Linear Matrix Equations - Part 1

Mark A. Austin
University of Maryland
austin@umd.edu
ENCE 201, Fall Semester 2023

October 6, 2023

Overview

(1) Linear Matrix Equations
(2) Definition of Linear
(3) Matrix Determinant

4 Elementary Row Operations
(5) Echelon Form
(6) Matrix Rank
(7) Summary of Results
(8) Working Example

Linear

Matrix Equations

Linear Matrix Equations

Definition. A system of m linear equations with n unknowns may be written

Points to note:

- The constants $a_{11}, a_{21}, a_{31}, \cdots a_{m n}$ and $b_{1}, b_{2}, \cdots b_{m}$ are called the equation coefficients.
- The variables $x_{1}, x_{2} \cdots x_{n}$ are the unknowns in the system of equations.

Linear Matrix Equations

Matrix Form. The matrix counterpart of 1 is $[A] \cdot[X]=[B]$, where

$$
[A]=\left[\begin{array}{rrrr}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{2}\\
a_{21} & a_{22} & & \vdots \\
\vdots & & & \vdots \\
a_{m 1} & \cdots & \cdots & a_{m n}
\end{array}\right] \cdot\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{r}
b_{1} \\
b_{2} \\
\\
\vdots \\
b_{m}
\end{array}\right]
$$

Points to note:

- Matrices A and X have dimensions $(m \times n)$ and $(n \times 1)$, respectively.
- Column vector B has dimensions $(n \times 1)$.

Augmented Matrix Form

Augmented Matrix Form. An augmented matrix for a system of equations is matrix A juxtiposed with matrix B.

Example. The augmented matrix form form of equation 2 is:

$$
\left[\begin{array}{rrrr|r}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \tag{3}\\
a_{21} & a_{22} & & \vdots & b_{2} \\
\vdots & & & \vdots & \vdots \\
a_{m 1} & \cdots & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

The augmented matrix dimensions are $(m \times(n+1))$.

Definition of Linear

Mathematical Definition. Let k be a non-zero constant. A function $y=f(x)$ is said to be linear if it satisfies two properties:

- $y=f\left(k x_{1}\right)$ is equal to $y=k f\left(x_{1}\right)$.
- $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$.

For constants k and m these equations can be combined:

$$
\begin{equation*}
k f\left(x_{1}\right)+m f\left(x_{2}\right) \rightarrow f\left(k x_{1}+m x_{2}\right) . \tag{4}
\end{equation*}
$$

Economic Benefit. Often evaluation of $y=f(x)$ has a cost.
Linearity allows us to compute $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$ and then predict the system response for $k x_{1}+m x_{2}$ via linear combination of solutions. This is free!

Definition of Linear

Example 1. Consider an experiment to determine the extension of an elastic chord as a function of applied force.

Linearity allows us to predict solutions:

$$
\begin{equation*}
K x_{1}=F_{1}, K x_{2}=F_{2}, \rightarrow K\left(m x_{1}+n x_{2}\right)=m F_{1}+n F_{2} . \tag{5}
\end{equation*}
$$

Definition of Linear

Example 2. Analysis of Linear Structural Systems (ENCE 353):
Let matrix equations $A X=B$ represent behavior of a structural system:

- Matrix A will capture the geometry, material properties, etc.
- Matrix B represents externally applied loads (e.g., dead/live gravity loads).
- Column vector X represents nodal displacements.

Solving $A X=B$ requires computational work $O\left(n^{3}\right)$.
However, if matrix system is linear, then:

$$
\begin{equation*}
A X_{1}=B_{1}, A X_{2}=B_{2} \rightarrow A\left(m X_{1}+k X_{2}\right)=m B_{1}+k B_{2} . \tag{6}
\end{equation*}
$$

Definition of Linear

We can simply add the results of multiple load cases:

Works for support reactions, bending moments, displacements, etc.

Solutions in Two

and

Three Dimensions

Equations in Two Dimensions

Let $m=n=2$.
The pair of equations:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \tag{7}\\
& a_{21} x_{1}+a_{22} x_{2}=b_{2} \tag{8}
\end{align*}
$$

can be interpreted as a pair of straight lines in the $\left(x_{1}, x_{2}\right)$ plane.
The equations in matrix form are:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \tag{9}\\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Equations in Two Dimensions

Matrix Tranformation: $[A][X] \rightarrow[B]$.

Coordinate Space

Right-hand Side Space

Equations in Two Dimensions

Three Types of Solutions:

Unique Solution

Inconsistent

Multiple Solutions

- Unique solution when two lines meet at a point.
- No solutions when two lines are parallel but not overlapping.
- Multiple solutions when two lines are parallel and overlap.

Equations in Three Dimensions

Also Three Types of Solutions:

Each equation corresponds to a plane in three dimensions (e.g., think walls, floor and ceiling in a room).

- Unique solution when three planes intersect at a corner point.
- Multiple solutions where three planes overlap or meet along a common line.
- No solutions when three planes are parallel, but distinct, or pairs of planes that intersect along a line (or lines).

Equations in Three Dimensions

One Solution/Infinite Solutions:

Equations in Three Dimensions

No Solutions:

Analysis of Solutions to Matrix Equations

Key Observations

- For two- and three-dimensions, graphical methods and intuition work well.
- For problems beyond three dimensions, much more difficult to understand the nature of solutions to linear matrix equations.
- We need to rely on mathematical analysis instead.

Basic Questions

- How many solutions will a set of equations will have?
- How to determine when no solutions exist?
- If there is more than one solution, how many solutions exist?

Fortunately, hand calculations on very small systems can provide hints on a pathway forward.

