
Definition of Matrices Matrix Properties Matrix Arithmetic Definition of Vectors Vector Properties

Matrices and Vectors: Basic Introduction

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 201, Fall Semester 2023

September 27, 2023



Definition of Matrices Matrix Properties Matrix Arithmetic Definition of Vectors Vector Properties

Overview

1 Definition of Matrices

2 Matrix Properties

3 Matrix Arithmetic

4 Definition of Vectors

5 Vector Properties

Mark Austin

Mark Austin

Mark Austin
Part 1



Definition of Matrices Matrix Properties Matrix Arithmetic Definition of Vectors Vector Properties

Definition of Matrices
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Definition of a Matrix

Definition. A matrix (or array) of order m by n is simply a set of

numbers arranged in a rectangular block of m horizontal rows and n

vertical columns. We say

A =

2

6664

a11 a12 · · · a1n
a21 a22 · · · a2n

.

.

.
.
.
.

. . .
.
.
.

am1 am2 · · · amn

3

7775
(1)

is a matrix of size (or dimension) (m⇥ n).

In the double subscript notation aij for matrix element a(i,j), the

first subscript i denotes the row number, and the second subscript j
denotes the column number.
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Matrix Properties
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Matrix Properties

Properties of Matrix A:

A matrix having the same number of rows and columns is

called square.

A square matrix of order n is also called a (n ⇥ n) matrix.

The elements a11, a22, · · · , ann are called the principal

diagonal.

A diagonal matrix with elements aii = 1, and all other matrix

elements zero, is called the identity matrix I .
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Matrix Transpose

Matrix Transpose. The transpose of a (m ⇥ n) matrix A is the

(n ⇥m) matrix obtained by interchanging the rows and columns of

A. The tranpose is denoted AT
.

Example 1. The matrix transpose of

A =


1 2 3 4

5 6 7 8

�
is AT

=

2

664

1 5

2 6

3 7

4 8

3

775 (2)

Properties

(A+ B)T = AT
+ BT

.

(ABC )
T

= CT BT AT
.
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Symmetric and Skew-Symmetric Matrices

Matrix Symmetry:

A square matrix A is symmetric if A = AT
.

A square matrix A is skew-symmetric if A = -AT
.

Large symmetric matrices play a central role in structural analysis.
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Matrix Inverse

Definition: When it exists, the inverse of matrix A is written A�1

and it has the property:

[A]
⇥
A�1

⇤
=

⇥
A�1

⇤
[A] = I . (3)

Nomenclature

If matrix A has an inverse, then A is called non-singular.

If matrix A has an inverse, then the inverse will be unique.

If matrix A does not have an inverse, then A is called singular.

Theorem. For a (n ⇥ n) matrix A, the inverse A�1
exists ()

rank(A) = n.

Conversely, matrix A is singular if rank(A) < n (i.e., rank

deficient).
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Matrix Inverse

Computational Procedure. We want to carry out row operations

such that:

[A|I ] row operations��������!
⇥
I |A�1

⇤
. (4)

Example. Can apply row operations to get:

2

4
�1 1 2 1 0 0

3 �1 1 0 1 0

�1 3 4 0 0 1

3

5 row ops����!

2

4
1 0 0 �0.7 0.2 0.3
0 1 0 �1.3 �0.2 0.7
0 0 1 0.8 0.2 �0.2

3

5 .

(5)

If A has rank(A) < n, then the last row in echelon form will be the

O (zero) vector, and the computation will fail.
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Matrix Inverse

Properties:

⇥
A�1

⇤�1
= A. (6)

(AB)�1
= B�1A�1. (7)

(ABC )
�1

= C�1B�1A�1. (8)

h
AT

i�1
=

⇥
A�1

⇤T
. (9)
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Lower and Upper Triangular Matrices

A lower triangular matrix L is one where aij = 0 for all entries

above the diagonal.

An upper triangular matrix U is one where aij = 0 for all entries

below the diagonal. That is,

L =

2

6664

a11 0 · · · 0

a21 a22 · · · 0

.

.

.
.
.
.

. . .
.
.
.

am1 am2 · · · amn

3

7775
U =

2

6664

a11 a12 · · · a1n
0 a22 · · · a2n
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · amn

3

7775

(10)
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Matrix Arithmetic
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Matrix Addition and Subtraction

Definition. If A is a (m ⇥ n) matrix and B is a (r ⇥ p) matrix,

then the matrix sum C = A + B is defined only when m = r and n
= p, and is a (m ⇥ n) matrix C whose elements are

cij = aij + bij , for i = 1, 2, · · ·m and j = 1, 2, · · · n. (11)

Properties

(kA) B = k (A.B)

A(BC ) = (AB)C .

(A+ B)C ) = AB + AC .

C (A+ B) = CA+ CB .
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Matrix Addition and Subtraction

Example 1. Let

A =


2 1

4 6

�
and B =


4 2

0 1

�
. (12)

The matrix sum is:

C = A+ B =


2 1

4 6

�
+


4 2

0 1

�
=


6 3

4 7

�
. (13)



Definition of Matrices Matrix Properties Matrix Arithmetic Definition of Vectors Vector Properties

Matrix Multiplication

Definition. Let A and B be (m ⇥ n) and (r ⇥ p) matrices,

respectively.

The matrix product A · B is defined only when interior matrix

dimensions are the same (i.e., n = r).

The matrix product C = A · B is a (m⇥ p) matrix whose elements

are

cij =
nX

k=1

aik bkj (14)

for i = 1, 2, · · ·m and j = 1, 2, · · · n.
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Matrix Multiplication

Example 1. Assuming that matrices A and B are as defined in the

previous section:

C = A · B =


2 1

4 6

�
·

4 2

0 1

�

=


2 · 4 + 1 · 0 2 · 2 + 1 · 1
4 · 4 + 6 · 0 4 · 2 + 6 · 1

�

=


8 5

16 14

�
.

(15)

Geometric Interpretation. Matrix element cij is the dot product

of the i-th row of A with the j-th column of B.
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Matrix Multiplication

Properties.

A.B.C = (A.B).C = A.(B.C).

A.(B + C) = A.B + A.C.

(A + B).C = A.C + B.C.

A.I = A.

In general, A.B 6= B.A.

A.B = � does not necessarily imply A = � or B = �. Counter
example:

A =


1 1

2 2

�
and B =


�1 1

1 �1

�
. (16)
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