Matrices and Vectors: Basic Introduction

Mark A. Austin
University of Maryland
austin@umd.edu
ENCE 201, Fall Semester 2023

September 27, 2023

Overview

(1) Definition of Matrices
(2) Matrix Properties

Part 1

(3) Matrix Arithmetic

4 Definition of Vectors
(5) Vector Properties

Definition of Matrices

Definition. A matrix (or array) of order m by n is simply a set of numbers arranged in a rectangular block of m horizontal rows and n vertical columns. We say

$$
A=\left[\begin{array}{rrlr}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{1}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

is a matrix of size (or dimension) $(m \times n)$.
In the double subscript notation $a_{i j}$ for matrix element $a(i, j)$, the first subscript i denotes the row number, and the second subscript j denotes the column number.

Matrix Properties

Matrix Properties

Properties of Matrix A:

- A matrix having the same number of rows and columns is called square.
- A square matrix of order n is also called a $(n \times n)$ matrix.
- The elements $a_{11}, a_{22}, \cdots, a_{n n}$ are called the principal diagonal.
- A diagonal matrix with elements $a_{i i}=1$, and all other matrix elements zero, is called the identity matrix l.

Matrix Transpose

Matrix Transpose. The transpose of a $(m \times n)$ matrix A is the $(n \times m)$ matrix obtained by interchanging the rows and columns of A. The tranpose is denoted A^{T}.

Example 1. The matrix transpose of

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \tag{2}\\
5 & 6 & 7 & 8
\end{array}\right] \quad \text { is } \quad A^{T}=\left[\begin{array}{ll}
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8
\end{array}\right]
$$

Properties

- $(A+B)^{T}=A^{T}+B^{T}$.
- $(A B C)^{T}=C^{T} B^{T} A^{T}$.

Symmetric and Skew-Symmetric Matrices

Matrix Symmetry:

- A square matrix A is symmetric if $\mathrm{A}=A^{T}$.
- A square matrix A is skew-symmetric if $\mathrm{A}=-A^{T}$.

Large symmetric matrices play a central role in structural analysis.

Schematic of Non-Zero Matrix Elements
Skyline Storage Pattern

Matrix Inverse

Definition: When it exists, the inverse of matrix A is written A^{-1} and it has the property:

$$
\begin{equation*}
[A]\left[A^{-1}\right]=\left[A^{-1}\right][A]=I \tag{3}
\end{equation*}
$$

Nomenclature

- If matrix A has an inverse, then A is called non-singular.
- If matrix A has an inverse, then the inverse will be unique.
- If matrix A does not have an inverse, then A is called singular.

Theorem. For a $(n \times n)$ matrix A , the inverse A^{-1} exists \Longleftrightarrow $\operatorname{rank}(\mathrm{A})=\mathrm{n}$.

- Conversely, matrix A is singular if $\operatorname{rank}(A)<n$ (i.e., rank deficient).

Matrix Inverse

Computational Procedure. We want to carry out row operations such that:

$$
\begin{equation*}
[A \mid I] \xrightarrow{\text { row operations }}\left[I \mid A^{-1}\right] \tag{4}
\end{equation*}
$$

Example. Can apply row operations to get:

$$
\left[\begin{array}{rrr|rrr}
-1 & 1 & 2 & 1 & 0 & 0 \tag{5}\\
3 & -1 & 1 & 0 & 1 & 0 \\
-1 & 3 & 4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { row ops }}\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -0.7 & 0.2 & 0.3 \\
0 & 1 & 0 & -1.3 & -0.2 & 0.7 \\
0 & 0 & 1 & 0.8 & 0.2 & -0.2
\end{array}\right]
$$

If A has $\operatorname{rank}(A)<n$, then the last row in echelon form will be the O (zero) vector, and the computation will fail.

