Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties

Matrices and Vectors: Basic Introduction

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 201, Fall Semester 2023

September 27, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
•0				

Definition of Matrices

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
0•	00000000	000000	00	
Definition of	a Matrix			

Definition. A matrix (or array) of order m by n is simply a set of numbers arranged in a rectangular block of m horizontal rows and n vertical columns. We say

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
(1)

is a matrix of size (or dimension) $(m \times n)$.

In the double subscript notation a_{ij} for matrix element a(i,j), the first subscript *i* denotes the row number, and the second subscript *j* denotes the column number.

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
	0000000			

Matrix Properties

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
00	o●oooooo	000000	00	
Matrix Prope	erties			

Properties of Matrix A:

- A matrix having the same number of rows and columns is called square.
- A square matrix of order n is also called a $(n \times n)$ matrix.
- The elements *a*₁₁, *a*₂₂, ···, *a*_{nn} are called the principal diagonal.
- A diagonal matrix with elements $a_{ii} = 1$, and all other matrix elements zero, is called the identity matrix *I*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
00	0000000	000000	00	
Matrix Trans	pose			

Matrix Transpose. The transpose of a $(m \times n)$ matrix A is the $(n \times m)$ matrix obtained by interchanging the rows and columns of A. The transpose is denoted A^{T} .

Example 1. The matrix transpose of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \quad \text{is} \quad A^{T} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties

• $(A+B)^{T} = A^{T} + B^{T}$. • $(ABC)^{T} = C^{T} B^{T} A^{T}$.

Definition of Matrices Matrix Properties		rties	Matrix Arithmetic 000000	Definition of Vectors 00	Vector Properties	
C			C	. • • • •		

Symmetric and Skew-Symmetric Matrices

Matrix Symmetry:

- A square matrix A is symmetric if $A = A^T$.
- A square matrix A is skew-symmetric if $A = -A^T$.

Large symmetric matrices play a central role in structural analysis.

Definition of Matrices	Matrix Properties 0000●000	Matrix Arithmetic 000000	Definition of Vectors 00	Vector Properties
Matrix Invers	e			

Definition: When it exists, the inverse of matrix A is written A^{-1} and it has the property:

$$[A] [A^{-1}] = [A^{-1}] [A] = I.$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nomenclature

- If matrix A has an inverse, then A is called non-singular.
- If matrix A has an inverse, then the inverse will be unique.
- If matrix A does not have an inverse, then A is called singular.

Theorem. For a $(n \times n)$ matrix A, the inverse A^{-1} exists \iff rank(A) = n.

Conversely, matrix A is singular if rank(A) < n (i.e., rank deficient).

Definition of Matrices 00	Matrix Properties	Matrix Arithmetic 000000	Definition of Vectors 00	Vector Properties
Matrix Invers	se			

Computational Procedure. We want to carry out row operations such that:

$$[A|I] \xrightarrow{\text{row operations}} [I|A^{-1}].$$
(4)

Example. Can apply row operations to get:

$$\begin{bmatrix} -1 & 1 & 2 & | & 1 & 0 & 0 \\ 3 & -1 & 1 & | & 0 & 1 & 0 \\ -1 & 3 & 4 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{row ops}} \begin{bmatrix} 1 & 0 & 0 & | & -0.7 & 0.2 & 0.3 \\ 0 & 1 & 0 & | & -1.3 & -0.2 & 0.7 \\ 0 & 0 & 1 & | & 0.8 & 0.2 & -0.2 \\ & & & & & (5) \end{bmatrix}$$

If A has rank(A) < n, then the last row in echelon form will be the O (zero) vector, and the computation will fail.

Definition of Matrices 00	Matrix Properties 00000000	Matrix Arithmetic 000000	Definition of Vectors	Vector Properties
Matrix Invers	е			

Properties:

$$\left[A^{-1}\right]^{-1} = A. (6)$$

$$(AB)^{-1} = B^{-1}A^{-1}.$$
 (7)

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}.$$
 (8)

$$\left[A^{T}\right]^{-1} = \left[A^{-1}\right]^{T}.$$
(9)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition of Matrices Matrix Properties Matrix Arithmetic Octors Vector Properties Octors Vector Properties Octors Octor

A lower triangular matrix L is one where $a_{ij} = 0$ for all entries above the diagonal.

An upper triangular matrix U is one where $a_{ij} = 0$ for all entries below the diagonal. That is,

$$L = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} U = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}$$
(10)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of Matrices	Matrix Properties	Matrix Arithmetic ●00000	Definition of Vectors	Vector Properties

Matrix Arithmetic

・ロト・日本・ヨト・ヨー うへの

Definition of Matrices Matrix Properties Occorrection Matrix Arithmetic Octors Occorrection Octors Occorrection

Definition. If A is a $(m \times n)$ matrix and B is a $(r \times p)$ matrix, then the matrix sum C = A + B is defined only when m = r and n = p, and is a $(m \times n)$ matrix C whose elements are

$$c_{ij} = a_{ij} + b_{ij}$$
, for $i = 1, 2, \cdots m$ and $j = 1, 2, \cdots n$. (11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties

- (kA) B = k (A.B)
- A(BC) = (AB)C.
- (A+B)C) = AB + AC.
- C(A+B) = CA + CB.

Definition of Matrices Matrix Properties Ocoooco Matrix Arithmetic Ocoooco Matrix Arithmetic Ocoooco Matrix Addition and Subtraction

Example 1. Let

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix}. \tag{12}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The matrix sum is:

$$C = A + B = \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 4 & 7 \end{bmatrix}.$$
(13)

00	0000000	000000	00	00000000000
Matrix Multi	plication			

Definition. Let A and B be $(m \times n)$ and $(r \times p)$ matrices, respectively.

The matrix product $A \cdot B$ is defined only when interior matrix dimensions are the same (i.e., n = r).

The matrix product $C = A \cdot B$ is a $(m \times p)$ matrix whose elements are

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \tag{14}$$

for $i = 1, 2, \dots m$ and $j = 1, 2, \dots n$.

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties	
00	00000000	0000●0	00		
Matrix Multiplication					

Example 1. Assuming that matrices A and B are as defined in the previous section:

$$C = A \cdot B = \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \cdot 4 + 1 \cdot 0 & 2 \cdot 2 + 1 \cdot 1 \\ 4 \cdot 4 + 6 \cdot 0 & 4 \cdot 2 + 6 \cdot 1 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 5 \\ 16 & 14 \end{bmatrix}.$$
(15)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Geometric Interpretation. Matrix element c_{ij} is the dot product of the i-th row of A with the j-th column of B.

Definition of Matrices	Matrix Properties 00000000	Matrix Arithmetic 00000●	Definition of Vectors	Vector Properties		
Matrix Multiplication						

Properties.

- A.B.C = (A.B).C = A.(B.C).
- A.(B + C) = A.B + A.C.
- (A + B).C = A.C + B.C.
- A.I = A.
- In general, $A.B \neq B.A.$
- $A.B = \phi$ does not necessarily imply $A = \phi$ or $B = \phi$. Counter example:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}.$$
 (16)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @