Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties

Matrices and Vectors: Basic Introduction

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 201, Fall Semester 2023

September 27, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition of Matrices 00	Matrix Properties 00000000	Matrix Arithmetic 000000	Definition of Vectors	Vector Properties
Overview				

- 2 Matrix Properties
- 3 Matrix Arithmetic
- 4 Definition of Vectors
- 5 Vector Properties

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
•0				

Definition of Matrices

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
0•	00000000	000000	00	
Definition of	a Matrix			

Definition. A matrix (or array) of order m by n is simply a set of numbers arranged in a rectangular block of m horizontal rows and n vertical columns. We say

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
(1)

is a matrix of size (or dimension) $(m \times n)$.

In the double subscript notation a_{ij} for matrix element a(i,j), the first subscript *i* denotes the row number, and the second subscript *j* denotes the column number.

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
	0000000			

Matrix Properties

Definition of Matrices	Matrix Properties o●oooooo	Matrix Arithmetic 000000	Definition of Vectors	Vector Properties
Matrix Prope	rties			

Properties of Matrix A:

- A matrix having the same number of rows and columns is called square.
- A square matrix of order n is also called a $(n \times n)$ matrix.
- The elements *a*₁₁, *a*₂₂, ···, *a*_{nn} are called the principal diagonal.
- A diagonal matrix with elements $a_{ii} = 1$, and all other matrix elements zero, is called the identity matrix *I*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
00	0000000	000000	00	
Matrix Trans	pose			

Matrix Transpose. The transpose of a $(m \times n)$ matrix A is the $(n \times m)$ matrix obtained by interchanging the rows and columns of A. The transpose is denoted A^{T} .

Example 1. The matrix transpose of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \quad \text{is} \quad A^{T} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties

• $(A+B)^{T} = A^{T} + B^{T}$. • $(ABC)^{T} = C^{T} B^{T} A^{T}$.

Definition of 00	Matrices	Matrix Prope 000●0000	rties	Matrix Arithmetic 000000	Definition of Vectors 00	Vector Properties
C			C	. • • • •		

Symmetric and Skew-Symmetric Matrices

Matrix Symmetry:

- A square matrix A is symmetric if $A = A^T$.
- A square matrix A is skew-symmetric if $A = -A^T$.

Large symmetric matrices play a central role in structural analysis.

Definition of Matrices	Matrix Properties 0000●000	Matrix Arithmetic 000000	Definition of Vectors 00	Vector Properties
Matrix Invers	e			

Definition: When it exists, the inverse of matrix A is written A^{-1} and it has the property:

$$[A] [A^{-1}] = [A^{-1}] [A] = I.$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nomenclature

- If matrix A has an inverse, then A is called non-singular.
- If matrix A has an inverse, then the inverse will be unique.
- If matrix A does not have an inverse, then A is called singular.

Theorem. For a $(n \times n)$ matrix A, the inverse A^{-1} exists \iff rank(A) = n.

Conversely, matrix A is singular if rank(A) < n (i.e., rank deficient).

Definition of Matrices	Matrix Properties 00000000	Matrix Arithmetic 000000	Definition of Vectors 00	Vector Properties
Matrix Invers	se			

Computational Procedure. We want to carry out row operations such that:

$$[A|I] \xrightarrow{\text{row operations}} [I|A^{-1}].$$
(4)

Example. Can apply row operations to get:

$$\begin{bmatrix} -1 & 1 & 2 & | & 1 & 0 & 0 \\ 3 & -1 & 1 & | & 0 & 1 & 0 \\ -1 & 3 & 4 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{row ops}} \begin{bmatrix} 1 & 0 & 0 & | & -0.7 & 0.2 & 0.3 \\ 0 & 1 & 0 & | & -1.3 & -0.2 & 0.7 \\ 0 & 0 & 1 & | & 0.8 & 0.2 & -0.2 \\ & & & & & (5) \end{bmatrix}$$

If A has rank(A) < n, then the last row in echelon form will be the O (zero) vector, and the computation will fail.

Definition of Matrices	Matrix Properties 000000●0	Matrix Arithmetic 000000	Definition of Vectors	Vector Properties
Matrix Invers	se			

Properties:

$$\left[A^{-1}\right]^{-1} = A. (6)$$

$$(AB)^{-1} = B^{-1}A^{-1}.$$
 (7)

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}.$$
 (8)

$$\left[A^{T}\right]^{-1} = \left[A^{-1}\right]^{T}.$$
(9)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition of Matrices Matrix Properties Matrix Arithmetic Octors Vector Properties Octors Oc

A lower triangular matrix L is one where $a_{ij} = 0$ for all entries above the diagonal.

