Linear Matrix Equations - Part 1

Mark A. Austin
University of Maryland
austin@umd.edu
ENCE 201, Fall Semester 2023

October 6, 2023

Overview

(1) Linear Matrix Equations

(2) Definition of Linear
(3) Matrix Determinant

Part 2
4 Elementary Row Operations
(5) Echelon Form
(6) Matrix Rank
(7) Summary of Results
(8) Working Example

Linear

Matrix Equations

Linear Matrix Equations

Definition. A system of m linear equations with n unknowns may be written

Points to note:

- The constants $a_{11}, a_{21}, a_{31}, \cdots a_{m n}$ and $b_{1}, b_{2}, \cdots b_{m}$ are called the equation coefficients.
- The variables $x_{1}, x_{2} \cdots x_{n}$ are the unknowns in the system of equations.

Linear Matrix Equations

Matrix Form. The matrix counterpart of 1 is $[A] \cdot[X]=[B]$, where

$$
[A]=\left[\begin{array}{rrrr}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{2}\\
a_{21} & a_{22} & & \vdots \\
\vdots & & & \vdots \\
a_{m 1} & \cdots & \cdots & a_{m n}
\end{array}\right] \cdot\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{r}
b_{1} \\
b_{2} \\
\\
\vdots \\
b_{m}
\end{array}\right]
$$

Points to note:

- Matrices A and X have dimensions $(m \times n)$ and $(n \times 1)$, respectively.
- Column vector B has dimensions $(n \times 1)$.

Analysis of Solutions to Matrix Equations

Key Observations

- For two- and three-dimensions, graphical methods and intuition work well.
- For problems beyond three dimensions, much more difficult to understand the nature of solutions to linear matrix equations.
- We need to rely on mathematical analysis instead.

Basic Questions

- How many solutions will a set of equations will have?
- How to determine when no solutions exist?
- If there is more than one solution, how many solutions exist?

Fortunately, hand calculations on very small systems can provide hints on a pathway forward.

Matrix Determinant

Preample to Matrix Determinant

Strategy. Understand this problem by premultiplying the equations by constants in such a way that when they are combined variables will be eliminated.

Hand Calculation 1: Multiply equation 7 by a_{21} and equation 8 by a_{11}. This gives:

$$
\begin{align*}
& a_{21} \cdot a_{11} \cdot x_{1}+a_{21} \cdot a_{12} \cdot x_{2}=a_{21} \cdot b_{1} \tag{10}\\
& a_{11} \cdot a_{21} \cdot x_{1}+a_{11} \cdot a_{22} \cdot x_{2}=a_{11} \cdot b_{2} \tag{11}
\end{align*}
$$

Next, subtract equation 10 from equation 11 and rearrange:

Preample to Matrix Determinant

$$
\begin{equation*}
x_{2}=\left[\frac{a_{11} \cdot b_{2}-a_{21} \cdot b_{1}}{a_{11} \cdot a_{22}-a_{12} \cdot a_{21}}\right] \tag{12}
\end{equation*}
$$

Finally, get x_{1} by back-substituting x_{2} into either equation 7 or 8 .
Turns out there is more than one way to compute a solution ...
Hand Calculation 2: Multiply equation 7 by a_{22} and equation 8 by a_{12}, then subtract and rearrange:

$$
\begin{equation*}
x_{1}=\left[\frac{a_{22} \cdot b_{1}-a_{12} \cdot b_{2}}{a_{11} \cdot a_{22}-a_{12} \cdot a_{21}}\right] \tag{13}
\end{equation*}
$$

Compute x_{2} by back-substituting x_{1} into either equation 7 or 8 .

Preample to Matrix Determinant

Key Point. The denominators of equations 12 and 13 are the same.

They correspond to the determinant of a (2×2) matrix, namely:

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \tag{14}\\
a_{21} & a_{22}
\end{array}\right]=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}
$$

Note. The family of equations will have a unique solution when $\operatorname{det}(\mathrm{A}) \neq 0$.

