Numerical Differentiation

Mark A. Austin
University of Maryland
austin@umd.edu
ENCE 201, Fall Semester 2023

July 15, 2023

Overview

(1) Mathematical Preliminaries

- Taylor Series Expansion, Limit Definition of a Derivative
(2) First Derivative Approximations
- Forward Finite Difference Approximation: O(h) accurate
- Backward Finite Difference Approximation: O(h) accurate
- Central Finite Difference Approximation: $\mathrm{O}\left(h^{2}\right)$ accurate
(3) Second Derivative Approximations
- Use $f(x), f(x+h)$, and $f(x+2 h)$: $O(h)$ accurate
- Use $f(x-h), f(x)$, and $f(x+h)$: $O\left(h^{2}\right)$ accurate
(4) Applications
(5) Python Code Listings

Mathematical

Preliminaries

Taylor Series Expansion

Let $y=f(x)$ be a smooth differentiable function.

Given $f(x)$ and derivatives $f^{\prime}(a), f^{\prime \prime}(a), f^{\prime \prime \prime}(a)$, etc, the purpose of Taylor's series is to estimate $f(x+h)$ at some distance h from x.

Taylor Series Expansion

The Taylor series is as follows:
$f(x+h)=\sum_{k=0}^{\infty} \frac{f^{k}(x)}{k!} h^{k}=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots$
For a Taylor series approximation containing $(n+1)$ terms

$$
\begin{equation*}
f(x+h)=\sum_{k=0}^{k=n} \frac{f^{k}(x)}{k!} h^{n}+O\left(h^{(n+1)}\right) \tag{2}
\end{equation*}
$$

The big-O notation indicates how quickly the error will change as a function of h, e.g., $\mathrm{O}\left(h^{2}\right) \rightarrow$ magnitude of error proportional to h squared.

Limit Definition of a Derivative

Finite Difference Derivatives. Truncating equation 2 after two terms gives:

$$
\begin{equation*}
f(x+h)=f(x)+f^{\prime}(x) h+O\left(h^{2}\right) \tag{3}
\end{equation*}
$$

A simple rearrangement of equation 3 gives:

$$
\begin{equation*}
\frac{d y}{d x}=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right] . \tag{4}
\end{equation*}
$$

Similarly, we require:

$$
\begin{equation*}
\frac{d y}{d x}=\lim _{h \rightarrow 0}\left[\frac{f(x)-f(x-h)}{h}\right] . \tag{5}
\end{equation*}
$$

In order for the derivative to exist, equations 4 and 5 need to be the same!

Limit Definition of a Derivative

Simple Example. Let $y=x^{2}$.

$$
\begin{equation*}
\frac{d y}{d x}=\lim _{h \rightarrow 0}\left[\frac{(x+h)^{2}-x^{2}}{h}\right]=\lim _{h \rightarrow 0}[2 x+h]=2 x \tag{6}
\end{equation*}
$$

Home Exercise. Use first principles to find $d y / d x$ when:

$$
\begin{equation*}
y(x)=\left(x^{2}-4 x+3\right)^{2} \tag{7}
\end{equation*}
$$

Counter Example. $y(x)=|x|$ is not differentiable at $x=0$.

Finite Difference Approximations

First Derivative

Approximations

Finite Difference Approximations

Strategy: Explore ways to express first and second order function derivatives as finite difference formulae.

Strategy: Maximize accuracy of derivative approximation.

First Derivative Finite Difference Approximations

Example 1. Forward Finite Difference Approximation

$$
\begin{equation*}
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots \tag{8}
\end{equation*}
$$

Rearranging equation 8 gives:

$$
\begin{align*}
f^{\prime}(x) & =\left[\frac{f(x+h)-f(x)}{h}\right]-\frac{f^{\prime \prime}(x)}{2!} h-\frac{f^{\prime \prime \prime}(x)}{3!} h^{2}+\cdots \tag{9}\\
& =\left[\frac{f(x+h)-f(x)}{h}\right]+O(h)
\end{align*}
$$

Discrete approximation is first order accurate: $\mathrm{O}(\mathrm{h})$.

First Derivative Finite Difference Approximations

Example 2. Backward Finite Difference Approximation

$$
\begin{equation*}
f(x-h)=f(x)-f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}-\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots \tag{10}
\end{equation*}
$$

Rearranging equation 9 gives:

$$
\begin{align*}
f^{\prime}(x) & =\left[\frac{f(x)-f(x-h)}{h}\right]+\frac{f^{\prime \prime}(x)}{2!} h-\frac{f^{\prime \prime \prime}(x)}{3!} h^{2}+\cdots \tag{11}\\
& =\left[\frac{f(x)-f(x-h)}{h}\right]+O(h)
\end{align*}
$$

Discrete approximation is first order accurate: $\mathrm{O}(\mathrm{h})$.

First Derivative Finite Difference Approximations

Example 3. Central Difference Approximation.

$$
\begin{align*}
& f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots \\
& f(x-h)=f(x)-f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}-\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots \tag{12}
\end{align*}
$$

Subtract 2nd equation from the first:

$$
\begin{equation*}
f(x+h)-f(x-h)=2 h f^{\prime}(x)-\frac{f^{\prime \prime \prime}(x)}{3!} 2 h^{3}+\cdots \tag{13}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
f^{\prime}(x)=\left[\frac{f(x+h)-f(x-h)}{2 h}\right]+O\left(h^{2}\right) \tag{14}
\end{equation*}
$$

Second Derivative Approximation

Second Derivative

Approximations

Second Derivative Approximation

Strategy: Let's extend the finite difference grid to cover $\mathrm{x}-\mathrm{h}, \mathrm{x}$, $x+h$ and $x+2 h$.

Goal: Maximize accuracy of derivative approximation.

Second Derivative Approximation

Example 5. Use function values $f(x), f(x+h)$, and $f(x+2 h)$
Taylor series expansion for $f(x+h)$...

$$
\begin{equation*}
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots \tag{15}
\end{equation*}
$$

Taylor series expansion for $f(x+2 h) \ldots$

$$
\begin{equation*}
f(x+2 h)=f(x)+f^{\prime}(x) 2 h+\frac{f^{\prime \prime}(x)}{2!} 4 h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} 8 h^{3}+\cdots \tag{16}
\end{equation*}
$$

Second Derivative Approximation

Example 5. Continued ...

Subtract two times equation 15 from equation 16

$$
\begin{equation*}
f(x+2 h)-2 f(x+h)=-f(x)+h^{2} f^{\prime \prime}(x)+h^{3} f^{\prime \prime \prime}(x)+\cdots \tag{17}
\end{equation*}
$$

Rearranging:

$$
\begin{equation*}
f^{\prime \prime}(x)=\left[\frac{f(x+2 h)-2 f(x+h)+f(x)}{h^{2}}\right]+O(h) \tag{18}
\end{equation*}
$$

Second Derivative Approximation

Example 6. Use function values $f(x-h), f(x)$, and $f(x+h)$

$$
\begin{align*}
& f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots \tag{19}\\
& f(x-h)=f(x)-f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}-\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots
\end{align*}
$$

Adding equations gives:

$$
\begin{equation*}
f(x+h)+f(x-h)=2 f(x)+f^{\prime \prime}(x) h^{2}+\frac{f^{\prime \prime \prime}(x)}{4!} 2 h^{4}+\cdots \tag{20}
\end{equation*}
$$

Divide by h^{2}, then rearrange:

$$
\begin{equation*}
f^{\prime \prime}(x)=\left[\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}\right]+O\left(h^{2}\right) \tag{21}
\end{equation*}
$$

Applications

Finite Difference Approximation Accuracy

Example 1. Simulate Accuracy of Finite Difference Expressions Let's explore $O\left(h^{2}\right)$ vs $O(h)$ accuracy in finite difference approximations. Does it matter or not?

It is well known that first derivative of

$$
\begin{equation*}
f(x)=1+x+x^{2}+x^{3} \tag{22}
\end{equation*}
$$

takes the form

$$
\begin{equation*}
\frac{d f(x)}{d x}=1+2 x+3 x^{2} \tag{23}
\end{equation*}
$$

The forward and central finite difference approximations are given by equations 9 and 14 . Here we explore the accuracy of these approximations at $x=1.0$.

Finite Difference Approximation Accuracy

Functions $\mathrm{f} 1(\mathrm{x})$ and $\mathrm{df} 1(\mathrm{x})$ vs x

Finite Difference Approximation Accuracy

Absolute Errors in Finite Difference Approximation (x=1)

Finite Difference Approximation Accuracy

Relative Errors in Finite Difference Approximation (x = 1)

Cable Profile in Simple Suspension Bridge

Example 2. Cable Profile in Small Suspension Bridge

Figure: Small suspension bridge carrying a uniformly distributed load.

Cable Profile in Simple Suspension Bridge

Cable Behavior: Assume that the cable profile corresponds to the solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} w}{d x^{2}}=1.0 \tag{24}
\end{equation*}
$$

with the boundary conditions $w(0)=10$ and $w(10)=20$.
Analytical Solution: for the cable profile is:

$$
\begin{equation*}
w(x)=\frac{1}{2} x^{2}-4 x+10 \tag{25}
\end{equation*}
$$

Finite Difference Approximation:

$$
\begin{equation*}
\frac{w(x+h)-2 * w(x)+w(x-h)}{h^{2}}=1 \tag{26}
\end{equation*}
$$

Cable Profile in Simple Suspension Bridge

Here h is the spacing between the nodes. The boundary conditions are $\mathrm{w}(0)=10$ and $\mathrm{w}(10)=20$.

Partition Domain into Five Intervals:

The finite difference equations for the four internal nodes:

Cable Profile in Simple Suspension Bridge

$$
\begin{gather*}
10-2 * w(2)+w(4)=4 \tag{27}\\
w(2)-2 * w(4)+w(6)=4 \tag{28}\\
w(4)-2 * w(6)+w(8)=4 \tag{29}\\
w(6)-2 * w(8)+20=4 \tag{30}
\end{gather*}
$$

Write equations 27-30 in matrix form:

$$
\left[\begin{array}{rrrr}
-2 & 1 & 0 & 0 \tag{31}\\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & -2
\end{array}\right] \cdot\left[\begin{array}{r}
w(2) \\
w(4) \\
w(6) \\
w(8)
\end{array}\right]=\left[\begin{array}{r}
-6 \\
4 \\
4 \\
-16
\end{array}\right]
$$

Cable Profile in Simple Suspension Bridge

Abbreviated Output:

Cable Profile in Simple Suspension Bridge

Cable Profile

Python Code Listings

Code 1: Accuracy of Finite Difference Approximations


```
# TestFiniteDifferenceAccuracy01.py: Compute accuracy of forward and central
                finite difference approximations.
#
#
# Written By: Mark Austin
                            July 2023
# =================================================================================
import math
import numpy as np
import matplotlib.pyplot as plt
import LinearMatrixEquations as lme
# Define mathematical functions ...
def f1(x):
    return 1 + x + x*x + x**3 + x**4
def df1(x):
    return 1 + 2*x + 3*x*x + 4*x**3
# main method ...
def main():
    print("--- Part 1: Create arrays for exact and numerical solutions ... ");
    xcoords = np.linspace (0,2, num=21)
    lme.printvector("xcoords", xcoords );
```


Code 1: Accuracy of Finite Difference Approximations

```
y01 = np.zeros( len(xcoords) ) # <-- store function values ...
dy01 = np.zeros( len(xcoords) ) # <-- store function derivative values ...
i = 0
for item in xcoords:
        y01[i] = f1(item);
        dy01[i] = df1(item);
        i = i + 1
print("--- Plot function and derivative values ... ");
fig = plt.figure(figsize = (10,8))
plt.plot( xcoords, y01, 'b', label = 'f1(x) = 1 + x + x^2 + x^3 + x^4')
plt.plot( xcoords, dy01, 'r', label = 'df1(x) = 1 + 2x + 3x^2 + 4x^3')
plt.title('Functions f1(x) and df1(x) vs x')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid()
plt.legend()
plt.show()
print("--- Part 2: Finite difference approxiations at x = 1 ... ");
print("--- Create linear space of data points ... ");
x = 1.0;
h = np.linspace( 0.01, 0.50, num=50)
lme.printvector( "h", h );
```


Code 1: Accuracy of Finite Difference Approximations

```
5 9
```

print("--- Create arrays to store derivatives and errors ... ");

```
print("--- Create arrays to store derivatives and errors ... ");
forward01 = np.zeros( len(h) ) # <-- forward difference approximation ...
forward01 = np.zeros( len(h) ) # <-- forward difference approximation ...
central01 = np.zeros( len(h) ) # <-- central difference approximation ...
central01 = np.zeros( len(h) ) # <-- central difference approximation ...
error01 = np.zeros( len(h) ) # <-- absolute error in forward difference ...
error01 = np.zeros( len(h) ) # <-- absolute error in forward difference ...
error02 = np.zeros( len(h) ) # <-- absolute error in central difference...
error02 = np.zeros( len(h) ) # <-- absolute error in central difference...
error03 = np.zeros( len(h) ) # <-- relative error in forward difference...
error03 = np.zeros( len(h) ) # <-- relative error in forward difference...
error04 = np.zeros( len(h) ) # <-- relative error in central difference...
error04 = np.zeros( len(h) ) # <-- relative error in central difference...
print("--- Compute finite difference approximations ... ");
print("--- Compute finite difference approximations ... ");
i = 0
i = 0
for item in h:
for item in h:
    forward01[i] = ( f1(x+h[i])-f1(x) )/h[i];
    forward01[i] = ( f1(x+h[i])-f1(x) )/h[i];
    central01[i] = ( f1 (x+h[i])-f1(x-h[i] ) )/(2*h[i]);
    central01[i] = ( f1 (x+h[i])-f1(x-h[i] ) )/(2*h[i]);
        # Compute absolute errors ...
        # Compute absolute errors ...
        error01[i] = forward01[i] - df1(x);
        error01[i] = forward01[i] - df1(x);
        error02[i] = central01[i] - df1(x);
        error02[i] = central01[i] - df1(x);
        # Compute relative errors ...
        # Compute relative errors ...
        error03[i] = abs((forward01[i] - df1(x))/df1(x));
        error03[i] = abs((forward01[i] - df1(x))/df1(x));
        error04[i] = abs((central01[i] - df1(x))/df1(x));
        error04[i] = abs((central01[i] - df1(x))/df1(x));
        i = i + 1
```

 i = i + 1
    ```

\section*{Code 1: Accuracy of Finite Difference Approximations}
```

88

```
print("--- Absolute errors in function derivative approximations ... ");
```

print("--- Absolute errors in function derivative approximations ... ");
fig = plt.figure(figsize = (10, 8))
fig = plt.figure(figsize = (10, 8))
plt.plot(h, error01, 'b', label = 'forward difference')
plt.plot(h, error01, 'b', label = 'forward difference')
plt.plot(h, error02, 'r', label = 'central difference')
plt.plot(h, error02, 'r', label = 'central difference')
plt.title('Absolute Errors in Finite Difference Approximation (x = 1)')
plt.title('Absolute Errors in Finite Difference Approximation (x = 1)')
plt.xlabel('h')
plt.xlabel('h')
plt.ylabel('error(h)')
plt.ylabel('error(h)')
plt.grid()
plt.grid()
plt.legend()
plt.legend()
plt.show()
plt.show()
print("--- ");
print("--- ");
print("--- Relative errors in function derivative approximations ... ");
print("--- Relative errors in function derivative approximations ... ");
... details of code removed ...
... details of code removed ...

call the main method ...

call the main method ...

main()

```

\section*{Code 2: Cable Profile of Simple Suspension Bridge}
```


===

TestLinearMatrixEquations03.py: Solve simple cable profile problem.

Written by: Mark Austin July 2023

===

import math
import numpy as np
import matplotlib.pyplot as plt
import LinearMatrixEquations as lme
def main():
print("--- Step 1: Initialize problem setup ... ");
A = np.array ([[-2, 1, 0, 0],
[1, -2, 1, 0],
[0, 1, -2, 1],
[0, 0, 1, -2]]);
B = np.array ([[-6], [4], [4], [-16]]);
lme.printmatrix("A", A);
lme.printmatrix("B", B);
print("--- Step 2: Solve Matrix Equations ... ");
X = lme.solvesystem(A,B);

```

\section*{Code 2: Cable Profile of Simple Suspension Bridge}
```

 lme.printmatrix("X", X);
 print("--- Step 3: Assemble cable profile ... ");
 xcoord = np.array([[0.0], [2.0], [4.0], [6.0], [8.0], [10.0]]);
 w0 = 10; w2 = X[0][0]; w4 = X[1][0]; w6 = X[2][0];
 w8 = X[3][0]; w10 = 20;
 ycoord = np.array([[w0], [w2], [w4], [w6], [w8], [w10]]);
 lme.printmatrix("X coord", xcoord);
 lme.printmatrix("Y coord", ycoord);
 print("--- Step 4: Plot cable profile ... ");
 fig = plt.figure(figsize = (10,8))
 plt.plot(xcoord, ycoord, 'b', label = 'w(x)')
 plt.title('Cable Profile')
 plt.xlabel('x')
 plt.ylabel('w(x)')
 plt.grid()
 plt.legend()
 plt.show()

call the main method ...

main()

```
```

