#### University of Maryland December 2016



# Social Opinion Dynamics: Agreement and Disagreement

### Yiguang Hong

Academy of Mathematics & Systems Science Chinese Academy of Sciences

### **Outline**

- 1. Background
- 2. Opinion dynamics
- 3. Bounded confidence model
- 4. Our Results
- 5. Conclusions



## 1. Background

### Social networks become a hot topic

Applications: political voting, terrorist war, mass media, e-business, public innovation, smart cities, ...



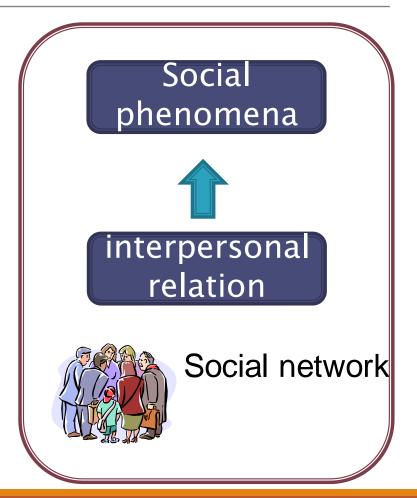
### Why now?

- □ Development of information/data technique:
  Big data, digital media, cloud computation,
  agent-based models, distributed algorithms ...
  →Google, Amazon, Facebook, Baidu, ...
- □Interdisciplinary research: network science, math, sociology, psychology, economics, ...



#### Social networks

- 1. Systems effect: local interaction → collective phenomena (agreement or disagreement)
- 2. Hierarchical structure: individual, community, ..., the whole society
- 3. Intervention policy: various ways implemented in social networks.



## **Opinion dynamics**

- Social opinion dynamics ← changes of opinion/belief/attitude in a group or society
- From sociological/psychological viewpoints
  - Social power (1950's)
  - Social psychology (1960's)
  - Crowd polarization, voting (1970's)
  - Social structure (1980's) ...

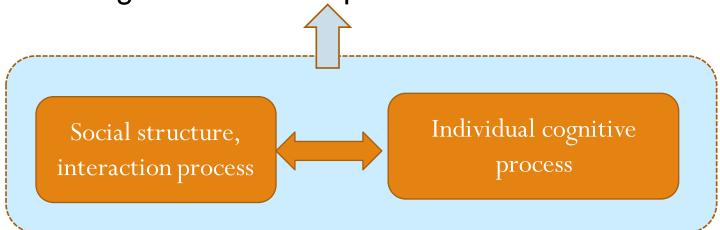
### **Outline**

- 1. Background
- 2. Opinion dynamics
- 3. Bounded confidence model
- 4. Our Results
- 5. Conclusions



## 2. Opinion Dynamics (OD)

How a social group, with (initial) individual opinions, reaches a steady-state collective opinion pattern by individual cognition and interpersonal relations.

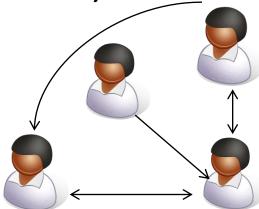


### Problems of opinion dynamics

- Opinion Propagation: How one's opinion influences others?
  How an individual opinion becomes public? ...
- Opinion Evolution: How crowd polarization appears? How the opinion fluctuates in an election? ...

Opinion Intervention: censorship, manipulation, ...

•••••



### **Engineerization of OD**

- New Era: "The convergence of social and technological networks" (Jon Kleinberg)
- "Engineering" by math and data techniques for underlying opinion mechanics:
  - Measurement of opinions
  - Modeling of OD (update law, initial condition):
    - Multi-agent networks
    - Hydrodynamics: Partial differential equations

Simple models  $\rightarrow$  complex phenomena

# Multi-agent system (MAS)

Agent → multi-agent system: a group of subsystems

Agent Dynamics =  $\mathbf{a} + \mathbf{b}$ 

a: combination of neighbor information

**b**: private source or prejudice or free will ...

**Neighbor Graph** 

- $\rightarrow$  stubborn agent (leader) if  $\mathbf{a} = 0$ ;
- $\rightarrow$  regular agent (follower) if **b** =0

Consensus/agreement/synchronization: a basic problem → All or some variables of the agents become the same (thousands of consensus papers each year!)

