Linear Matrix Equations - Part 2

Mark A. Austin
University of Maryland
austin@umd.edu
ENCE 201, Fall Semester 2023

October 27, 2023

Overview

(1) Numerical Solution of Linear Matrix Equations

- Mathematical Viewpoint
- Engineering Viewpoint
(2) Gauss Elimination (No Pivoting)
(3) Gauss Elimination (with Partial Pivoting)

4 LU Decomposition
(5) Working Examples

- LU Decomposition with Symbolic Python
- LU Decomposition with Row Permutations
(6) Python Code Listings
- Code 1: Matrix Row Operations for Gauss Elimination
- Code 2: Gauss Elimination with Partial Pivoting

Numerical Solution

of

Linear Matrix Equations

Mathematical Viewpoint

Mathematical Viewpoint

Solutions to linear equations is given by theoretical results from linear algebra, namely:

- A unique solution $\{X\}=\left[A^{-1}\right] \cdot\{B\}$ exists when $\left[A^{-1}\right]$ exists (i.e., $\operatorname{det}[A] \neq 0$).
- The equations are inconsistent when $[A]$ is singular and $\operatorname{rank}[A \mid B] \neq \operatorname{rank}[A]$.
- If rank $[A \mid B]$ equals rank $[A]$, then there are an infinite number of solutions.

We can use these results to guide the design of numerical algorithms for computing solutions to linear equations.

Engineering Viewpoint

Direct Methods:

- Transform the original equations into equivalent equations that can be solved more easily.
- Exact answer results if there are no round-off errors. Finite work. Use on dense matrices containing few zeros.
- Gausss Elimination, LU Decomposition.

Iterative Methods:

- Start with a guess of the the solution and repeatedly refine the solution until convergence criteria are achieved.
- Needs infinite work to get an exact answer. No round-off errors. Use on sparse, large order systems.
- Gauss-Seidel Iteration, Jacobi's Iteration Method.

Engineering Viewpoint

Evaluation Criteria:

- Robustness (i.e., Do the solvers work? When will they work?)
- Accuracy and Efficiency (i.e., How does computatioal effort vary as a function of problem size?).
- Ease of Implementation (i.e., implementation speed and cost).

Common Problems:

- Is A singular (or not)?
- Matrix A might be nearly singular. This is important for finite-precision arithmetic.

The pathway from mathematical analysis to a software implementation requires consideration of ill-conditioned equations and finite precision arithmetic.

III-Conditioned Equations

Definition. A system of equations is said to be ill-conditioned if small changes to one or more coefficients of $[A][X]=[B]$ causes large deviations in the solution.

Example: The following pairs of almost parallel equations:

$$
\left[\begin{array}{ll}
1.00 & 2.00 \tag{1}\\
0.48 & 0.99
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3.00 \\
1.47
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Let's increment coefficient a_{21} by 2% :

$$
\left[\begin{array}{ll}
1.00 & 2.00 \tag{2}\\
0.49 & 0.99
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3.00 \\
1.47
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

Finite-Precision Arithmetic

Example 1. Compute a numerical solution to:

$$
\left[\begin{array}{rr}
1.0 \times 10^{-3} & 1.0 \tag{3}\\
1.0 & 1.0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1.0 \\
2.0
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \approx\left[\begin{array}{l}
1.0 \\
1.0
\end{array}\right]
$$

with a computer having 2 digits of precision (mantissa + floating point + rounded).

Method 1: Transform the matrix equations into echelon form.
Step 1: Compute row multiplier m_{21} :

$$
\begin{equation*}
m_{21}=\left[\frac{a_{21}}{a_{11}}\right]=\frac{1}{1.0 \times 10^{-3}}=1.0 \times 10^{3} . \tag{4}
\end{equation*}
$$

Finite-Precision Arithmetic

Step 2: Compute row operation: $r_{2} \rightarrow r_{2}-m_{21} r_{1}$.

$$
\begin{aligned}
(1-1000 \times 1.0) x_{2} & =(2.0-1.0 \times 1000) \\
-999 x_{2} & =-998 \\
-1.0 \times 10^{3} x_{2} & =-1.0 \times 10^{3} \\
x_{2} & =1.0 \\
x_{1} & =0.0
\end{aligned}
$$

This is completely the wrong answer! The source of the problem is the large multiplier m_{12}.

Finite-Precision Arithmetic

Method 2: Idea: Swap rows 1 and 2. Then transform the matrix equations into echelon form.

Step 1: Compute row multiplier m_{21} :

$$
\begin{equation*}
m_{21}=\left[\frac{a_{21}}{a_{11}}\right]=\frac{1.0 \times 10^{-3}}{1.0}=10^{-3} . \tag{5}
\end{equation*}
$$

Step 2: Compute row operation: $r_{2} \rightarrow r_{2}-m_{21} r_{1}$.

$$
\begin{aligned}
(1-0.001 \times 1.0) x_{2} & =(1.0-0.0001 \times 2.0) \\
0.999 x_{2} & =0.998 \\
1.0 x_{2} & =1.0 \\
x_{2} & =1.0
\end{aligned}
$$

Finite-Precision Arithmetic

Step 3: Backsubstitution:

$$
\begin{equation*}
x_{1}=1.0 \tag{6}
\end{equation*}
$$

To two decimal places of accuracy $\left[x_{1}, x_{2}\right]=[1.0,1.0]$ is correct.
The absolutely correct answer is $\left[x_{1}, x_{2}\right]=[1.001,0.999]$.

Recommended Strategy

- Rearrange rows so that the largest coefficient in absolute value in the column is in the pivotal position.
- This process is called partial pivoting.
- Can also row equilibrate - scale individual rows so maximum element value is 1 .

Gauss Elimination

(No Pivoting)

Gauss Elimination (No Pivoting)

Elementary Row Operations

- Interchange any two rows.
- Multiply any row by a non-zero number.
- Add to one equation a non-zero multiple of another equation.

Step-by-Step Procedure

- Write $[A][x]=[B]$ in augmented matrix form.
- Apply a sequence of row operations to transform the augmented matrix into echelon form.
- Use back substitution to compute the solution vector.
- Validate answer.

Gauss Elimination (No Pivoting)

Example 1. Consider the family of matrix equations:

$$
\left[\begin{array}{rrr}
3 & -6 & 7 \tag{7}\\
9 & 0 & -5 \\
5 & -8 & 6
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
3 \\
-4
\end{array}\right]
$$

Step 1. Augmented Matrix Form

$$
\left[\begin{array}{rrr|r}
3 & -6 & 7 & 3 \tag{8}\\
9 & 0 & -5 & 3 \\
5 & -8 & 6 & -4
\end{array}\right]
$$

Gauss Elimination (No Pivoting)

Step 2. Apply Row Operations
Step 2.1: Divide Row 1 by 3 ($r_{1} \rightarrow r_{1} / 3$)

$$
\left[\begin{array}{rrr|r}
3 & -6 & 7 & 3 \tag{9}\\
9 & 0 & -5 & 3 \\
5 & -8 & 6 & -4
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 7 / 3 & 1 \\
9 & 0 & -5 & 3 \\
5 & -8 & 6 & -4
\end{array}\right]
$$