An upper triangular matrix U is one where $a_{ij} = 0$ for all entries below the diagonal. That is,

$$L = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} U = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}$$
(10)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of Matrices 00	Matrix Properties	Matrix Arithmetic ●00000	Definition of Vectors 00	Vector Properties

Matrix Arithmetic

・ロト・日本・ヨト・ヨー うへの

Definition of Matrices Matrix Properties Occorrection Matrix Arithmetic Octors Occorrection Octors Occorrection

Definition. If A is a $(m \times n)$ matrix and B is a $(r \times p)$ matrix, then the matrix sum C = A + B is defined only when m = r and n = p, and is a $(m \times n)$ matrix C whose elements are

$$c_{ij} = a_{ij} + b_{ij}$$
, for $i = 1, 2, \cdots m$ and $j = 1, 2, \cdots n$. (11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties

- (kA) B = k (A.B)
- A(BC) = (AB)C.
- (A+B)C) = AB + AC.
- C(A+B) = CA + CB.

Definition of Matrices Matrix Arithmetic Definition of Vectors 000000 Matrix Addition and Subtraction

Example 1. Let

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix}. \tag{12}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The matrix sum is:

$$C = A + B = \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 4 & 7 \end{bmatrix}.$$
(13)

00	0000000	000000	00	0000000000
Matrix Mult	inlication			

Definition. Let A and B be $(m \times n)$ and $(r \times p)$ matrices, respectively.

The matrix product $A \cdot B$ is defined only when interior matrix dimensions are the same (i.e., n = r).

The matrix product $C = A \cdot B$ is a $(m \times p)$ matrix whose elements are

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \tag{14}$$

for $i = 1, 2, \dots m$ and $j = 1, 2, \dots n$.

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
00	00000000	0000●0	00	
Matrix Multip	olication			

Example 1. Assuming that matrices A and B are as defined in the previous section:

$$C = A \cdot B = \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \cdot 4 + 1 \cdot 0 & 2 \cdot 2 + 1 \cdot 1 \\ 4 \cdot 4 + 6 \cdot 0 & 4 \cdot 2 + 6 \cdot 1 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 5 \\ 16 & 14 \end{bmatrix}.$$
(15)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Geometric Interpretation. Matrix element c_{ij} is the dot product of the i-th row of A with the j-th column of B.

Definition of Matrices	Matrix Properties 00000000	Matrix Arithmetic 00000●	Definition of Vectors 00	Vector Properties
Matrix Multiplication				

Properties.

- A.B.C = (A.B).C = A.(B.C).
- A.(B + C) = A.B + A.C.
- (A + B).C = A.C + B.C.
- A.I = A.
- In general, $A.B \neq B.A.$
- $A.B = \phi$ does not necessarily imply $A = \phi$ or $B = \phi$. Counter example:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}.$$
 (16)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
			•0	

Definition of Vectors

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

Definition. A row vector is simply a $(1 \times n)$ matrix, i.e.,

$$V = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & \cdots & v_n \end{bmatrix}$$
(17)

Definition. A column vector is a $(m \times 1)$ matrix, e.g.,

$$V = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ \cdots \\ v_m \end{bmatrix}$$
(18)

In both cases, the i-th element of the column vector is denoted v_i .

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
				0000000000

Vector Properties

Properties of Vector Arithmetic

Components of Three-Dimensional Vector

- a + b = b + a
- a + 0 = a
- c(a + b) = ca + cb

- (a + b) + c = a + (b + c)
 a + (-a) = 0
- 1 a = a.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Definition of Matrices	Matrix Properties	Matrix Arithmetic 000000	Definition of Vectors	Vector Properties
Dot Product				

Definition. The dot product of two vectors $a = [a_1, a_2, a_3, \dots, a_n]$ and $b = [b_1, b_2, b_3, \dots, b_n]$ is:

$$a.b = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + a_3 b_4 + \dots + a_n b_n.$$
(19)

Note: a.b = b.a. If a and b are perpendicular then a.b = 0.

Engineering Applications

 Mechanical work is the dot product of force and displacement vectors (Jou).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Power is the dot product of force and velocity vectors (W).
- Fluid Mechanics.

