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Definition of Matrices
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Definition of a Matrix

Definition. A matrix (or array) of order m by n is simply a set of
numbers arranged in a rectangular block of m horizontal rows and n

vertical columns. We say

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 (1)

is a matrix of size (or dimension) (m× n).

In the double subscript notation aij for matrix element a(i,j), the
first subscript i denotes the row number, and the second subscript j
denotes the column number.
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Matrix Properties
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Matrix Properties

Properties of Matrix A:

A matrix having the same number of rows and columns is
called square.

A square matrix of order n is also called a (n × n) matrix.

The elements a11, a22, · · · , ann are called the principal
diagonal.

A diagonal matrix with elements aii = 1, and all other matrix
elements zero, is called the identity matrix I .
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Matrix Transpose

Matrix Transpose. The transpose of a (m × n) matrix A is the
(n ×m) matrix obtained by interchanging the rows and columns of
A. The tranpose is denoted AT .

Example 1. The matrix transpose of

A =

[
1 2 3 4
5 6 7 8

]
is AT =


1 5
2 6
3 7
4 8

 (2)

Properties

(A + B)T = AT + BT .

(ABC )T = CT BT AT .
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Symmetric and Skew-Symmetric Matrices

Matrix Symmetry:

A square matrix A is symmetric if A = AT .

A square matrix A is skew-symmetric if A = -AT .

Large symmetric matrices play a central role in structural analysis.
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Matrix Inverse

Definition: When it exists, the inverse of matrix A is written A−1

and it has the property:

[A]
[
A−1

]
=
[
A−1

]
[A] = I . (3)

Nomenclature

If matrix A has an inverse, then A is called non-singular.

If matrix A has an inverse, then the inverse will be unique.

If matrix A does not have an inverse, then A is called singular.

Theorem. For a (n × n) matrix A, the inverse A−1 exists ⇐⇒
rank(A) = n.

Conversely, matrix A is singular if rank(A) < n (i.e., rank
deficient).
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Matrix Inverse

Computational Procedure. We want to carry out row operations
such that:

[A|I ] row operations−−−−−−−−→
[
I |A−1

]
. (4)

Example. Can apply row operations to get:

 −1 1 2 1 0 0
3 −1 1 0 1 0
−1 3 4 0 0 1

 row ops−−−−→

 1 0 0 −0.7 0.2 0.3
0 1 0 −1.3 −0.2 0.7
0 0 1 0.8 0.2 −0.2

 .
(5)

If A has rank(A) < n, then the last row in echelon form will be the
O (zero) vector, and the computation will fail.
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Matrix Inverse

Properties: [
A−1

]−1
= A. (6)

(AB)−1 = B−1A−1. (7)

(ABC )−1 = C−1B−1A−1. (8)

[
AT
]−1

=
[
A−1

]T
. (9)
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Lower and Upper Triangular Matrices

A lower triangular matrix L is one where aij = 0 for all entries
above the diagonal.

An upper triangular matrix U is one where aij = 0 for all entries
below the diagonal. That is,

L =


a11 0 · · · 0
a21 a22 · · · 0

...
...

. . .
...

am1 am2 · · · amn

 U =


a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...
0 0 · · · amn


(10)
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Matrix Arithmetic
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Matrix Addition and Subtraction

Definition. If A is a (m × n) matrix and B is a (r × p) matrix,
then the matrix sum C = A + B is defined only when m = r and n
= p, and is a (m × n) matrix C whose elements are

cij = aij + bij , for i = 1, 2, · · ·m and j = 1, 2, · · · n. (11)

Properties

(kA) B = k (A.B)

A(BC ) = (AB)C .

(A + B)C ) = AB + AC .

C (A + B) = CA + CB.
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Matrix Addition and Subtraction

Example 1. Let

A =

[
2 1
4 6

]
and B =

[
4 2
0 1

]
. (12)

The matrix sum is:

C = A + B =

[
2 1
4 6

]
+

[
4 2
0 1

]
=

[
6 3
4 7

]
. (13)
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Matrix Multiplication

Definition. Let A and B be (m × n) and (r × p) matrices,
respectively.

The matrix product A · B is defined only when interior matrix
dimensions are the same (i.e., n = r).

The matrix product C = A · B is a (m× p) matrix whose elements
are

cij =
n∑

k=1

aik bkj (14)

for i = 1, 2, · · ·m and j = 1, 2, · · · n.
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Matrix Multiplication

Example 1. Assuming that matrices A and B are as defined in the
previous section:

C = A · B =

[
2 1
4 6

]
·
[

4 2
0 1

]
=

[
2 · 4 + 1 · 0 2 · 2 + 1 · 1
4 · 4 + 6 · 0 4 · 2 + 6 · 1

]
=

[
8 5

16 14

]
.

(15)

Geometric Interpretation. Matrix element cij is the dot product
of the i-th row of A with the j-th column of B.
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Matrix Multiplication

Properties.

A.B.C = (A.B).C = A.(B.C).

A.(B + C) = A.B + A.C.

(A + B).C = A.C + B.C.

A.I = A.

In general, A.B 6= B.A.

A.B = φ does not necessarily imply A = φ or B = φ. Counter
example:

A =

[
1 1
2 2

]
and B =

[
−1 1

1 −1

]
. (16)
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Definition of Vectors
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Definition of Row and Column Vectors

Definition. A row vector is simply a (1×n) matrix, i.e.,

V =
[
v1 v2 v3 v4 · · · vn

]
(17)

Definition. A column vector is a (m × 1) matrix, e.g.,

V =



v1

v2

v3

v4

· · ·
vm

 (18)

In both cases, the i-th element of the column vector is denoted vi .
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Vector Properties
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Properties of Vector Arithmetic

a + b = b + a

a + 0 = a

c(a + b) = ca + cb

(a + b) + c = a + (b + c)

a + (-a) = 0

1 a = a.
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Dot Product

Definition. The dot product of two vectors a = [a1, a2, a3, · · · , an]
and b = [b1, b2, b3, · · · , bn] is:

a.b =
n∑

i=1

aibi = a1b1 + a2b2 + a3b4 + · · ·+ anbn. (19)

Note: a.b = b.a. If a and b are perpendicular then a.b = 0.

Engineering Applications

Mechanical work is the dot product of force and displacement
vectors (Jou).

Power is the dot product of force and velocity vectors (W).

Fluid Mechanics.
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Dot Product

Example 1. Let a = [1, 2, 3] and b = [0,−1, 2]. The dot product:

a.b =
n∑

i=1

aibi = 1× 0 + 2×−1 + 3× 2 = 4. (20)

A dot product can also be written as a row vector multiplied by a
column vector, e.g.,

[
1, 2, 3

]
·

 0
−1

2

 = 4. (21)

The vector dimensions are: (1× 3) (3× 1) → (1× 1).
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Dot Product

Properties. Let a = [a1, a2, a3, a4], b = [b1, b2, b3, b4] and c =
[c1, c2, c3, c4]. And let d be a non-zero constant.

The dot product:

a.b = a1b1 + a2b2 + a3b3 + a4b4 (22)

obeys the properties:

a.a = ‖a‖2.

a.(b + c) = a.b + a.c

a.b = b.a

a.b = 0⇐⇒ a = 0 or b =
0 or a ⊥ b.

0.a = 0

(da).b = d(a.b)

a.b = |a|.|b| cos(θ).
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Cross Product

Definition. Consider two vectors A and B in three dimensions:

A = a1 î + a2 ĵ + a3k̂

B = b1 î + b2 ĵ + b3k̂

The cross product of A and B is:

C = A× B = det

 î ĵ k̂
a1 a2 a3

b1 b2 b3


= (a2b3 − a3b2) î + (a3b1 − a1b3) ĵ + (a1b2 − a2b1) k̂.
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Cross Product

Geometric Interpretation

A× B is a vector that is perpendicular to both A and B.

The magnitude of ‖A× B‖ is equal to the area of the
parallelogram formed using A and B as the sides.

The angle between A and B is: ‖A× B‖ = ‖A‖ ‖B‖ sin(α).

The cross product is zero when the A and B are parallel.
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Linear Independence of Vectors

Linear Independence

A set of vectors (v1, v2, v3, · · · , vn) is said to be linearly
independent if the equation

a1v1 + a2v2 + a3v3 + · · ·+ anvn = 0. (23)

can only be satisfied by ai = 0 for i = 1, ... n.

Put another way: no vector in the sequence can be written as a
linear combination of the other vectors.
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Linear Independence of Vectors

Example 1. Consider three vectors v1 = (1, 1), v2 = (-3, 2), and
v3 = (2, 4) in two-dimensional space.

The vectors will be linearly independent if the only solutions to

a1

[
1
1

]
+ a2

[
−3

2

]
+ a3

[
2
4

]
=

[
0
0

]
. (24)

are a1 = a2 = a3 = 0. Writing these equations in matrix form:

[
1 −3 2
1 2 4

] a1

a2

a3

 =

[
0
0

]
. (25)
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Linear Independence of Vectors

Apply row operations (details to follow):

[
1 0 16/5
0 1 2/5

] a1

a2

a3

 =

[
0
0

]
. (26)

which can be rearranged:[
1 0
0 1

] [
a1

a2

]
+ a3

[
16/5

2/5

]
=

[
0
0

]
. (27)

We conclude that since a1 and a2 can be written in terms of a3,
the equations are linearly dependent.
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Linear Independence of Vectors

A Few Observations

Vectors v1 through v3 are two dimensional.

Can show that three (or more) vectors in
two-dimensional space will always be linearly
dependent.

Can show that four (or more) vectors in
three-dimensional space will always be linearly
dependent.

This is why a stool with three legs (vectors) will
always be steady (linearly independent), but one
with four legs (vectors) will sometimes rock
(linearly dependent).
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