Step 2.2: Subtract 9 times row 1 from row $2\left(r_{2} \rightarrow r_{2}-9 r_{1}\right)$ Step 2.3: Subtract 5 times row 1 from row $3\left(r_{3} \rightarrow r_{3}-5 r_{1}\right)$

$$
\left[\begin{array}{rrr|r}
1 & -2 & 7 / 3 & 1 \tag{10}\\
9 & 0 & -5 & 3 \\
5 & -8 & 6 & -4
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 7 / 3 & 1 \\
0 & 18 & -26 & -6 \\
0 & 2 & -5.667 & -9
\end{array}\right]
$$

Gauss Elimination (No Pivoting)

Step 2.4: Divide row 2 by 18 ($r_{2} \rightarrow r_{2} / 18$)
Step 2.5: Subtract 2 times row 2 from row $3\left(r_{3} \rightarrow r_{3}-2 r_{2}\right)$
Step 2.6: Divide row 3 by 2.777 ($r_{3} \rightarrow r_{3} / 2.777$)

$$
\left[\begin{array}{rrr|r}
1 & -2 & 7 / 3 & 1 \tag{11}\\
0 & 18 & -26 & -6 \\
0 & 2 & -5.667 & -9
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 7 / 3 & 1 \\
0 & 1 & -26 / 18 & -1 / 3 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Equation 11 is now in echelon form.

Gauss Elimination (No Pivoting)

Step 3. Compute Solution via Back Substitution
Step 3.1: Row 3: $x_{3}=3.0 \rightarrow x_{3}=3.0$.
Step 3.2: Row 2: $x_{2}-26 / 18 x_{3}=-1 / 3 \rightarrow x_{2}=4.0$.
Step 3.3: Row 1: $x_{1}-2 x_{2}+7 / 3 x_{3}=1.0 \rightarrow x_{1}=2.0$.
Step 4. Validate the Answer, $X=[2,4,3]$.

$$
\left[\begin{array}{rrr}
3 & -6 & 7 \tag{12}\\
9 & 0 & -5 \\
5 & -8 & 6
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right] \rightarrow\left[\begin{array}{r}
3 \\
3 \\
-4
\end{array}\right] .
$$

Gauss Elimination (No Pivoting)

Python Source Code: Step-by-Step Row Reduction

```
import math
import numpy as np
import LinearMatrixEquations as lme
def main():
    print("--- Step 1: Create (3x3) matrix A, (3x1) matrix B ... ");
    A = np.array([ [ 3, -6, 7],
        [ 9, 0, -5],
        [ 5, -8, 6] ]);
    B = np.array ([ [ 3],
        [ 3],
    [-4] ]);
    lme.printmatrix("A", A);
    lme.printmatrix("B", B);
    print("--- Step 2: Create (3x4) augmented matrix [ A | B ] (join on vertical axis)
    AB = np.concatenate((A, B), axis=1)
    lme.printmatrix("Augmented Matrix [A|B] ...", AB );
    print("--- Step 3.1: Scale row 1 by 1/3 ... ");
    gauss01 = lme.rowscale(AB, 0, 1.0/3.0)
    lme.printmatrix("Matrix gauss01 ...", gauss01 );
```


Gauss Elimination (No Pivoting)

Python Source Code: Step-by-Step Row Reduction

```
print("--- Step 3.2: Subtract 9 times row 1 from row 2 ... ");
gauss02 = lme.rowadd( gauss01, 0, 1, -9.0)
lme.printmatrix("Matrix gauss02 ...", gauss02 );
print("--- Step 3.3: Subtract 5 times row 1 from row 3 ... ");
gauss03 = lme.rowadd( gauss02, 0, 2, -5.0)
lme.printmatrix("Matrix gauss03 ...", gauss03 );
print("--- Step 3.4: Scale row 2 by 1/18 ... ");
gauss04 = lme.rowscale(gauss03, 1, 1.0/18.0)
lme.printmatrix("Matrix gauss04 ...", gauss04 );
print("--- Step 3.5: Subtract 2 times row 2 from row 3 ... ");
gauss05 = lme.rowadd( gauss04, 1, 2, -2.0)
lme.printmatrix("Matrix gauss05 ...", gauss05 );
print("--- Step 3.6: Scale row 3 by -1/2.77777778 ... ");
echelon01 = lme.rowscale(gauss05, 2, -1.0/2.77777778)
print("--- Step 4.0: Print matrix [A|B] in Echelon Form ... ");
lme.printmatrix("Matrix [A|B] in Echelon Form ...", echelon01 );
```


Gauss Elimination (No Pivoting)

Abbreviated Output: See TestLinearMatrixEquations01.py

--- Step 1: Create (3x3) matrix A, (3x1) matrix B ...

Matrix: A
$3.0000000 \mathrm{e}+00$
$-6.0000000 e+00$
$7.0000000 \mathrm{e}+00$
$9.0000000 \mathrm{e}+00$
$0.0000000 e+00$
$-5.0000000 \mathrm{e}+00$
$5.0000000 \mathrm{e}+00$
$-8.0000000 \mathrm{e}+00$
$6.0000000 \mathrm{e}+00$

Matrix: B
$3.0000000 \mathrm{e}+00$
$3.0000000 \mathrm{e}+00$
$-4.0000000 \mathrm{e}+00$
--- Step 2: Create (3x4) augmented matrix [A | B] (join on vertical axis) ...

Matrix: Augmented Matrix [A|B] ...

$3.0000000 \mathrm{e}+00$	$-6.0000000 \mathrm{e}+00$	$7.0000000 \mathrm{e}+00$	$3.0000000 \mathrm{e}+00$
$9.0000000 \mathrm{e}+00$	$0.0000000 \mathrm{e}+00$	$-5.0000000 \mathrm{e}+00$	$3.0000000 \mathrm{e}+00$
$5.0000000 \mathrm{e}+00$	$-8.0000000 \mathrm{e}+00$	$6.0000000 \mathrm{e}+00$	$-4.0000000 \mathrm{e}+00$

Gauss Elimination (No Pivoting)

Abbreviated Output: Continued ...

--- Step 3.1: Scale row 1 by 1/3 ...

```
Matrix: Matrix gauss01 ...
\begin{tabular}{rrrr}
\(1.0000000 \mathrm{e}+00\) & \(-2.0000000 \mathrm{e}+00\) & \(2.3333333 \mathrm{e}+00\) & \(1.0000000 \mathrm{e}+00\) \\
\(9.0000000 \mathrm{e}+00\) & \(0.0000000 \mathrm{e}+00\) & \(-5.0000000 \mathrm{e}+00\) & \(3.0000000 \mathrm{e}+00\) \\
\(5.0000000 \mathrm{e}+00\) & \(-8.0000000 \mathrm{e}+00\) & \(6.0000000 \mathrm{e}+00\) & \(-4.0000000 \mathrm{e}+00\)
\end{tabular}
--- Step 3.2: Subtract 9 times row 1 from row 2 ...
--- Step 3.3: Subtract 5 times row 1 from row 3 ...
--- Step 3.4: Scale row 2 by 1/18 ...
--- Step 3.5: Subtract 2 times row 2 from row 3 ...
--- Step 3.6: Scale row 3 by -1/2.77777778 ...
--- Step 4.0: Print matrix [A|B] in Echelon Form ...
Matrix: Matrix [A|B] in Echelon Form ...
\begin{tabular}{rrrr}
\(1.0000000 \mathrm{e}+00\) & \(-2.0000000 \mathrm{e}+00\) & \(2.3333333 \mathrm{e}+00\) & \(1.0000000 \mathrm{e}+00\) \\
\(0.0000000 \mathrm{e}+00\) & \(1.0000000 \mathrm{e}+00\) & \(-1.4444444 \mathrm{e}+00\) & \(-3.3333333 \mathrm{e}-01\) \\
\(-0.0000000 \mathrm{e}+00\) & \(-0.0000000 \mathrm{e}+00\) & \(1.0000000 \mathrm{e}+00\) & \(3.0000000 \mathrm{e}+00\)
\end{tabular}
```


Gauss Elimination

(with Partial Pivoting)

Gauss Elimination (with Partial Pivoting)

Step-by-Step Procedure:

- Find largest element in absolute value in 1st column. Interchange rows so that it is the pivotal equation.
- Compute multipliers: $m_{i 1}=\left[a_{i 1} / a_{11}\right]$ for $\mathrm{i}=2,3, \cdots \mathrm{n}$.
- Compute new coefficients in rows $2,3, \cdots$ n.

For example, $a_{22}^{\prime}=a_{22}-m_{21} a_{12}, a_{23}^{\prime}=a_{23}-m_{21} a_{13}, a_{32}^{\prime}=$ $a_{32}-m_{31} a_{12}$, etc.

The partially transform matrix is:

$$
\left[\begin{array}{rrr}
a_{11} & a_{12} & a_{13} \tag{13}\\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime}
\end{array}\right] .
$$

Gauss Elimination (with Partial Pivoting)

Step-by-Step Procedure:

- Repeat process for 2nd column.
- After ($\mathrm{n}-1$) column calculations the A matrix will be in upper-triangular (echelon) form.
- Solve for unknowns through backsubstitution.

Key Points:

- If the pivotal coeffient is small, then the row multiplier will be very large, and errors magnified due to finite arithmetic.
- Row reduction and back substitution require $O\left(n^{3} / 3\right)$ and $O\left(n^{2}\right)$ operations, respectively.

Gauss Elimination (with Partial Pivoting)

Example 2. Consider the following set of equations:

$$
\begin{aligned}
2 x_{1}+6 x_{2}-x_{3} & =-12 \\
5 x_{1}-x_{2}+2 x_{3} & =29 \\
-3 x_{1}-4 x_{2}+x_{3} & =5
\end{aligned}
$$

Steps 1 and 2: Augmented matrix form, then row equilibration.

$$
\left[\begin{array}{rrr|r}
2 & 6 & -1 & -12 \tag{14}\\
5 & -1 & 2 & 29 \\
-3 & -4 & 1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
2 / 6 & 1 & -1 / 6 & -2.0 \\
1 & -1 / 5 & 2 / 5 & 29 / 5 \\
-3 / 4 & -1 & 1 / 4 & 5 / 4
\end{array}\right] .
$$

Gauss Elimination (with Partial Pivoting)

Step 3: Partial pivoting (swap rows 1 and 2):

$$
\left[\begin{array}{rrr|r}
1 & -1 / 5 & 2 / 5 & 29 / 5 \tag{15}\\
2 / 6 & 1 & -1 / 6 & -2.0 \\
-3 / 4 & -1 & 1 / 4 & 5 / 4
\end{array}\right]
$$

Step 4: Compute row multipliers:

$$
\begin{equation*}
m_{21}=\left[a_{21} / a_{11}\right]=2 / 6, \quad m_{31}=\left[a_{31} / a_{11}\right]=-3 / 4 . \tag{16}
\end{equation*}
$$

Step 5: Compute new coefficients for rows 2 and 3:

$$
\left[\begin{array}{rrr|r}
1 & -1 / 5 & 2 / 5 & 29 / 5 \tag{17}\\
0 & 32 / 30 & -9 / 30 & -118 / 30 \\
0 & -23 / 20 & 11 / 20 & 118 / 20
\end{array}\right]
$$

Gauss Elimination (with Partial Pivoting)

Step 6: Compute multiplier for row 3, columm 2.

$$
\begin{equation*}
m_{32}=\left[a_{32} / a_{22}\right]=-64 / 69 . \tag{18}
\end{equation*}
$$

Step 7: Eliminate elements below diagonal in column 2.

$$
\left[\begin{array}{rrr|r}
1 & -1 / 5 & 2 / 5 & 29 / 5 \tag{19}\\
0 & 32 / 30 & -9 / 30 & -118 / 30 \\
0 & 0 & 145 / 690 & 870 / 690
\end{array}\right]
$$

Step 8: Solve for x_{1} through x_{3} via back substitution.

$$
\begin{equation*}
x_{3}=[870 / 690] /[145 / 690]=6.0, x_{2}=-2.0, x_{1}=3.0 \tag{20}
\end{equation*}
$$

Step 9: Check solution by substitution.

Gauss Elimination (with Partial Pivoting)

Python Source Code: Row Reduction + Back Substitution


```
# TestLinearMatrixEquations02.py: Gauss Elimination with row reduction, partial
# pivoting, and back substitution.
```



```
import math
import numpy as np
import LinearMatrixEquations as lme
def main():
    n = 3 # <-- size of the matrix equations ...
    print("--- Problem 1: Create (3x3) matrix A, (3x1) matrix B ... ");
    A = np.array ([ [ 3, -6, 7],
            [ 9, 0, -5],
            [ 5, -8, 6] ]);
    B = np.array([ [ 3], [ 3], [-4] ]);
    lme.printmatrix("A", A);
    lme.printmatrix("B", B);
    print("--- Step 2: Compute augmented matrix equations ... ");
    AB = np.concatenate((A, B), axis=1)
    lme.printmatrix("Augmented Matrix [A|B] ...", AB );
```


Gauss Elimination (with Partial Pivoting)

Python Source Code: Continued ...

```
print("--- Step 3: Compute row reduction operations to echelon form ... ");
echelon01 = lme.rowreduction( AB );
lme.printmatrix("Matrix echelon01 ...", echelon01 );
print("--- Step 4: Split echelon01 back to (nxn) piece and (nx1) pieces ... ");
B_reduced = echelon01[:,n:n+1]
A_reduced = echelon01[:,0:n]
lme.printmatrix("Matrix A (reduced) ...", A_reduced );
lme.printmatrix("Matrix B (reduced) ...", B_reduced );
print("--- Step 5: Compute back substitution ... ");
soln01 = lme.backsubstitution( A_reduced, B_reduced)
lme.printmatrix("Matrix X (solution) ...", soln01 );
print("--- Problem 2: Create (3x3) matrix A, (3x1) matrix B ... ");
A = np.array ([ [ 2, 6, -1],
    [ -3, -4, 1] ]);
B = np.array ([ [-12], [ 29], [ 5] ]);
lme.printmatrix("A", A);
lme.printmatrix("B", B);
```


Gauss Elimination (with Partial Pivoting)

Python Source Code: Continued ...

```
    print("--- Step 2: Compute augmented matrix equations ... ");
```

 print("--- Step 2: Compute augmented matrix equations ... ");
 AB = np.concatenate((A, B), axis=1)
 AB = np.concatenate((A, B), axis=1)
 lme.printmatrix("Augmented Matrix [A|B] ...", AB);
 lme.printmatrix("Augmented Matrix [A|B] ...", AB);
 print("--- Step 3: Compute row reduction operations to echelon form ... ");
 print("--- Step 3: Compute row reduction operations to echelon form ... ");
 echelon01 = lme.rowreduction(AB);
 echelon01 = lme.rowreduction(AB);
 lme.printmatrix("Matrix echelon01 ...", echelon01);
 lme.printmatrix("Matrix echelon01 ...", echelon01);
 print("--- Step 4: Split echelon01 back to (nxn) piece and (nx1) pieces ... ");
 print("--- Step 4: Split echelon01 back to (nxn) piece and (nx1) pieces ... ");
 B_reduced = echelon01[:,n:n+1]
 B_reduced = echelon01[:,n:n+1]
 A_reduced = echelon01[:,0:n]
 A_reduced = echelon01[:,0:n]
 lme.printmatrix("Matrix A (reduced) ...", A_reduced);
 lme.printmatrix("Matrix A (reduced) ...", A_reduced);
 lme.printmatrix("Matrix B (reduced) ...", B_reduced);
 lme.printmatrix("Matrix B (reduced) ...", B_reduced);
 print("--- Step 5: Compute back substitution ... ");
 print("--- Step 5: Compute back substitution ... ");
 soln01 = lme.backsubstitution(A_reduced, B_reduced)
 soln01 = lme.backsubstitution(A_reduced, B_reduced)
 lme.printmatrix("Matrix X (solution) ...", soln01);
 lme.printmatrix("Matrix X (solution) ...", soln01);

call the main method ...

call the main method ...

main()

```
main()
```


Gauss Elimination (with Partial Pivoting)

Abbreviated Output: Problem 1 ...

Matrix: A
$3.0000000 \mathrm{e}+00$
$9.0000000 \mathrm{e}+00$
$-6.0000000 e+00$
$7.0000000 \mathrm{e}+00$
$-5.0000000 e+00$
$6.0000000 \mathrm{e}+00$

Matrix: B
$3.0000000 \mathrm{e}+00$
$3.0000000 \mathrm{e}+00$
$-4.0000000 \mathrm{e}+00$
--- Step 2: Compute augmented matrix equations ...

Matrix: Augmented Matrix [A|B] ...
$3.0000000 \mathrm{e}+00$
$-6.0000000 \mathrm{e}+00$
$7.0000000 e+00$
$3.0000000 e+00$
$9.0000000 \mathrm{e}+00 \quad 0.0000000 \mathrm{e}+00$
$-5.0000000 e+00$
$3.0000000 \mathrm{e}+00$
$5.0000000 \mathrm{e}+00$
$-8.0000000 \mathrm{e}+00$
$6.0000000 \mathrm{e}+00$
$-4.0000000 \mathrm{e}+00$
--- Step 3: Compute row reduction operations to echelon form ...

Matrix: Matrix echelon01

$1.0000000 \mathrm{e}+00$	$-2.0000000 \mathrm{e}+00$	$2.3333333 \mathrm{e}+00$	$1.0000000 \mathrm{e}+00$
$0.0000000 \mathrm{e}+00$	$1.0000000 \mathrm{e}+00$	$-1.4444444 \mathrm{e}+00$	$-3.3333333 \mathrm{e}-01$
$-0.0000000 \mathrm{e}+00$	$-0.0000000 \mathrm{e}+00$	$1.0000000 \mathrm{e}+00$	$3.0000000 \mathrm{e}+00$

Gauss Elimination (with Partial Pivoting)

Abbreviated Output: Problem 1 continued ...

--- Step 4: Split echelon01 back to (nxn) piece and (nx1) pieces ...

Matrix: Matrix A (reduced) ...

$1.0000000 \mathrm{e}+00$	$-2.0000000 \mathrm{e}+00$	$2.3333333 \mathrm{e}+00$
$0.0000000 \mathrm{e}+00$	$1.0000000 \mathrm{e}+00$	$-1.4444444 \mathrm{e}+00$
$-0.0000000 \mathrm{e}+00$	$-0.0000000 \mathrm{e}+00$	$1.0000000 \mathrm{e}+00$

Matrix: Matrix B (reduced) ...
$1.0000000 \mathrm{e}+00$
$-3.3333333 e-01$
$3.0000000 \mathrm{e}+00$
--- Step 5: Compute back substitution ...

Matrix: Matrix X (solution) ...
$2.0000000 \mathrm{e}+00$
$4.0000000 \mathrm{e}+00$
$3.0000000 \mathrm{e}+00$

Gauss Elimination (with Partial Pivoting)

Abbreviated Output: Problem 2 ...

Matrix: A
$2.0000000 e+00$
$6.0000000 \mathrm{e}+00$
$-1.0000000 \mathrm{e}+00$
$5.0000000 \mathrm{e}+00$
$-1.0000000 \mathrm{e}+00$
$2.0000000 \mathrm{e}+00$
$-3.0000000 \mathrm{e}+00$
$-4.0000000 \mathrm{e}+00$
$1.0000000 \mathrm{e}+00$

Matrix: B
$-1.2000000 \mathrm{e}+01$
$2.9000000 \mathrm{e}+01$
$5.0000000 \mathrm{e}+00$
--- Step 2: Compute augmented matrix equations ...

Matrix: Augmented Matrix [A|B]

$2.0000000 \mathrm{e}+00$	$6.0000000 \mathrm{e}+00$	$-1.0000000 \mathrm{e}+00$	$-1.2000000 \mathrm{e}+01$
$5.0000000 \mathrm{e}+00$	$-1.0000000 \mathrm{e}+00$	$2.0000000 \mathrm{e}+00$	$2.9000000 \mathrm{e}+01$
$-3.0000000 \mathrm{e}+00$	$-4.0000000 \mathrm{e}+00$	$1.0000000 \mathrm{e}+00$	$5.0000000 \mathrm{e}+00$

--- Step 3: Compute row reduction operations to echelon form ..

Matrix: Matrix echelon01

$1.0000000 \mathrm{e}+00$	$3.0000000 \mathrm{e}+00$	$-5.0000000 \mathrm{e}-01$	$-6.0000000 \mathrm{e}+00$
$-0.0000000 \mathrm{e}+00$	$1.0000000 \mathrm{e}+00$	$-2.8125000 \mathrm{e}-01$	$-3.6875000 \mathrm{e}+00$
$0.0000000 \mathrm{e}+00$	$0.0000000 \mathrm{e}+00$	$1.0000000 \mathrm{e}+00$	$6.0000000 \mathrm{e}+00$

Gauss Elimination (with Partial Pivoting)

```
Abbreviated Output: Problem 2 continued ...
--- Step 4: Split echelon01 back to (nxn) piece and (nx1) pieces ...
Matrix: Matrix A (reduced) ...
    1.0000000e+00 3.0000000e+00 -5.0000000e-01
    -0.0000000e+00 1.0000000e+00 -2.8125000e-01
    0.0000000e+00 0.0000000e+00 1.0000000e+00
Matrix: Matrix B (reduced) ...
    -6.0000000e+00
    -3.6875000e+00
    6.0000000e+00
--- Step 5: Compute back substitution ...
Matrix: Matrix X (solution) ...
    3.0000000e+00
    -2.0000000e+00
    6.0000000e+00
```


LU Decomposition

LU Decomposition

Motivation. Suppose $A X=B$ needs to be solved for a multiplicity of B vectors (e.g., $\mathrm{A} X_{1}=B_{1}, \mathrm{~A} X_{2}=B_{2}$, etc).