Matrix Inverse

Properties:

$$
\begin{gather*}
{\left[A^{-1}\right]^{-1}=A .} \tag{6}\\
(A B)^{-1}=B^{-1} A^{-1} . \tag{7}\\
(A B C)^{-1}=C^{-1} B^{-1} A^{-1} . \tag{8}\\
{\left[A^{T}\right]^{-1}=\left[A^{-1}\right]^{T} .} \tag{9}
\end{gather*}
$$

Lower and Upper Triangular Matrices

A lower triangular matrix L is one where $a_{i j}=0$ for all entries above the diagonal.

An upper triangular matrix U is one where $a_{i j}=0$ for all entries below the diagonal. That is,

$$
L=\left[\begin{array}{rrlr}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] U=\left[\begin{array}{rrrr}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{m n}
\end{array}\right]_{(10)}
$$

Matrix Arithmetic

Matrix Addition and Subtraction

Definition. If A is a $(m \times n)$ matrix and B is a $(r \times p)$ matrix, then the matrix sum $C=A+B$ is defined only when $m=r$ and n $=p$, and is a $(m \times n)$ matrix C whose elements are

$$
\begin{equation*}
c_{i j}=a_{i j}+b_{i j}, \text { for } i=1,2, \cdots m \text { and } j=1,2, \cdots n \tag{11}
\end{equation*}
$$

Properties

- ($k A) \mathrm{B}=\mathrm{k}(A \cdot B)$
- $A(B C)=(A B) C$.
- $(A+B) C)=A B+A C$.
- $C(A+B)=C A+C B$.

Matrix Addition and Subtraction

Example 1. Let

$$
A=\left[\begin{array}{ll}
2 & 1 \tag{12}\\
4 & 6
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
4 & 2 \\
0 & 1
\end{array}\right] .
$$

The matrix sum is:

$$
C=A+B=\left[\begin{array}{ll}
2 & 1 \tag{13}\\
4 & 6
\end{array}\right]+\left[\begin{array}{ll}
4 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
6 & 3 \\
4 & 7
\end{array}\right] .
$$

Matrix Multiplication

Definition. Let A and B be $(m \times n)$ and $(r \times p)$ matrices, respectively.

The matrix product $A \cdot B$ is defined only when interior matrix dimensions are the same (i.e., $n=r$).

The matrix product $\mathrm{C}=\mathrm{A} \cdot \mathrm{B}$ is a $(m \times p)$ matrix whose elements are

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \tag{14}
\end{equation*}
$$

for $i=1,2, \cdots m$ and $j=1,2, \cdots n$.

Matrix Multiplication

Example 1. Assuming that matrices A and B are as defined in the previous section:

$$
\begin{aligned}
C=A \cdot B & =\left[\begin{array}{ll}
2 & 1 \\
4 & 6
\end{array}\right] \cdot\left[\begin{array}{ll}
4 & 2 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
2 \cdot 4+1 \cdot 0 & 2 \cdot 2+1 \cdot 1 \\
4 \cdot 4+6 \cdot 0 & 4 \cdot 2+6 \cdot 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
8 & 5 \\
16 & 14
\end{array}\right] .
\end{aligned}
$$

Geometric Interpretation. Matrix element $c_{i j}$ is the dot product of the i-th row of A with the j-th column of B.

Matrix Multiplication

Properties.

- $A \cdot B \cdot C=(A \cdot B) \cdot C=A \cdot(B \cdot C)$.
- $A .(B+C)=A . B+A . C$.
- $(A+B) \cdot C=A \cdot C+B \cdot C$.
- $\mathrm{A} . \mathrm{I}=\mathrm{A}$.
- In general, $A . B \neq B . A$.
- $\mathrm{A} . \mathrm{B}=\phi$ does not necessarily imply $\mathrm{A}=\phi$ or $\mathrm{B}=\phi$. Counter example:

$$
A=\left[\begin{array}{ll}
1 & 1 \tag{16}\\
2 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right] .
$$

