Linear Matrix Equations – Part 1

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 201, Fall Semester 2023

October 6, 2023

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear Matrix Equations	Definition of Linear	Matrix Determinant	Elementary Row Operations	Echelon Form	Matrix Rank	

Overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear Matrix EquationsDefinition of LinearMatrix DeterminantElementary Row OperationsEchelon FormMatrix RankSum000

Linear

Matrix Equations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Linear Matrix Equations

Definition. A system of m linear equations with n unknowns may be written

Points to note:

- The constants a_{11} , a_{21} , a_{31} , \cdots a_{mn} and b_1 , b_2 , \cdots b_m are called the equation coefficients.
- The variables $x_1, x_2 \cdots x_n$ are the unknowns in the system of equations.

Linear Matrix Equations
0000Definition of Linear
0000000000Matrix Determinant
0000000000Elementary Row Operations
0000000Echelon Form
0000Matrix Rank
00000000Summ

Linear Matrix Equations

Matrix Form. The matrix counterpart of 1 is $[A] \cdot [X] = [B]$, where

$$[A] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & & \vdots \\ a_{m1} & \cdots & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$
(2)

Points to note:

• Matrices A and X have dimensions $(m \times n)$ and $(n \times 1)$, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Column vector B has dimensions $(n \times 1)$.

Augmented Matrix Form

Augmented Matrix Form. An augmented matrix for a system of equations is matrix A juxtiposed with matrix B.

Example. The augmented matrix form form of equation 2 is:

- a ₁₁	a ₁₂	•••	a _{1n}	b_1	
a ₂₁	a ₂₂		÷	<i>b</i> ₂	(3)
÷			÷	÷	(3)
a _{m1}	•••		a _{mn}	b _m	

The augmented matrix dimensions are $(m \times (n+1))$.

Definition of Linear

Mathematical Definition. Let k be a non-zero constant. A function y = f(x) is said to be linear if it satisfies two properties:

•
$$y = f(kx_1)$$
 is equal to $y = kf(x_1)$.

•
$$f(x_1 + x_2) = f(x_1) + f(x_2)$$
.

For constants k and m these equations can be combined:

$$kf(x_1) + mf(x_2) \to f(kx_1 + mx_2).$$
 (4)

Economic Benefit. Often evaluation of y = f(x) has a cost.

Linearity allows us to compute $y_1 = f(x_1)$ and $y_2 = f(x_2)$ and then predict the system response for $kx_1 + mx_2$ via linear combination of solutions. This is free!

Definition of Linear

Example 1. Consider an experiment to determine the extension of an elastic chord as a function of applied force.

Linearity allows us to predict solutions:

 $Kx_1 = F_1, Kx_2 = F_2, \rightarrow K(mx_1 + nx_2) = mF_1 + nF_2.$ (5)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Definition of Linear

Example 2. Analysis of Linear Structural Systems (ENCE 353):

Let matrix equations AX = B represent behavior of a structural system:

- Matrix A will capture the geometry, material properties, etc.
- Matrix B represents externally applied loads (e.g., dead/live gravity loads).
- Column vector X represents nodal displacements.

Solving AX = B requires computational work $O(n^3)$.

However, if matrix system is linear, then:

$$AX_1 = B_1, AX_2 = B_2 \rightarrow A(mX_1 + kX_2) = mB_1 + kB_2.$$
 (6)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Linear Matrix Equations Definition of Linear Matrix Determinant Elementary Row Operations Echelon Form Matrix Rank Summono

Definition of Linear

We can simply add the results of multiple load cases:

Works for support reactions, bending moments, displacements, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear Matrix Equations Definition of Linear Matrix Determinant Elementary Row Operations Echelon Form Matrix Rank Summono

Solutions in Two

and

Three Dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear Matrix Equations Definition of Linear Matrix Determinant Elementary Row Operations Echelon Form Matrix Rank Summono

Equations in Two Dimensions

Let m = n = 2.

The pair of equations:

$$\begin{array}{rcrrr} a_{11} x_1 & + a_{12} x_2 &= b_1 & (7) \\ a_{21} x_1 & + a_{22} x_2 &= b_2 & (8) \end{array}$$

can be interpreted as a pair of straight lines in the (x_1, x_2) plane.

The equations in matrix form are:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
(9)

Linear Matrix Equations Definition of Linear occosed Matrix Determinant Elementary Row Operations Echelon Form Matrix Rank Summono occosed occ

Equations in Two Dimensions

Matrix Tranformation: $[A] [X] \rightarrow [B]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear Matrix Equations Definition of Linear October Matrix Determinant Elementary Row Operations Echelon Form Matrix Rank Summon October Octo

Equations in Two Dimensions

Three Types of Solutions:

- Unique solution when two lines meet at a point.
- No solutions when two lines are parallel but not overlapping.
- Multiple solutions when two lines are parallel and overlap.

Equations in Three Dimensions

Also Three Types of Solutions:

Each equation corresponds to a plane in three dimensions (e.g., think walls, floor and ceiling in a room).

- Unique solution when three planes intersect at a corner point.
- Multiple solutions where three planes overlap or meet along a common line.
- No solutions when three planes are parallel, but distinct, or pairs of planes that intersect along a line (or lines).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear Matrix Equations Definition of Linear Matrix Determinant Elementary Row Operations Echelon Form Matrix Rank Sumi

Equations in Three Dimensions

One Solution/Infinite Solutions:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Equations in Three Dimensions

No Solutions:

ヘロト 人間 とくほとくほとう

æ

Analysis of Solutions to Matrix Equations

Key Observations

- For two- and three-dimensions, graphical methods and intuition work well.
- For problems beyond three dimensions, much more difficult to understand the nature of solutions to linear matrix equations.
- We need to rely on mathematical analysis instead.

Basic Questions

- How many solutions will a set of equations will have?
- How to determine when no solutions exist?
- If there is more than one solution, how many solutions exist?

Fortunately, hand calculations on very small systems can provide hints on a pathway forward.