Requires Computational Effort
Computation Almost Free
Solving $\mathrm{AX}=\mathrm{B}$ requires $O\left(n^{3}\right)$ computational work. Can we do better? ...

LU Decomposition

Objective. We want to solve $[A][X]=[B]$, where A, X, and B are $(n \times n),(n \times 1)$ and $(n \times n)$ matrices, respectively.

Idea. Factor $[A]$ into the product:

$$
\begin{equation*}
[A]=[L][U] \rightarrow[L][U][X]=[B] . \tag{21}
\end{equation*}
$$

and then solve in two steps.
Step 1: Foward Substitution to get $Z=\left[z_{1}, z_{2}, \cdots, z_{n}\right]$.

$$
\left[\begin{array}{rrlr}
L_{11} & 0 & \cdots & 0 \tag{22}\\
L_{21} & L_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
L_{n 1} & L_{n 2} & \cdots & L_{n n}
\end{array}\right]\left[\begin{array}{r}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right]=\left[\begin{array}{r}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] .
$$

LU Decomposition

Step 2: Back Substitution to get $X=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$.

$$
\left[\begin{array}{rrlr}
U_{11} & U_{12} & \cdots & U_{1 n} \tag{23}\\
0 & U_{22} & \cdots & U_{2 n} \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & U_{n n}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{r}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right] .
$$

Observation: There are n^{2} elements in matrix A, and $n(n+1)$ unknowns in equations 22 and 23.

We need to impose n additional constraints to make the method work.

LU Decomposition

Row Reduction Strategies:

- Assume upper diagonal elements are unity, i.e., $U_{i i}=1$ (Crout Reduction).
- Assume $L_{i i}=$ I (Doolittle's Method).
- Assume $U_{i i}=L_{i i}$ (Cholesky Decomposition).

Step-by-Step Solution Procedure:

- Compute $\mathrm{A}=\mathrm{LU}$ (this requires $\mathrm{O}\left(n^{3}\right)$ work).
- Solve LU $X_{1}=B_{1}$ (only requires $\mathrm{O}\left(n^{2}\right)$ work).
- Solve LU $X_{2}=B_{2}$ (only requires $\mathrm{O}\left(n^{2}\right)$ work).
- Solve LU $X_{3}=B_{3}$ (only requires $\mathrm{O}\left(n^{2}\right)$ work), etc \ldots

LU Decomposition

General Equations. For a ($n \times n$) set of equations $[L][U]=[A]$,

$$
\begin{equation*}
a_{i j}=\sum_{k=\min (i, j)}^{n}\left(L_{i k} U_{k j}\right) . \tag{24}
\end{equation*}
$$

Three cases:

$$
\begin{array}{ll}
i \leq j & U_{i j}=\left[A_{i j}-\sum_{k=1}^{i-1} L_{i k} U_{k j}\right] / U_{i i} \\
i=j \quad U_{j j}=\left[A_{i j}-\sum_{k=1}^{j-1} L_{i k} U_{k j}\right] / L_{j j} \\
i \geq j \quad L_{i j}=\left[A_{i j}-\sum_{k=1}^{j-1} L_{i k} U_{k j}\right] / U_{j j}
\end{array}
$$

LU Decomposition

Example 1. Consider the matrix equations:

$$
\left[\begin{array}{rrr}
3 & -6 & 7 \tag{25}\\
9 & 0 & -5 \\
5 & -8 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
3 \\
-4
\end{array}\right] .
$$

Assume $[L][U]=[A]$ with values of unity along the upper diagonal (Crout Reduction).

$$
\left[\begin{array}{rrr}
L_{11} & 0 & 0 \tag{26}\\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{array}\right]\left[\begin{array}{rrr}
1 & U_{12} & U_{13} \\
0 & 1 & U_{23} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
3 & -6 & 7 \\
9 & 0 & -5 \\
5 & -8 & 6
\end{array}\right] .
$$

LU Decomposition

Equating terms (1st row of L):

$$
\begin{array}{rll}
L_{11} \cdot 1=3 & \rightarrow & L_{11}=3 . \\
L_{11} \cdot U_{12}=-6 & \rightarrow & U_{12}=-2 . \\
L_{11} \cdot U_{13}=-7 & \rightarrow & U_{13}=7 / 3 .
\end{array}
$$

Equating terms (2nd row of L):

$$
\begin{array}{rll}
L_{21} \cdot U_{11}=9 & \rightarrow & L_{21}=9 \\
L_{21} \cdot U_{12}+L_{22} \cdot 1=0 & \rightarrow & L_{22}=18 \\
L_{21} \cdot U_{13}+L_{22} \cdot U_{23}=0 & \rightarrow & U_{23}=-13 / 9
\end{array}
$$

LU Decomposition

Equating terms (3rd row of L):

$$
\begin{aligned}
& L_{31} \cdot U_{11}=5 \rightarrow \\
& L_{31}=5 . \\
& L_{31} \cdot U_{12}+L_{32}=-8 \rightarrow \\
& L_{32}=2 . \\
& L_{31} \cdot U_{13}+L_{32} \cdot U_{23}+L_{33}=6 \rightarrow \quad L_{33}=-25 / 9 .
\end{aligned}
$$

Hence:

$$
\left[\begin{array}{rrr}
3 & 0 & 0 \tag{27}\\
9 & 18 & 0 \\
5 & 2 & -25 / 9
\end{array}\right]\left[\begin{array}{rrr}
1 & -2 & 7 / 3 \\
0 & 1 & -13 / 9 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
3 & -6 & 7 \\
9 & 0 & -5 \\
5 & -8 & 6
\end{array}\right] .
$$

LU Decomposition

Forward Substitution:

$$
\left[\begin{array}{rrr}
3 & 0 & 0 \tag{28}\\
9 & 18 & 0 \\
5 & 2 & -25 / 9
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
3 \\
-4
\end{array}\right] \rightarrow\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{r}
1.0 \\
-1 / 3 \\
3.0
\end{array}\right] .
$$

Backward Substitution:

$$
\left[\begin{array}{rrr}
1 & -2 & 7 / 3 \tag{29}\\
0 & 1 & -13 / 9 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1 / 3 \\
3.0
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2.0 \\
4.0 \\
3.0
\end{array}\right]
$$

LU Decomposition

Example 2. Consider $[L][U]=[A]$ with values of unity along the lower diagonal (Doolittle's Method).

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \tag{30}\\
L_{21} & 1 & 0 \\
L_{31} & L_{32} & 1
\end{array}\right]\left[\begin{array}{rrr}
U_{11} & U_{12} & U_{13} \\
0 & U_{22} & U_{23} \\
0 & 0 & U_{33}
\end{array}\right]=\left[\begin{array}{rrr}
3 & -6 & 7 \\
9 & 0 & -5 \\
5 & -8 & 6
\end{array}\right] .
$$

Can show:

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \tag{31}\\
3 & 1 & 0 \\
5 / 3 & 1 / 9 & 1
\end{array}\right]\left[\begin{array}{rrr}
3 & -6 & 7 \\
0 & 18 & -26 \\
0 & 0 & -25 / 9
\end{array}\right]=\left[\begin{array}{rrr}
3 & -6 & 7 \\
9 & 0 & -5 \\
5 & -8 & 6
\end{array}\right] .
$$

Working Examples

Example 3: LU Decomposition with Symbolic Python

Problem Statement: Let's try to use SymPy to compute algebraic representations for LU decomposition for matrices

$$
A=\left[\begin{array}{ll}
a & b \tag{32}\\
c & d
\end{array}\right]=L U,
$$

and

$$
A=\left[\begin{array}{lll}
a & b & c \tag{33}\\
d & e & f \\
g & h & i
\end{array}\right]=L U .
$$

Then, we will check the results by assigning numerical values to the symbols to match equation 25 . Note: $\operatorname{det}(A)=\operatorname{det}(L) \cdot \operatorname{det}(U)$ $=-150$.

Example 3: LU Decomposition with Symbolic Python

Python Source Code: Compute $A=L U$.


```
# TestMatrixLUDecomposition01.py: Compute symbolic descriptions
# of matrix LU decomposition ....
```



```
import sympy as sp
from sympy import Integral, Matrix, pi, pprint
def main():
    # Define symbolic representation of matrix ...
    print("--- Part 1: Compute LU decomposition of 2x2 matrix equations ...");
    a, b, c, d, e, f = sp.symbols('a,b,c,d,e,f')
    A = sp.Matrix(([a,b],[c,d]))
    B = sp.Matrix([e,f])
    pprint(A)
    L, U, P = A.LUdecomposition()
    print("--- Lower triangular matrix ...\n");
    pprint(L)
    print("--- Upper triangular matrix ...\n");
```


Example 3: LU Decomposition with Symbolic Python

Python Source Code: Continued ...

```
pprint(U)
print("--- Check matrix product L*U ...\n");
pprint(L*U)
print("--- Part 2: Symbolic LU decomposition of 3x3 matrix equations ...");
g, h, i = sp.symbols('g,h,i')
j, k, l = sp.symbols('j,k,l')
A = sp.Matrix(([a,b,c],[d,e,f], [g,h,i] ))
B = sp.Matrix([j,k,l])
pprint(A)
L, U, P = A.LUdecomposition()
print("--- Lower triangular matrix ...\n");
pprint(L)
print("--- Upper triangular matrix ...\n");
pprint(U)
```


Example 3: LU Decomposition with Symbolic Python

Python Source Code: Continued ...

```
5 5
56
5 7
58
5 9
60
6 1
62
6 3
6 4
```

 print("--- Check matrix product L*U ...\n");
    ```
    print("--- Check matrix product L*U ...\n");
    pprint(L*U)
    pprint(L*U)
    print("--- Part 3: LU decomposition for sample 3x3 matrix equations ...");
    print("--- Part 3: LU decomposition for sample 3x3 matrix equations ...");
    print("--- Set values in L ...");
    print("--- Set values in L ...");
    print("--- L = L.subs( {a:3, b: -6, c:7, d:9, e:0, f:-5, g:5, h:-8, i:6 } ) \n")
    print("--- L = L.subs( {a:3, b: -6, c:7, d:9, e:0, f:-5, g:5, h:-8, i:6 } ) \n")
    L = L.subs( {a:3, b: -6, c:7, d:9, e:0, f:-5, g:5,h:-8, i:6 } )
    L = L.subs( {a:3, b: -6, c:7, d:9, e:0, f:-5, g:5,h:-8, i:6 } )
    pprint(L)
    pprint(L)
    print("--- L.det() = {:s} ...".format( str( sp.det(L) ) ))
    print("--- L.det() = {:s} ...".format( str( sp.det(L) ) ))
    print("--- Set values in U ...");
    print("--- Set values in U ...");
    print("--- U = U.subs( {a:3, b: -6, c:7, d:9, e:0, f:-5, g:5, h:-8, i:6 } ) \n")
    print("--- U = U.subs( {a:3, b: -6, c:7, d:9, e:0, f:-5, g:5, h:-8, i:6 } ) \n")
    U = U.subs( {a:3, b: -6, c:7, d:9, e:0, f:-5, g:5, h:-8, i:6 } )
    U = U.subs( {a:3, b: -6, c:7, d:9, e:0, f:-5, g:5, h:-8, i:6 } )
    pprint(U)
    pprint(U)
    print("--- U.det() = {:s} ...".format( str( sp.det(U) ) ))
    print("--- U.det() = {:s} ...".format( str( sp.det(U) ) ))
# call the main method ...
# call the main method ...
main()
```

main()

```

\section*{Example 3: LU Decomposition with Symbolic Python}

Abbreviated Output: Part 1: decomposition of \(2 \times 2\) matrices
\begin{tabular}{llll}
\(\mid\) & \(a\) & \(b\) \\
\(\mid\) & & & \(\mid\) \\
\(\mid\) & \(c\) & \(d\)
\end{tabular}\(|\)
--- Lower triangular matrix
--- Upper triangular matrix
\begin{tabular}{llll}
\(\mid\) & 1 & 0 & \(\mid\) \\
\(\mid\) & & & \(\mid\) \\
\(\mid\) & \(c\) & & 1 \\
\(\mid\) & - & 1 & \\
\(\mid\) & \(a\) & & 1
\end{tabular}
\begin{tabular}{ccc}
\(\mid\) & \(a\) & \(b\) \\
\(\mid\) & & \(\mid\) \\
\(\mid\) & \(b . c\) & \(\mid\) \\
\(\mid\) & 0 & \(d---\) \\
\(\mid\) & \(a\) & \(\mid\)
\end{tabular}
--- Check matrix product \(\mathrm{L} * \mathrm{U}\)...
```

a b |
c d |

```

\section*{Example 3: LU Decomposition with Symbolic Python}

Abbreviated Output: Part 2: decomposition of \(3 \times 3\) matrices
\begin{tabular}{lllll}
\(\mid\) & \(a\) & \(b\) & \(c\) & \(\mid\) \\
\(\mid\) & & & & \(\mid\) \\
\(\mid\) & \(d\) & \(e\) & \(f\) & \(\mid\) \\
\(\mid\) & & & & \(\mid\) \\
\(\mid\) & \(g\) & \(h\) & \(i\) & \(\mid\)
\end{tabular}
--- Lower triangular matrix
--- Upper triangular matrix ...


\section*{Example 3: LU Decomposition with Symbolic Python}

Abbreviated Output: Part 2: decomposition of \(3 \times 3\) matrices

\begin{tabular}{lcccc}
\(\mid\) & 1 & 0 & 0 & \(\mid\) \\
\(\mid\) & 3 & 1 & 0 & \(\mid\) \\
\(\mid\) & \(5 / 3\) & \(1 / 9\) & 1 & \(\mid\)
\end{tabular}

--- L.det() = 1 ,

\section*{Example 3: LU Decomposition with Symbolic Python}

Points to note:
- Theoretical analysis indicates:
\[
\begin{equation*}
\operatorname{det}(A)=\operatorname{det}(L) \operatorname{det}(U)=1 *-150=-150 . \tag{34}
\end{equation*}
\]

The symbolic analysis works!
- The analysis only works when the parameter "a" is non-zero.
- To avoid division-by-zero, we need a way to shuffle the matrix rows.

\section*{Example 4: LU Decomposition with Row Permutations}

Problem Statement: Compute LU decomposition with row permutation matrix \(P\), i.e.,
\[
\begin{equation*}
A=P L U \tag{35}
\end{equation*}
\]
then solve matrix equations 25 :
Note: Here, P is an orthogonal matrix (i.e., \(P^{T}=P^{-1}\) ). Thus, solving \(\mathrm{AX}=\mathrm{B}\) translates to \(\mathrm{LUX}=P^{T} \mathrm{~B}\).

\section*{Solution Procedure:}
- Create matrices A and B.
- Use scipy.linalg to compute \(A=P L U\).
- Solve LY \(=P^{T}\) B (forward substitution).
- Solve UX \(=\mathrm{Y}\) (backward substitution).

\section*{Example 4: LU Decomposition with Row Permutations}

\section*{Python Source Code:}
```


==

TestLUDecomposition01.py: Use scipy.linalg to compute LU decomposition with

row permutation matrix P.

```

```

import math
import numpy as np
import scipy.linalg as la
import LinearMatrixEquations as lme
def main():
print("--- Problem 1: Create (3x3) matrix A, (3x1) matrix B ... ");
print("--- Step 1: Define A and B matrices ... ");
A = np.array([[3, -6, 7], [9, 0, -5], [5, -8, 6]]);
B = np.array([[3], [3], [-4]]);
lme.printmatrix("A", A);
lme.printmatrix("B", B);
print("--- Step 2: Compute A = PLU Decomposition ... ");
P, L, U = la.lu(A)
lme.printmatrix("P", P);
lme.printmatrix("L", L);

```

\section*{Example 4: LU Decomposition with Row Permutations}

\section*{Python Source Code: Continued ...}
```

 lme.printmatrix("U", U);
 print("--- Step 3: Check decomposition A = PLU ... ");
 lme.printmatrix("np.dot(P,np.dot(L,U))", np.dot(P,np.dot(L,U)));
 print("--- Step 4: Compute Z = P^T.B (note: matrix P is orthogonal) ... ");
 Z = np.dot(P.T,B);
 lme.printmatrix("Z", Z);
 print("--- Step 5: Compute forward substitution ... ");
 Y = la.solve_triangular(L, Z, lower=True)
 print("--- Step 6: Compute backward substitution ... ");
 X = la.solve_triangular(U, Y, lower=False)
 lme.printmatrix("Solution: X", X);

call the main method ...

```
main()

\section*{Example 4: LU Decomposition with Row Permutations}

\section*{Abbreviated Output: ...}
--- Problem 1: Create (3x3) matrix A, (3x1) matrix B ...
--- Step 1: Define A and B matrices ...

Matrix: A
\[
\begin{array}{rrr}
3.0 \mathrm{e}+00 & -6.0 \mathrm{e}+00 & 7.0 \mathrm{e}+00 \\
9.0 \mathrm{e}+00 & 0.0 \mathrm{e}+00 & -5.0 \mathrm{e}+00 \\
5.0 \mathrm{e}+00 & -8.0 \mathrm{e}+00 & 6.0 \mathrm{e}+00
\end{array}
\]

Matrix: B
\[
3.0 \mathrm{e}+00
\]
\[
3.0 \mathrm{e}+00
\]
\[
-4.0 e+00
\]
--- Step 2: Compute A = PLU Decomposition ...

Matrix: P
\(0.0 \mathrm{e}+00\)
\(0.0 \mathrm{e}+00\)
\(1.0 \mathrm{e}+00\)
\(1.0 \mathrm{e}+00\)
\(0.0 \mathrm{e}+00\)
\(0.0 \mathrm{e}+00\)
\(0.0 \mathrm{e}+00\)
\(1.0 \mathrm{e}+00\)
\(0.0 \mathrm{e}+00\)

Matrix: L
\begin{tabular}{lll}
\(1.0 \mathrm{e}+00\) & \(0.0 \mathrm{e}+00\) & \(0.0 \mathrm{e}+00\) \\
\(5.5 \mathrm{e}-01\) & \(1.0 \mathrm{e}+00\) & \(0.0 \mathrm{e}+00\) \\
\(3.3 \mathrm{e}-01\) & \(7.5 \mathrm{e}-01\) & \(1.0 \mathrm{e}+00\)
\end{tabular}
\(3.3 \mathrm{e}-01\)
\(7.5 e-01\)
\(1.0 \mathrm{e}+00\)

Matrix: U
\[
\begin{array}{rrr}
9.0 \mathrm{e}+00 & 0.0 \mathrm{e}+00 & -5.0 \mathrm{e}+00 \\
0.0 \mathrm{e}+00 & -8.0 \mathrm{e}+00 & 8.7 \mathrm{e}+00 \\
0.0 \mathrm{e}+00 & 0.0 \mathrm{e}+00 & 2.0 \mathrm{e}+00
\end{array}
\]

\section*{Example 4: LU Decomposition with Row Permutations}

\section*{Abbreviated Output: Continued ...}
--- Step 3: Check decomposition A = PLU ...

Matrix: np.dot(P,np.dot(L,U))
\begin{tabular}{lrrr}
\(3.0000000 \mathrm{e}+00\) & \(-6.0000000 \mathrm{e}+00\) & \(7.0000000 \mathrm{e}+00\) & \(<---\) \\
\(9.0000000 \mathrm{e}+00\) & \(0.0000000 \mathrm{e}+00\) & \(-5.0000000 \mathrm{e}+00\) &
\end{tabular}
--- Step 4: Compute \(\mathrm{Z}=\mathrm{P}^{\wedge} \mathrm{T} . \mathrm{B}\) (note: matrix P is orthogonal) ...

Matrix: Z
\(3.0000000 e+00\)
\(-4.0000000 e+00\)
\(3.0000000 \mathrm{e}+00\)
--- Steps 5-6: Compute forward/backward substitution ...

Matrix: Solution: X <--- It works !!!
\(2.0000000 \mathrm{e}+00\)
\(4.0000000 \mathrm{e}+00\)
\(3.0000000 \mathrm{e}+00\)

\section*{Python Code Listings}

\section*{Code 1: Matrix Row Operations for Gauss Elimination}
```


===

LinearMatrixEquations.py: Functions to compute operations on linear matrix

equations.

```

```

import math
import numpy as np

```

```


LinearMatrixEquations.printmatrix(): Print two-dimensional matrices.

Args: name: string description of matrix.

 A (nxn) matrix.

Returns: void.

```

```

def printmatrix(name, a):
print("");
print("Matrix: {:s} ".format(name));
for row in a:
for col in row:
print("{:16.7e}".format(col), end=" ")
print("")

==

LinearMatrixEquations.rowswap(): Create duplicate of matrix, then

 swap rows.
    ```

\section*{Code 1: Matrix Row Operations for Gauss Elimination}
```


Args: A (nxn) numpy array.

 k: row to be swapped.
 l: row to be swapped.

Returns: B (nxn) copy of A with rows swapped.

===

def rowswap(A,k,l):
m = A.shape[0] \# m is number of rows in A
n = A.shape[1] \# n is number of columns in A
B = np.copy(A).astype('float64')
for j in range(n):
temp = B[k][j]
B[k][j] = B[l][j]
B[l][j] = temp
return B

==

LinearMatrixEquations.rowscale(): Create duplicate of matrix, then

scale specified row.

Args: A (nxn) numpy array.

: k (int: is matrix row number to be scaled.

: scale (double): scale factor.

```

\section*{Code 1: Matrix Row Operations for Gauss Elimination}
```



```
#
# Returns: B (nxn) copy of A with row k multiplied by scale...
```


Returns: B (nxn) copy of A with row k multiplied by scale...

```


```

def rowscale(A,k,scale):

```
def rowscale(A,k,scale):
    m = A.shape[0] # m is number of rows in A
    m = A.shape[0] # m is number of rows in A
    n = A.shape[1] # n is number of columns in A
    n = A.shape[1] # n is number of columns in A
    B = np.copy(A).astype('float64')
    B = np.copy(A).astype('float64')
    for j in range(n):
    for j in range(n):
            B[k][j] *= scale
            B[k][j] *= scale
        return B
```

 return B
    ```


```


LinearMatrixEquations.rowadd(): Add multiple of a row to another row.

```
# LinearMatrixEquations.rowadd(): Add multiple of a row to another row.
#
#
# Args: A (nxn) numpy array.
# Args: A (nxn) numpy array.
# : k (int: is matrix row number to be added to.
# : k (int: is matrix row number to be added to.
# : l (int: is matrix row number to be scaled.
# : l (int: is matrix row number to be scaled.
# : scale (double): scale factor.
# : scale (double): scale factor.
# Returns: B (nxn) copy of A with row k multiplied by scale...
# Returns: B (nxn) copy of A with row k multiplied by scale...
# ===========================================================================
# ===========================================================================
def rowadd(A,k,l,scale):
def rowadd(A,k,l,scale):
    m = A.shape[0] # m is number of rows in A
    m = A.shape[0] # m is number of rows in A
    n = A.shape[1] # n is number of columns in A
```

 n = A.shape[1] # n is number of columns in A
    ```

\section*{Code 1: Matrix Row Operations for Gauss Elimination}
```

B = np.copy(A).astype('float64')
for j in range(n):
B[l][j] += B[k][j]*scale
return B

```

\section*{Code 2: Gauss Elimination with Partial Pivoting}
```


==

LinearMatrixEquations.py: Functions to compute operations on linear matrix

equations.

```

```

import math
import numpy as np
==
LinearMatrixEquations. rowreduction(): Computes row reduction to echelon form.
Args: A: an augmented matrix of dimension n x (n+1) associated with a
linear system.
Returns: B, a numpy array that represents the row echelon form of A.

Note: RowReduction may not return correct results if the the matrix A does

not have a pivot in each column (i.e., the matrix is rank deficient).

===

def rowreduction(A):
m = A.shape[0] \# A has m rows
n = A.shape[1] \# It is assumed that A has m+1 columns
B = np.copy(A).astype('float64')
\# For each step of elimination, we find a suitable pivot, move it into

```

\section*{Code 2: Gauss Elimination with Partial Pivoting}
\# position and create zeros for all entries below.
for \(k\) in range (m):
    \# Set pivot as ( \(k, k\) ) entry
    pivot \(=B[k][k]\)
    pivot_row = k
    \# Find a suitable pivot if the ( \(k, k\) ) entry is zero
    while (pivot \(==0\) and pivot_row \(<m-1\) ):
            pivot_row += 1
            pivot \(=B[\) pivot_row] [k]
    \# Swap row if needed
    if (pivot_row \(!=k\) ):
            \(B=\) rowswap (B,k,pivot_row)
    \# If pivot is nonzero, carry on with elimination in column \(k\)
    if (pivot \(!=0\) ):
            \(B=\operatorname{rowscale}(B, k, 1 . / B[k][k])\)
            for \(i\) in range \((k+1, m)\) :
            \(B=\operatorname{rowadd}(B, k, i,-B[i][k])\)
        else:
            print("Pivot could not be found in column",k,".")
return \(B\)

\section*{Code 2: Gauss Elimination with Partial Pivoting}
```

5 7


```
# LinearMatrixEquations.backsubstitution(): Returns an (nx1) vector that is the
```


LinearMatrixEquations.backsubstitution(): Returns an (nx1) vector that is the

solution to the matrix system UX = B.

solution to the matrix system UX = B.

Args: U: A numpy array that represents an upper triangular square mxm matrix.
Args: U: A numpy array that represents an upper triangular square mxm matrix.
B: A numpy array that represents an nx1 vector
B: A numpy array that represents an nx1 vector

Returns: X, A (nx1) numpy array representing the solution to UX = B.

```
# Returns: X, A (nx1) numpy array representing the solution to UX = B.
```



```
def backsubstitution(U,B):
```

def backsubstitution(U,B):
\# m is number of rows and columns in }
\# m is number of rows and columns in }
m = U.shape [0]
m = U.shape [0]
X = np.zeros((m,1))
X = np.zeros((m,1))
\# Calculate entries of X backward from m-1 to O
\# Calculate entries of X backward from m-1 to O
for i in range(m-1,-1,-1):
for i in range(m-1,-1,-1):
X[i] = B[i]
X[i] = B[i]
for j in range(i+1,m):
for j in range(i+1,m):
X[i] -= U[i][j]*X[j]
X[i] -= U[i][j]*X[j]
if (U[i][i] != 0):
if (U[i][i] != 0):
X[i] /= U[i][i]
X[i] /= U[i][i]
else:
else:
print("Zero entry found in U pivot position",i,".")
print("Zero entry found in U pivot position",i,".")
return X

```
        return X
```


Code 2: Gauss Elimination with Partial Pivoting

```
86
87
88
89
90
91
92
93
94
95
96
97


```


LinearMatrixEquations.backsubstitution(): Returns an (nx1) vector that is the

```
# LinearMatrixEquations.backsubstitution(): Returns an (nx1) vector that is the
# solution to the matrix system AX = B.
# solution to the matrix system AX = B.
#
#
# Args: A: A numpy array that represents a matrix of dimension n x n.
# Args: A: A numpy array that represents a matrix of dimension n x n.
    B: A numpy array that represents a matrix of dimension n x 1.
    B: A numpy array that represents a matrix of dimension n x 1.
Returns: X, A (nx1) numpy array representing the solution to AX = B.
Returns: X, A (nx1) numpy array representing the solution to AX = B.
Note: Computational procedure will fail if AX = B does not have a
Note: Computational procedure will fail if AX = B does not have a
    unique solution.
```

 unique solution.
    ```


```

def solvesystem(A,B):

```
def solvesystem(A,B):
    # Step 1: Check shape of A
    # Step 1: Check shape of A
    if (A.shape[0] != A.shape[1]):
    if (A.shape[0] != A.shape[1]):
        print("--- ERROR: solvesystem accepts only square arrays ...")
        print("--- ERROR: solvesystem accepts only square arrays ...")
            return
            return
    n = A.shape[0] # n is number of rows and columns in A
    n = A.shape[0] # n is number of rows and columns in A
    # Step 2: Join A and B to make the augmented matrix
    # Step 2: Join A and B to make the augmented matrix
    A_augmented = np.hstack((A,B))
    A_augmented = np.hstack((A,B))
    # Step 3: Carry out elimination
```

 # Step 3: Carry out elimination
    ```

\section*{Code 2: Gauss Elimination with Partial Pivoting}

114 115 116
117
118
119
120
121
122 123 124 125
126
```

R = rowreduction(A_augmented)

Step 4: Split R back to nxn piece and nx1 piece

B_reduced = R[:,n:n+1]
A_reduced = R[:, 0:n]

Step 5: Compute back substitution

X = backsubstitution(A_reduced, B_reduced)
return X

```
```