### Good time to study ...

#### 100 years ago, emerging of mathematical biology

- Luther: Biological travelling waves in bio-chemical reaction, 1906
- Lotka: Elements of physical biology, 1925
- Enzyme kinetics: Mechaelis-Menten enzyme reaction model, 1913
- Interacting population: Lotka-Volterra predator-prey model, 1926
- ➤ Mathematical theory for epidemics: Kermack-McKendrick SIR model, 1927



## Start with simple models

#### How to start mathematical analysis on OD?

- French model: P(t+1)=AP(t), where A is the influence matrix, P a matrix with  $p_{ij}$  describing the opinion of agent i about agent j, by French, 1956
- **DeGroot model:** x(t+1)=Wx(t), where W is the update matrix, x is a vector with  $x_i$  as the opinion value of agent i, by DeGroot, 1974
- <u>Voter model</u>:  $x_i=1$  or -1, an agent updates its opinion following the neighbor it selects each time, by Clifford & Sudbury, 1973

### Good time to study ...

Around the beginning of this century, more and more models developed for OD (to replace old and simple models)

- Axelrod model, 1997
- Friedkin or Friedkin-Johnsen (FJ) model, 1999
- Sznajd model, 2000
- Deffuant or Deffuant-Weisbuch (DW) model, 2000
- Krause or Hegelmann-Krause (HK) model, 2002
- ..... more to come

#### **New History!**

#### Classifications of OD

- by opinion measurement: discrete value, continuous value, vector
- by neighbor definition: based on graph or bounded confidence
- by mathematical description: deterministic or stochastic
- by interaction type: directed, undirected, or antagonistic
- by update moment: synchronous or asynchronous
- ... ...

### Examples

<u>DeGroot model</u>, <u>Friedkin model</u>: well-known deterministic continuous models

Voter model: a stochastic discrete model.

<u>Axelrod model</u>: a vector-valued model, to describe the opinion about multi-dimensional (entangled) issues.



### Interesting cases

**Opinion propagation**: Complex contagion (regularity of graphs increases social affirmation)

Centola (2010): the spread of behavior in an online social network experiment, Science.

**Opinion evolution**: Reverting in the edition of Wikipedia, verified by modified DW models

Iba et al (2010) and Torok (2013) studied Wikipedia reverting behavior to match real data.

**Opinion Intervention**: War with Iraq in 2003: from "Unjustified" to "Justified" in a short period

Tempo, Friedkin, et al (2016): how Powel's speech led to that the preemptive attack of Iraq is a just war

### **Outline**

- 1. Background
- 2. Opinion Dynamics
- 3. Bounded confidence model
- 4. Our Results
- 5. Conclusions



### 3. Bounded-Confidence Model



Given a bounded confidence/trust range, an agent's neighbors are agents whose opinion values are located in its confidence range  $\rightarrow$  confidence/trust defined by opinion difference, not links.

Two mathematical models based on social studies

- Hegselmann-Krause (HK) or Krause model -- average
- Deffuant-Weisbuch (DW) or Deffuant model -- gossip

### Basic description

- Consider *n* persons (agents)
- Each agent has its opinion, described by a real number  $x_i$
- The initial opinion values are randomly distributed in a bounded interval (for example, in [0,1], where 0 and 1 represent the two extreme opinion values)
- Confidence bound/radius  $\varepsilon$  defines a neighbor set
- Average all the opinions of the neighbors (HK); count the opinion if the randomly selected agent is a neighbor (DW)

### **HK Model**

- R. Hegselmann and U. Krause
  - Article "Opinion dynamics and bounded confidence models", 2002
  - Book "Opinion Dynamics Driven by Various Ways of Averaging", Kluwer Academic Publishers 2004.
- Hegselmann-Krause (HK) Model:

$$x_i(t+1) = |\mathcal{N}(i, x(t))|^{-1} \sum_{j \in \mathcal{N}(i, x(t))} x_j(t), \quad i = 1, \dots, n$$

with the opinion value of agent i as  $x_i(t) \in [0,1]$ ,

$$\mathcal{N}(i, x(t)) = \{1 \le j \le n \mid |x_j(t) - x_i(t)| \le \epsilon\}$$

 $\epsilon \in (0,1]$  is the confidence bound/radius to define neighbors

#### **DW Model**

- G. Deffuant, et al, "Mixing beliefs among interacting agents",
   2000
- G. Weisbuch, G. Deffuant, et al, "Meet, discuss and segregte", 2002.
- Deffuant-Weisbuch (DW) Model:

$$x_i(t+1) = x_i(t) + \gamma \mathbb{1}_{\{|x_j(t) - x_i(t)| \le \epsilon\}} (x_j(t) - x_i(t));$$
  
$$x_j(t+1) = x_j(t) + \gamma \mathbb{1}_{\{|x_j(t) - x_i(t)| \le \epsilon\}} (x_i(t) - x_j(t)).$$

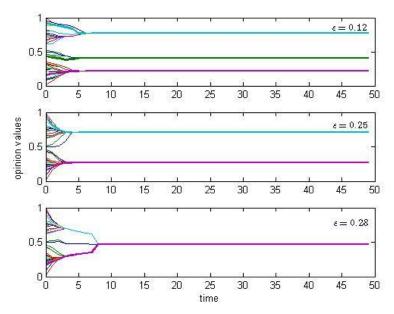
where 1 is the indicator function, i, j are randomly selected each time, and  $\gamma \in (0, 1)$  is the weight.

### HK vs. DW

HK model is a deterministic continuous model with confidence bound, undirected interaction, and synchronous update

Large confidence bounds → consensus/agreement;

Small bounds →
fragmentation (multiple opinion subgroup)

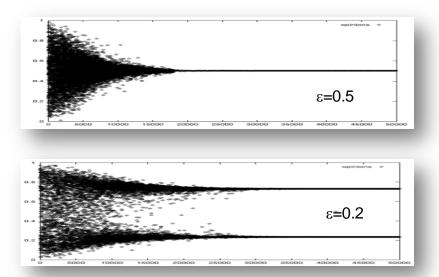


#### HK vs. DW

DW model is a stochastic continuous model with confidence bound, undirected interaction, and asynchronous update.

Larger bounds → agreement

Agreement is harder to be achieved and convergence is slower in the DW model



### Variants of HK model

Constant confidence bound → time-varying confidence bound: vanishing bound (Girard et al, 2011)

Constant weight → changing weights in the confidence range (Motsch and Tadmor, 2014)

Homogeneous (undirected interaction)  $\rightarrow$  heterogeneous (directed interaction): different agents have different confidence bounds, that is, different  $\varepsilon_i$  (Lorenz, 2007)

• • • • •

### Variants of DW model

Symmetric  $\rightarrow$  asymmetric: when agent *i* selects *j*, *j* may not select *i*, and therefore, the connection is directed (Zhang, 2014)

Given agents → variable agents: some agents can be replaced sometimes (Torok, 2013)

Homogeneous (undirected interaction)  $\rightarrow$  heterogeneous (directed interaction):  $\varepsilon_i$  different (Lorenz, 2007)

• • • • • •

#### Theoretical results

Some existing theoretical results: Blondel, Hendrickx, & Tsitsiklis (2009, 2010), Como & Fagnami (2011), Touri & Nedic (2011, 2012), ...

- ✓ Convergence: finite-time convergence in HK model and (asymptotical) convergence in DW model
- ✓ Fragmentation: the opinion difference between opinion subgroups (if any) >  $\epsilon$
- ✓ Order preservation in HK model ...
- ✓ Consensus if  $n \rightarrow \infty$  ......

### **Outline**

- 1. Background
- 2. Opinion Dynamics
- 3. Bounded confidence model
- 4. Our Results
  - 1. Disagreement: Fragmentation & Fluctuation
  - 2. Intervention for agreement
- 5. Conclusions



#### 4. Our Results

Agreement or disagreement for simple confidence-based models?

- ◆ A general confidence-based model: opinion fragmentation, separation time (Physica A 2013, Kybernetika 2014)
- ◆ Aggregative long-range interaction: consensus enhancement, opinion fluctuation (IEEE CDC 2014, Phyisca A 2013, SICON submitted)
- ◆ Opinion intervention or noisy model: "consensus" achieved by noise injection (Automatica submitted; arXiv 2015)

## Technical challenges

Most OD results based on graph-based models (DeGroot, Friedkin ...).

#### Why confidence-based model?

Importance + fewer results.

#### Why more technical challenges?

- > Strong nonlinearity from bounded confidence + stochastic process
  - → few effective mathematical tools
- $\triangleright$  Graph is state-dependent  $\rightarrow$  graph theory fails

## 4.1 Disagreement

Agreement (consensus): all the opinions converge to the same opinion value

Disagreement is very common in OD: two basic phenomena, i.e., fragmentation (convergence; opinion aggregation into clusters/subgroups) and fluctuation (no convergence)

Measurement of disagreement: number of clusters, distance between clusters, and difference between opinion values

$$R_{x} = \max_{i,j} \left| x_{i}(t) - x_{j}(t) \right|$$

#### Motivation

- **♦** The study of opinion disagreement for general cases;
- **♦** A general model may cover the traditional HK and DW models (and even some of their variants).

DW selects a single agent, while HK selects the neighbors → we extend DW model by a selection of multiple agents as candidate to share the opinion in two ways:

- **✓**local average → short-range interaction → fragmentation
- ✓ aggregation → long-range interaction → agreement, fluctuation

### A general model

# Short-range multi-selection DW (SMDW) based on local average:

$$x_{i}(t+1) = x_{i}(t) + \gamma_{i} \sum_{j \in S(i)} \alpha_{ij} \mathbf{1}\{|x_{r(t,i)}^{j} - x_{i}| \le \varepsilon\} (x_{r(t,i)}^{j}(t) - x_{i}(t))$$

where 1 is the indicator function,  $\varepsilon$  is the confidence radius;  $\gamma_i$ ,  $\alpha_{ij} \in (0,1)$ ; S(i) the selection set with  $c_i$  elements.

HK (with  $c_i$  as the time-varying number of its neighbors) and DW (with  $c_i$ =1) can be viewed as a special case of SMDW.

## **Model analysis**

- Written in matrix form: x(t+1)=W(t)x(t), where the elements of W(t) contain the indicator function, which is highly nonlinear.
- W(t) is state-dependent, hard to be analyzed using graph theory.
- Stochastic analysis due to random initial condition and selection process.

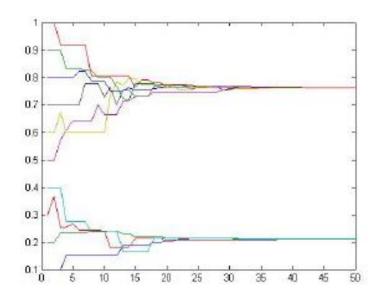
### Convergence

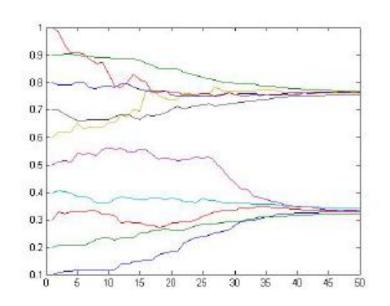
For any  $\varepsilon > 0$  and initial opinions x(0), the opinions aggregate to some clusters almost surly (a.s.), that is, either of the following conclusions hold a.s.:

(i) 
$$\lim_{t\to\infty} |x_i(t) - x_j(t)| = 0,$$
  
(ii)  $\lim_{t\to\infty} |x_i(t) - x_j(t)| > \varepsilon$ 

The proof is similar to that for the HK model, but more cases should be discussed

### Single selection vs. multiple selection





The trajectories in the multiple selection case are smoother with  $c_i=4$ 

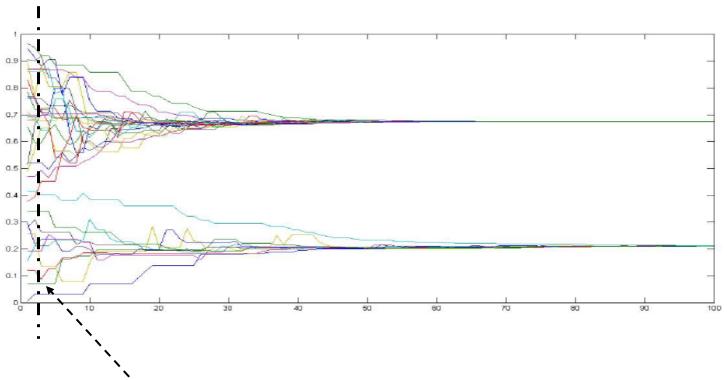
#### **Separation Time**

cluster)

Two steps in fragmentation phenomena: separation + clustering  $\rightarrow$  the opinion values are separated, and then subgroup/cluster aggregation is achieved (i.e., consensus achieved within each

Separation time  $T^*$  is first moment when the steady opinion clusters are formed.

#### Separation of subgroups



The separation occurs!

The evolution of a DW model: 30 agents with  $\epsilon$ =0.4

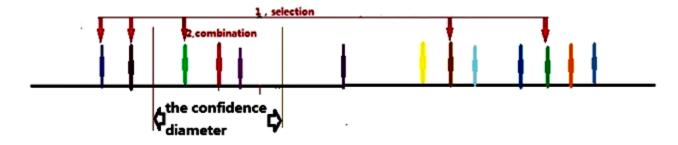
#### **Separation Time Bound**

Convergence a.s. but the expectation of separation time  $T^*$  is bounded by:

$$E[T^*] \le 1 + \frac{n^{n-1}}{\varepsilon_0^2 (\underline{\gamma}(1-\overline{\gamma}))^{n+1}}$$

which is related to number of agents, confidence bound, and the bound of  $\gamma_i$ 

### Aggregation interaction



## Non-local aggregation: average all the opinions of the selected agents to get an aggregation opinion

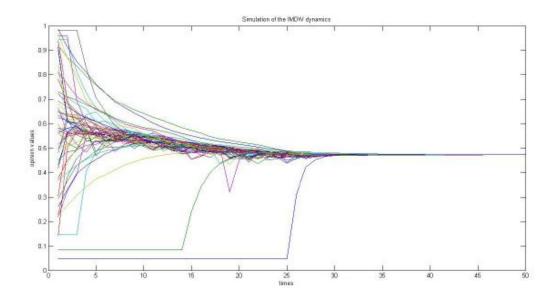
Long-range non-local aggregation model for *n* regular agents:

$$x_{i}(t+1) = x_{i}(t) + \gamma_{i} \mathbf{1}\{|\sum_{j \in S(i)} \alpha_{ij}(x^{j}_{r(t,i)} - x_{i})| \leq \varepsilon\} \sum_{j \in S(i)} \alpha_{ij}(x^{j}_{r(t,i)}(t) - x_{i}(t))$$

where **1** is the indicator function,  $\varepsilon$  is the confidence radius;  $\gamma_i$ ,  $\alpha_{ii} \in (0,1)$ ; S(i) the selection set with  $c_i$  elements.

## Aggregation $\rightarrow$ consensus

With  $c_i>1$ , the consensus/agreement can be reached a. s. for the non-local aggregation model.



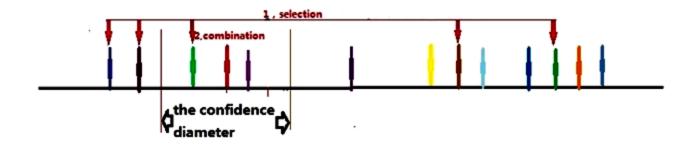
50 agents located in [0,1] with  $\varepsilon$ =0.4.

## Opinion fluctuation

Fluctuation: persistent disagreement between agents, whose opinions never converge to any fixed values  $\rightarrow$  application to voting, fashion, .....

- Kramer (1971): a large swing in voting behavior within short periods
- ➤ Cohen (2003): influence on change of political beliefs by parties or organizations
- Acemoglu, et al (2013): graph-based model with stubborn agents (SA), regular ones randomly connected with the SAs

## Aggregation + stubborn agents



Still consider the long-range aggregation dynamics:

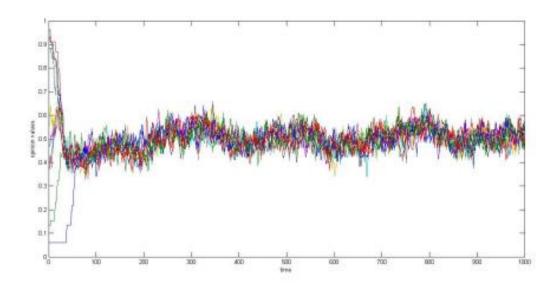
$$x_{i}(t+1) = x_{i}(t) + \delta \mathbf{1}\{|\sum_{j \in S(i)} \alpha_{ij} (x^{j}_{r(t,i)} - x_{i})| \leq \varepsilon_{0}\} \sum_{j \in S(i)} \alpha_{ij} (x^{j}_{r(t,i)} (t) - x_{i}(t))$$

where **1** is the indicator function,  $\varepsilon_0$  the confidence radius;  $\delta$ ,  $\alpha_{ij} \in (0,1)$ ; S(i) the selection set with c agents.

In the network, *n* regular agents and *m* stubborn agents with fixed values as 1 or 0.

#### Critical bound

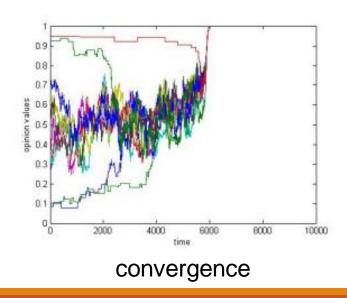
Fluctuation phenomena with taking c=6,  $\varepsilon_0=0.2$ 

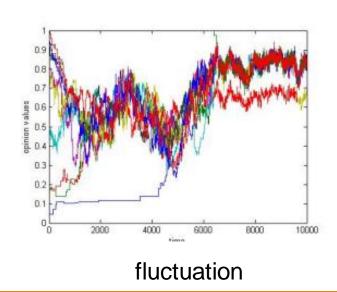


Result: fluctuation almost surely if and only if  $\varepsilon_0 \ge \frac{1}{C}$ 

#### Small bound

If  $\varepsilon_0 < 1/c$ , convergence may happen, and the probability for the opinions converge to either 0 or 1 (opinion value) is larger than  $2\varepsilon_0^n$ .





## Fluctuation strength

Take 
$$\delta \in (0,0.5)$$
 and  $\varepsilon_0 \ge \frac{1}{c}$ 

Fluctuation strength can be measured by

$$R_{\mathbf{x}}(t) = \max_{i,j \in \mathcal{M}} |x_i(t) - x_j(t)|$$

Its estimations are given as follows:

$$\overline{\lim}_{t \to \infty} R_x(t) \le \delta \ Q \qquad \underline{\lim}_{t \to \infty} R_x(t) \ge \frac{\delta}{c}$$

where Q is a function of system parameters (quite complicated).

## 4.2 Opinion Intervention

- **◆** Intervention is important for social studies, to make the society stable, or unstable, or make it transfer to some specific states .....
- Intervention never stops in reality.
- ◆ Intervention design related to: control and optimization, swarm intelligence (ants → people), learning and evolution (with supervisor) ...

#### Intervention $\rightarrow$ control

- •Related to control, but modern control theory cannot be applied! Cannot control the society as mechanical systems with enough actuators or power
- New control methods in soft, covert, simple, and indirect ways → a complicated procedure involved with networks
- A basic problem: reduce or eliminate social disagreement by intervention (because disagreement may yield social instability ...)

## Noise Injection

Motivation: inject noise to increase the consensus probability; consensus analysis for noisy confidence-based model

Consider a modified term by injecting noise to selected agents:

$$x_i^*(t) = \begin{cases} |\mathcal{N}(i, x(t))|^{-1} \sum_{j \in \mathcal{N}(i, x(t))} x_j(t) & +\xi_i(t+1), \\ |\mathcal{N}(i, x(t))|^{-1} \sum_{j \in \mathcal{N}(i, x(t))} x_j(t), & \text{if } i \in \mathcal{I}, \\ |\mathcal{N}(i, x(t))|^{-1} \sum_{j \in \mathcal{N}(i, x(t))} x_j(t), & \text{if } i \in \mathcal{V} \setminus \mathcal{I}, \end{cases}$$

where  $V = \{1, 2, ..., n\}$  is the set of agents, and  $\mathcal{I} \subset V$  is the set of the noise-injected agents. The neighbor set is defined by the confidence bound  $\varepsilon$ 

#### Noisy HK model

#### Consider the HK model with additive noise:

$$x_i(t+1) = \begin{cases} 1, & x_i^*(t) > 1, \\ x_i^*(t), & x_i^*(t) \in [0, 1] \\ 0, & x_i^*(t) < 0. \end{cases}$$

where the noises  $\{\xi_i(t)\}_{i\in\mathcal{V},t\geq 1}$  are mutually independent, with

$$|\xi_i(t)| \leq \delta$$
 (where  $\delta$  is a positive constant);  
 $E\xi_i(t) = 0$ ;  
 $E\xi_i^2(t) = \sigma_i^2(t) \geq c\delta^2$  for a constant  $c \in (0, 1]$ 

## Quasi-consensus with noise

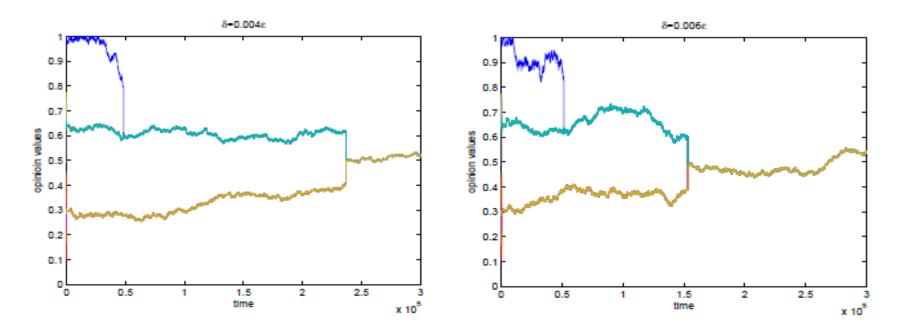
Noise injection to OD may be simply realized by starting rumors or spreading slanders, etc

**Result 1:** If  $P(/\xi_i/\le \delta=\epsilon/2)=1$ , then the opinions almost surly achieve quasi-consensus ("consensus" with error less than  $\epsilon$ ) in finite time.

**Result 2:** Take  $\varepsilon \in (0,1/3)$ . If  $P(\xi_i > \varepsilon/2) > 0$  and  $P(\xi_i < -\varepsilon/2) > 0$ , then the system cannot achieved quasi-consensus.

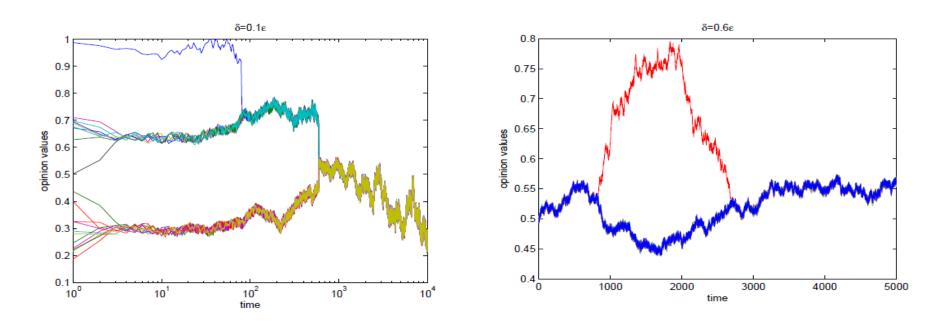
These results are strictly proved based on careful stochastic analysis (due to random initial condition)

#### Simulation



Similar phenomena are also found in a noisy HK model by Pineda et al (2013), without strict mathematical analysis.

## Simulation (2)



Large noise may spoil the quasi-consensus as shown in the second figure

## **Outline**

- 1. Background
- 2. Opinion Dynamics
- 3. Bounded confidence model
- 4. Our Results
- 5. Conclusions



## 5. Conclusions

- Good time to give mathematical models for the analysis, prediction, and intervention of social behaviors
- Next: blend of confidence-based and graph-based models, models with evolved confidence/trust, ...

#### New Era $\rightarrow$ New ...

- Many social problems → new models and methods → new control theory and technology ≈ model-based analysis/design + data-based technology
- Underlying mechanics of social network ->
  social learning and swarm intelligence methods
- Engineering + social studies → new social results based on engineering ideas, new engineering methods inspired by social ideas

# Thank you!