Preample to Matrix Determinant

Equations in Three Dimensions. (i.e., $m=n=3$),

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{15}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=a_{11} M_{11}-a_{12} M_{12}+a_{13} M_{13} .
$$

where,

$$
M_{11}=\left[\begin{array}{ll}
a_{22} & a_{23} \tag{16}\\
a_{32} & a_{33}
\end{array}\right], M_{12}=\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{23}
\end{array}\right], M_{13}=\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] .
$$

Again, a unique solution exists when $\operatorname{det}(\mathrm{A}) \neq 0$. $\operatorname{det}(\mathrm{A})$ will be zero when two or more planes are parallel.

Matrix Determinant

General Formula. Let A be a $(n \times n)$ matrix.
For each $a_{i j}$ there is a sub-matrix $A_{i j}^{\prime}$ obtained by deleting the i-th row and j-th column of A.
Let $M_{i j}=\operatorname{det}\left(A_{i j}^{\prime}\right)$.
i-th row expansion

$$
\operatorname{det}(\mathrm{A})=\sum_{j=1}^{n}(-1)^{(i+j)} M_{i j} .
$$

j-th row expansion $\operatorname{det}(\mathrm{A})=\sum_{i=1}^{n}(-1)^{(i+j)} M_{i j}$.

$(-1)^{(\mathrm{i}+\mathrm{j})}$	
	$+\quad-\quad+\quad-+$
	$+\quad-\quad+-$
	$+\quad-\quad+\quad+$
	$+\quad-\quad+-$

Matrix Determinant

Example 1. The most straight forward way of computing the determinant of:

$$
A=\left[\begin{array}{rrr}
2 & 0 & 0 \tag{17}\\
3 & -1 & 1 \\
4 & 6 & -2
\end{array}\right]
$$

is to expand terms about the row or column having the most zero elements - in this case, the first row. This gives:

$$
\operatorname{det}(A)=2 \operatorname{det}\left[\begin{array}{rr}
-1 & 1 \tag{18}\\
6 & -2
\end{array}\right]=2(2-6)=-8 .
$$

Because $\operatorname{det}(A)$ evaluates to a non-zero number, we expect that the inverse of A will exist, and as such, the $\operatorname{rank}(A)=3$.

Matrix Determinant

Example 2. Compute the determinant of:

$$
A=\left[\begin{array}{rrrr}
2 & -1 & 3 & 0 \tag{19}\\
4 & -2 & 7 & 0 \\
-3 & -4 & 1 & 5 \\
6 & -6 & 8 & 0
\end{array}\right]
$$

To minimize computation we expand terms about the row or column having the most zero elements - in this case, the third column. This gives:

$$
\operatorname{det}(A)=-5 \operatorname{det}\left[\begin{array}{lll}
2 & -1 & 3 \tag{20}\\
4 & -2 & 7 \\
6 & -6 & 8
\end{array}\right]=-5 M_{34}
$$

Matrix Determinant

Expanding the second determinant about the first row gives:

$$
\begin{aligned}
M_{34} & =2 \operatorname{det}\left[\begin{array}{ll}
-2 & 7 \\
-6 & 8
\end{array}\right]+\operatorname{det}\left[\begin{array}{ll}
4 & 7 \\
6 & 8
\end{array}\right]+3 \operatorname{det}\left[\begin{array}{ll}
4 & -2 \\
6 & -6
\end{array}\right], \\
& =2(-16+42)+(32-42)+3(-24+12) \\
& =6
\end{aligned}
$$

Equation 20 evaluates to $-5(6)=-30$.

Matrix Determinant

Matrix Determinant Properties:

- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B A)$.
- If $\operatorname{det}(A) \neq 0$, then A is invertable (non-singular).
- $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(\mathrm{A})$.
- $\operatorname{det}(A)$ is multiplied by -1 when two rows of A are swapped.
- If two rows of A are identical, then $\operatorname{det}(A)=0$.

