Matrices and Vectors: Basic Introduction

Mark A. Austin
University of Maryland
austin@umd.edu
ENCE 201, Fall Semester 2023

September 27, 2023

Overview

(1) Definition of Matrices
(2) Matrix Properties
(3) Matrix Arithmetic

4 Definition of Vectors
(5) Vector Properties

Definition of Matrices

Definition. A matrix (or array) of order m by n is simply a set of numbers arranged in a rectangular block of m horizontal rows and n vertical columns. We say

$$
A=\left[\begin{array}{rrlr}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{1}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

is a matrix of size (or dimension) $(m \times n)$.
In the double subscript notation $a_{i j}$ for matrix element $a(i, j)$, the first subscript i denotes the row number, and the second subscript j denotes the column number.

Matrix Properties

Matrix Properties

Properties of Matrix A:

- A matrix having the same number of rows and columns is called square.
- A square matrix of order n is also called a $(n \times n)$ matrix.
- The elements $a_{11}, a_{22}, \cdots, a_{n n}$ are called the principal diagonal.
- A diagonal matrix with elements $a_{i i}=1$, and all other matrix elements zero, is called the identity matrix I.

Matrix Transpose

Matrix Transpose. The transpose of a $(m \times n)$ matrix A is the ($n \times m$) matrix obtained by interchanging the rows and columns of A. The tranpose is denoted A^{T}.

Example 1. The matrix transpose of

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \tag{2}\\
5 & 6 & 7 & 8
\end{array}\right] \quad \text { is } \quad A^{T}=\left[\begin{array}{ll}
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8
\end{array}\right]
$$

Properties

- $(A+B)^{T}=A^{T}+B^{T}$.
- $(A B C)^{T}=C^{T} B^{T} A^{T}$.

Symmetric and Skew-Symmetric Matrices

Matrix Symmetry:

- A square matrix A is symmetric if $\mathrm{A}=A^{T}$.
- A square matrix A is skew-symmetric if $\mathrm{A}=-A^{T}$.

Large symmetric matrices play a central role in structural analysis.

Schematic of Non-Zero Matrix Elements
Skyline Storage Pattern

Matrix Inverse

Definition: When it exists, the inverse of matrix A is written A^{-1} and it has the property:

$$
\begin{equation*}
[A]\left[A^{-1}\right]=\left[A^{-1}\right][A]=I \tag{3}
\end{equation*}
$$

Nomenclature

- If matrix A has an inverse, then A is called non-singular.
- If matrix A has an inverse, then the inverse will be unique.
- If matrix A does not have an inverse, then A is called singular.

Theorem. For a $(n \times n)$ matrix A , the inverse A^{-1} exists \Longleftrightarrow $\operatorname{rank}(\mathrm{A})=\mathrm{n}$.

- Conversely, matrix A is singular if $\operatorname{rank}(A)<n$ (i.e., rank deficient).

Matrix Inverse

Computational Procedure. We want to carry out row operations such that:

$$
\begin{equation*}
[A \mid I] \xrightarrow{\text { row operations }}\left[I \mid A^{-1}\right] . \tag{4}
\end{equation*}
$$

Example. Can apply row operations to get:

$$
\left[\begin{array}{rrr|rrr}
-1 & 1 & 2 & 1 & 0 & 0 \tag{5}\\
3 & -1 & 1 & 0 & 1 & 0 \\
-1 & 3 & 4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { row ops }}\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -0.7 & 0.2 & 0.3 \\
0 & 1 & 0 & -1.3 & -0.2 & 0.7 \\
0 & 0 & 1 & 0.8 & 0.2 & -0.2
\end{array}\right]
$$

If A has $\operatorname{rank}(A)<n$, then the last row in echelon form will be the O (zero) vector, and the computation will fail.

Matrix Inverse

Properties:

$$
\begin{gather*}
{\left[A^{-1}\right]^{-1}=A .} \tag{6}\\
(A B)^{-1}=B^{-1} A^{-1} . \tag{7}\\
(A B C)^{-1}=C^{-1} B^{-1} A^{-1} . \tag{8}\\
{\left[A^{T}\right]^{-1}=\left[A^{-1}\right]^{T} .} \tag{9}
\end{gather*}
$$

Lower and Upper Triangular Matrices

A lower triangular matrix L is one where $a_{i j}=0$ for all entries above the diagonal.

An upper triangular matrix U is one where $a_{i j}=0$ for all entries below the diagonal. That is,

$$
L=\left[\begin{array}{rrlr}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] U=\left[\begin{array}{rrrr}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{m n}
\end{array}\right]_{(10)}
$$

Matrix Arithmetic

Matrix Addition and Subtraction

Definition. If A is a $(m \times n)$ matrix and B is a $(r \times p)$ matrix, then the matrix sum $C=A+B$ is defined only when $m=r$ and n $=p$, and is a $(m \times n)$ matrix C whose elements are

$$
\begin{equation*}
c_{i j}=a_{i j}+b_{i j}, \text { for } i=1,2, \cdots m \text { and } j=1,2, \cdots n \tag{11}
\end{equation*}
$$

Properties

- (kA) $\mathrm{B}=\mathrm{k}(A . B)$
- $A(B C)=(A B) C$.
- $(A+B) C)=A B+A C$.
- $C(A+B)=C A+C B$.

Matrix Addition and Subtraction

Example 1. Let

$$
A=\left[\begin{array}{ll}
2 & 1 \tag{12}\\
4 & 6
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
4 & 2 \\
0 & 1
\end{array}\right] .
$$

The matrix sum is:

$$
C=A+B=\left[\begin{array}{ll}
2 & 1 \tag{13}\\
4 & 6
\end{array}\right]+\left[\begin{array}{ll}
4 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
6 & 3 \\
4 & 7
\end{array}\right] .
$$

Matrix Multiplication

Definition. Let A and B be $(m \times n)$ and $(r \times p)$ matrices, respectively.

The matrix product $A \cdot B$ is defined only when interior matrix dimensions are the same (i.e., $n=r$).

The matrix product $\mathrm{C}=\mathrm{A} \cdot \mathrm{B}$ is a $(m \times p)$ matrix whose elements are

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \tag{14}
\end{equation*}
$$

for $i=1,2, \cdots m$ and $j=1,2, \cdots n$.

Matrix Multiplication

Example 1. Assuming that matrices A and B are as defined in the previous section:

$$
\begin{aligned}
C=A \cdot B & =\left[\begin{array}{ll}
2 & 1 \\
4 & 6
\end{array}\right] \cdot\left[\begin{array}{ll}
4 & 2 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
2 \cdot 4+1 \cdot 0 & 2 \cdot 2+1 \cdot 1 \\
4 \cdot 4+6 \cdot 0 & 4 \cdot 2+6 \cdot 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
8 & 5 \\
16 & 14
\end{array}\right] .
\end{aligned}
$$

Geometric Interpretation. Matrix element $c_{i j}$ is the dot product of the i-th row of A with the j-th column of B.

Matrix Multiplication

Properties.

- $A \cdot B \cdot C=(A \cdot B) \cdot C=A \cdot(B \cdot C)$.
- $A .(B+C)=A . B+A . C$.
- $(A+B) \cdot C=A \cdot C+B \cdot C$.
- $\mathrm{A} . \mathrm{I}=\mathrm{A}$.
- In general, $A . B \neq B . A$.
- $\mathrm{A} . \mathrm{B}=\phi$ does not necessarily imply $\mathrm{A}=\phi$ or $\mathrm{B}=\phi$. Counter example:

$$
A=\left[\begin{array}{ll}
1 & 1 \tag{16}\\
2 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right] .
$$

Definition of Vectors

Definition of Row and Column Vectors

Definition. A row vector is simply a $(1 \times n)$ matrix, i.e.,

$$
V=\left[\begin{array}{llllll}
v_{1} & v_{2} & v_{3} & v_{4} & \cdots & v_{n} \tag{17}
\end{array}\right]
$$

Definition. A column vector is a $(\mathrm{m} \times 1)$ matrix, e.g.,

$$
V=\left[\begin{array}{c}
v_{1} \tag{18}\\
v_{2} \\
v_{3} \\
v_{4} \\
\cdots \\
v_{m}
\end{array}\right]
$$

In both cases, the i-th element of the column vector is denoted v_{i}.

Vector Properties

Properties of Vector Arithmetic

Components of Three-Dimensional Vector

- $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$
- $a+0=a$
- $c(a+b)=c a+c b$

Vector Addition and Subtraction

- $(a+b)+c=a+(b+c)$
- $a+(-a)=0$
- $1 \mathrm{a}=\mathrm{a}$.

Definition. The dot product of two vectors $a=\left[a_{1}, a_{2}, a_{3}, \cdots, a_{n}\right]$ and $b=\left[b_{1}, b_{2}, b_{3}, \cdots, b_{n}\right]$ is:

$$
\begin{equation*}
a . b=\sum_{i=1}^{n} a_{i} b_{i}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{4}+\cdots+a_{n} b_{n} \tag{19}
\end{equation*}
$$

Note: $\mathrm{a} . \mathrm{b}=\mathrm{b} . \mathrm{a}$. If a and b are perpendicular then $\mathrm{a} . \mathrm{b}=0$.

Engineering Applications

- Mechanical work is the dot product of force and displacement vectors (Jou).
- Power is the dot product of force and velocity vectors (W).
- Fluid Mechanics.

Dot Product

Example 1. Let $a=[1,2,3]$ and $b=[0,-1,2]$. The dot product:

$$
\begin{equation*}
\text { a. } b=\sum_{i=1}^{n} a_{i} b_{i}=1 \times 0+2 \times-1+3 \times 2=4 . \tag{20}
\end{equation*}
$$

A dot product can also be written as a row vector multiplied by a column vector, e.g.,

$$
[1,2,3] \cdot\left[\begin{array}{r}
0 \tag{21}\\
-1 \\
2
\end{array}\right]=4
$$

The vector dimensions are: $(1 \times 3)(3 \times 1) \rightarrow(1 \times 1)$.

Dot Product

Properties. Let $a=\left[a_{1}, a_{2}, a_{3}, a_{4}\right], b=\left[b_{1}, b_{2}, b_{3}, b_{4}\right]$ and $c=$ [$\left.c_{1}, c_{2}, c_{3}, c_{4}\right]$. And let d be a non-zero constant.

The dot product:

$$
\begin{equation*}
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+a_{4} b_{4} \tag{22}
\end{equation*}
$$

obeys the properties:

- \quad. $a=\|a\|^{2}$.
- $a .(b+c)=a \cdot b+a . c$
- $a . b=b . a$
- (da).b=d(a.b)
- $a . b=0 \Longleftrightarrow a=0$ or $b=$
- a.b $=|a| \cdot|b| \cos (\theta)$. 0 or $a \perp b$.

Cross Product

Definition. Consider two vectors A and B in three dimensions:

$$
\begin{aligned}
& A=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \\
& B=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}
\end{aligned}
$$

The cross product of A and B is:

$$
\begin{aligned}
C & =A \times B=\operatorname{det}\left(\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \hat{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{k}
\end{aligned}
$$

Cross Product

Geometric Interpretation

$A \times B$ is a vector that is perpendicular to both A and B .

- The magnitude of $\|A \times B\|$ is equal to the area of the parallelogram formed using A and B as the sides.
- The angle between A and B is: $\|A \times B\|=\|A\|\|B\| \sin (\alpha)$.
- The cross product is zero when the A and B are parallel.

Linear Independence of Vectors

Linear Independence

A set of vectors $\left(v_{1}, v_{2}, v_{3}, \cdots, v_{n}\right)$ is said to be linearly independent if the equation

$$
\begin{equation*}
a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+\cdots+a_{n} v_{n}=0 . \tag{23}
\end{equation*}
$$

can only be satisfied by $a_{i}=0$ for $\mathrm{i}=1, \ldots n$.
Put another way: no vector in the sequence can be written as a linear combination of the other vectors.

Linear Independence of Vectors

Example 1. Consider three vectors $v_{1}=(1,1), v_{2}=(-3,2)$, and $v_{3}=(2,4)$ in two-dimensional space.

The vectors will be linearly independent if the only solutions to

$$
a_{1}\left[\begin{array}{l}
1 \tag{24}\\
1
\end{array}\right]+a_{2}\left[\begin{array}{r}
-3 \\
2
\end{array}\right]+a_{3}\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

are $a_{1}=a_{2}=a_{3}=0$. Writing these equations in matrix form:

$$
\left[\begin{array}{rrr}
1 & -3 & 2 \tag{25}\\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Linear Independence of Vectors

Apply row operations (details to follow):

$$
\left[\begin{array}{rrr}
1 & 0 & 16 / 5 \tag{26}\\
0 & 1 & 2 / 5
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which can be rearranged:

$$
\left[\begin{array}{ll}
1 & 0 \tag{27}\\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]+a_{3}\left[\begin{array}{r}
16 / 5 \\
2 / 5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We conclude that since a_{1} and a_{2} can be written in terms of a_{3}, the equations are linearly dependent.

Linear Independence of Vectors

A Few Observations

- Vectors v_{1} through v_{3} are two dimensional.
- Can show that three (or more) vectors in two-dimensional space will always be linearly dependent.
- Can show that four (or more) vectors in three-dimensional space will always be linearly dependent.
- This is why a stool with three legs (vectors) will always be steady (linearly independent), but one
 with four legs (vectors) will sometimes rock (linearly dependent).

