et al‘05]; A is sparse across time and flows 

Data: http://math.bu.edu/people/kolaczyk/datasets.html
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 Real network data, Dec. 8-28, 2003
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[Lakhina04], rank=1
[Lakhina04], rank=2
[Lakhina04], rank=3
Proposed method
[Zhang05], rank=1
[Zhang05], rank=2
[Zhang05], rank=3

Data: http://www.cs.bu.edu/~crovella/links.html
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 Improved performance by leveraging sparsity and low rank
 Succinct depiction of the network health state across flows and time

Internet2 data
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From low-rank matrices to tensors

B=

br

βi

A=

ar

αi

 PARAFAC decomposition per slab t [Harshman ’70]

C=

cr

γi

 Tensor subspace comprises R rank-one matrices

 Data cube                            , e.g., sub-sampled MRI frames

Goal: Given streaming                                        , learn the subspace   
matrices (A,B) recursively, and impute possible misses of Yt

J. A. Bazerque, G. Mateos, and G. B. Giannakis, "Rank regularization and Bayesian inference for tensor completion       
and extrapolation," IEEE Trans. on Signal Processing, vol. 61, no. 22, pp. 5689-5703, Nov. 2013. 30



Online tensor subspace learning

 Real-time reconstruction (FFT per iteration)

 Stochastic alternating minimization; parallelizable across bases

 Image domain low tensor rank 

M. Mardani, G. Mateos, and G. B. Giannakis, "Subspace learning and imputation for streaming big data
matrices and tensors," IEEE Trans. on Signal Processing, vol. 63, pp. 2663 - 2677, May 2015. 31



Dynamic cardiac MRI test
 in vivo dataset: 256 k-space 200x256 frames

R=100, 90% misses R=150, 75% misses

Ground-truth frame

Sampling trajectory

 Low-rank                   plus                      can also capture motion effects  

 Potential for accelerating MRI at high spatio-temporal resolution  

M. Mardani and G. B. Giannakis, "Accelerating dynamic MRI via tensor subspace learning,“ 
Proc. of ISMRM 23rd Annual Meeting and Exhibition, Toronto, Canada, May 30 - June 5, 2015. 32



Closing comments

 Other key Big Data tasks

 Regression and tracking dynamic data 

 Large-scale learning  

 Enabling tools for Big Data 

 Scalable computing platforms

K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimization for Big Data analytics,” 
IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 18-31, Sep. 2014. 

 Nonlinear non-parametric function approximation 
 Clustering massive, high-dimensional data and graphs 

 Visualization, mining, privacy, and security 

 Acquisition, processing, and storage 

 Fundamental theory, performance analysis
decentralized, robust, and parallel  algorithms 

 Big Data application domains … 
 Sustainable Systems, Social, Health, and Bio-Systems, Life-enriching 

Multimedia, Secure Cyberspace, Business, and Marketing Systems … Thank You!
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