Definition of Matrices	Matrix Properties	Matrix Arithmetic 000000	Definition of Vectors 00	Vector Properties
Dot Product				

Example 1. Let a = [1, 2, 3] and b = [0, -1, 2]. The dot product:

$$a.b = \sum_{i=1}^{n} a_i b_i = 1 \times 0 + 2 \times -1 + 3 \times 2 = 4.$$
 (20)

A dot product can also be written as a row vector multiplied by a column vector, e.g.,

$$\begin{bmatrix} 1,2,3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} = 4.$$
(21)

The vector dimensions are: (1 \times 3) (3 \times 1) \rightarrow (1 \times 1).

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
00	00000000	000000	00	
Dot Product				

Properties. Let $a = [a_1, a_2, a_3, a_4]$, $b = [b_1, b_2, b_3, b_4]$ and $c = [c_1, c_2, c_3, c_4]$. And let *d* be a non-zero constant.

The dot product:

$$a.b = a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4 \tag{22}$$

obeys the properties:

- a.a = ||a||².
 a.(b + c) = a.b + a.c
 a.b = b.a
 a.b = 0 ⇐⇒ a = 0 or b =
 - 0 or $a \perp b$.

• 0.a = 0

•
$$(da).b = d(a.b)$$

•
$$a.b = |a|.|b| \cos(\theta).$$

うせん 同一人用 人用 人用 人口 マ

Definition of Matrices	Matrix Properties	Matrix Arithmetic	Definition of Vectors	Vector Properties
00	00000000	000000	00	
Cross Produc	t			

Definition. Consider two vectors A and B in three dimensions:

$$A = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
$$B = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$

The cross product of A and B is:

$$C = A \times B = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$

= $(a_2b_3 - a_3b_2)\hat{i} + (a_3b_1 - a_1b_3)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Definition of Matrices 00	Matrix Properties	Matrix Arithmetic 000000	Definition of Vectors 00	Vector Properties
Cross Produc	ct			

Geometric Interpretation

 $A \times B$ is a vector that is perpendicular to both A and B.

- The magnitude of $||A \times B||$ is equal to the area of the parallelogram formed using A and B as the sides.
- The angle between A and B is: $||A \times B|| = ||A|| ||B|| sin(\alpha)$.
- The cross product is zero when the A and B are parallel.

00	Matrix Properties	Matrix Arithmetic 000000	OO	Vector Properties			
linear Independence of Vectors							

Linear Independence

A set of vectors $(v_1, v_2, v_3, \dots, v_n)$ is said to be linearly independent if the equation

$$a_1v_1 + a_2v_2 + a_3v_3 + \dots + a_nv_n = 0.$$
 (23)

can only be satisfied by $a_i = 0$ for i = 1, ..., n.

Put another way: no vector in the sequence can be written as a linear combination of the other vectors.

00	00000000	000000	00	0000000000000			
inear Independence of Vectors							

Example 1. Consider three vectors $v_1 = (1, 1)$, $v_2 = (-3, 2)$, and $v_3 = (2, 4)$ in two-dimensional space.

The vectors will be linearly independent if the only solutions to

$$a_1 \begin{bmatrix} 1\\1 \end{bmatrix} + a_2 \begin{bmatrix} -3\\2 \end{bmatrix} + a_3 \begin{bmatrix} 2\\4 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}.$$
(24)

are $a_1 = a_2 = a_3 = 0$. Writing these equations in matrix form:

$$\begin{bmatrix} 1 & -3 & 2 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
 (25)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

00		000000	00	
Linear Independence of Vectors				

Apply row operations (details to follow):

$$\begin{bmatrix} 1 & 0 & 16/5 \\ 0 & 1 & 2/5 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
 (26)

which can be rearranged:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + a_3 \begin{bmatrix} 16/5 \\ 2/5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
(27)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We conclude that since a_1 and a_2 can be written in terms of a_3 , the equations are linearly dependent.

Definition of Matrices Matrix Properties Matrix Arithmetic Operation of Vectors Vector Properties Ocoocococo

Linear Independence of Vectors

A Few Observations

- Vectors v_1 through v_3 are two dimensional.
- Can show that three (or more) vectors in two-dimensional space will always be linearly dependent.
- Can show that four (or more) vectors in three-dimensional space will always be linearly dependent.
- This is why a stool with three legs (vectors) will always be steady (linearly independent), but one with four legs (vectors) will sometimes rock (linearly dependent).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで