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Definition of Matrices
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Definition of a Matrix

Definition. A matrix (or array) of order m by n is simply a set of

numbers arranged in a rectangular block of m horizontal rows and n

vertical columns. We say

A =

2

6664

a11 a12 · · · a1n
a21 a22 · · · a2n

.

.

.
.
.
.

. . .
.
.
.

am1 am2 · · · amn

3

7775
(1)

is a matrix of size (or dimension) (m⇥ n).

In the double subscript notation aij for matrix element a(i,j), the

first subscript i denotes the row number, and the second subscript j
denotes the column number.
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Definition of Vectors
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Definition of Row and Column Vectors

Definition. A row vector is simply a (1⇥n) matrix, i.e.,

V =
⇥
v1 v2 v3 v4 · · · vn

⇤
(17)

Definition. A column vector is a (m ⇥ 1) matrix, e.g.,

V =

2

6666664

v1
v2
v3
v4
· · ·
vm

3

7777775
(18)

In both cases, the i-th element of the column vector is denoted vi .
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Vector Properties
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Properties of Vector Arithmetic

a + b = b + a

a + 0 = a

c(a + b) = ca + cb

(a + b) + c = a + (b + c)

a + (-a) = 0

1 a = a.
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Dot Product

Definition. The dot product of two vectors a = [a1, a2, a3, · · · , an]
and b = [b1, b2, b3, · · · , bn] is:

a.b =

nX

i=1

aibi = a1b1 + a2b2 + a3b4 + · · ·+ anbn. (19)

Note: a.b = b.a. If a and b are perpendicular then a.b = 0.

Engineering Applications

Mechanical work is the dot product of force and displacement

vectors (Jou).

Power is the dot product of force and velocity vectors (W).

Fluid Mechanics.
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Dot Product

Example 1. Let a = [1, 2, 3] and b = [0,�1, 2]. The dot product:

a.b =

nX

i=1

aibi = 1⇥ 0 + 2⇥�1 + 3⇥ 2 = 4. (20)

A dot product can also be written as a row vector multiplied by a

column vector, e.g.,

⇥
1, 2, 3

⇤
·

2

4
0

�1

2

3

5 = 4. (21)

The vector dimensions are: (1⇥ 3) (3⇥ 1) ! (1⇥ 1).
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Dot Product

Properties. Let a = [a1, a2, a3, a4], b = [b1, b2, b3, b4] and c =

[c1, c2, c3, c4]. And let d be a non-zero constant.

The dot product:

a.b = a1b1 + a2b2 + a3b3 + a4b4 (22)

obeys the properties:

a.a = kak2.
a.(b + c) = a.b + a.c

a.b = b.a

a.b = 0 () a = 0 or b =

0 or a ? b.

0.a = 0

(da).b = d(a.b)

a.b = |a|.|b| cos(✓).
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Cross Product

Definition. Consider two vectors A and B in three dimensions:

A = a1 î + a2 ĵ + a3k̂

B = b1 î + b2 ĵ + b3k̂

The cross product of A and B is:

C = A⇥ B = det

0

@
î ĵ k̂

a1 a2 a3
b1 b2 b3

1

A

= (a2b3 � a3b2) î + (a3b1 � a1b3) ĵ + (a1b2 � a2b1) k̂ .
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Cross Product

Geometric Interpretation

A⇥ B is a vector that is perpendicular to both A and B.

The magnitude of kA⇥ Bk is equal to the area of the

parallelogram formed using A and B as the sides.

The angle between A and B is: kA⇥ Bk = kAk kBk sin(↵).

The cross product is zero when the A and B are parallel.
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Linear Independence of Vectors

Linear Independence

A set of vectors (v1, v2, v3, · · · , vn) is said to be linearly

independent if the equation

a1v1 + a2v2 + a3v3 + · · ·+ anvn = 0. (23)

can only be satisfied by ai = 0 for i = 1, ... n.

Put another way: no vector in the sequence can be written as a

linear combination of the other vectors.
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Linear Independence of Vectors

Example 1. Consider three vectors v1 = (1, 1), v2 = (-3, 2), and

v3 = (2, 4) in two-dimensional space.

The vectors will be linearly independent if the only solutions to

a1


1

1

�
+ a2


�3

2

�
+ a3


2

4

�
=


0

0

�
. (24)

are a1 = a2 = a3 = 0. Writing these equations in matrix form:


1 �3 2

1 2 4

�2

4
a1
a2
a3

3

5 =


0

0

�
. (25)
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Linear Independence of Vectors

Apply row operations (details to follow):


1 0 16/5
0 1 2/5

�2

4
a1
a2
a3

3

5 =


0

0

�
. (26)

which can be rearranged:


1 0

0 1

� 
a1
a2

�
+ a3


16/5
2/5

�
=


0

0

�
. (27)

We conclude that since a1 and a2 can be written in terms of a3,
the equations are linearly dependent.
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Linear Independence of Vectors

A Few Observations

Vectors v1 through v3 are two dimensional.

Can show that three (or more) vectors in

two-dimensional space will always be linearly

dependent.

Can show that four (or more) vectors in

three-dimensional space will always be linearly

dependent.

This is why a stool with three legs (vectors) will

always be steady (linearly independent), but one

with four legs (vectors) will sometimes rock

(linearly dependent).
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