Numerical Integration I

Mark A. Austin
University of Maryland
austin@umd.edu
ENCE 201 Fall Semester 2023

April 10, 2024
(1) Mathematical Question
(2) General Framework
(3) Basic Numerical Methods
(4) Polynomial Approximation
(5) Trapezoidal Integration
(6) Simpson's Rule
(7) Python Code Listings

- Composite Trapezoid Rule
- Composite Simpson's Rule

Mathematical Questions

(1) How do we evaluate:

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x ? \tag{1}
\end{equation*}
$$

(2) Calculus tells us that the antiderivative of a function $f(x)$ over an interval $[\mathrm{a}, \mathrm{b}]$ is:

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a) . \tag{2}
\end{equation*}
$$

(3) Many integrals cannot be evaluated using this approach, e.g.,

$$
\begin{equation*}
I=\int_{0}^{1} \frac{1}{1+x^{5}} d x \tag{3}
\end{equation*}
$$

has a very complicated antiderivative.

Mathematical Questions

integrate $1 /\left(1+x^{\wedge} 5\right)$
\int_{20}^{π} Extended Keyboard \boldsymbol{E} Upload \quad :i: Examples $\quad 2 ;$ Random

Indefinite integral:
Approximate form
Step-by-step solution
$\int \frac{1}{1+x^{5}} d x=$
$\frac{1}{20}\left((\sqrt{5}-1) \log \left(2 x^{2}+(\sqrt{5}-1) x+2\right)-(1+\sqrt{5}) \log \left(2 x^{2}-(1+\sqrt{5}) x+2\right)+\right.$
$4 \log (x+1)-2 \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{-4 x+\sqrt{5}+1}{\sqrt{10-2 \sqrt{5}}}\right)+$
$\left.2 \sqrt{2(5+\sqrt{5})} \tan ^{-1}\left(\frac{4 x+\sqrt{5}-1}{\sqrt{2(5+\sqrt{5})}}\right)\right)$
(assuming a complex-valued logarithm)

Mathematical Questions

Idea: Let's replace the original function by a new function that is much easier to work with, i.e.,

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \approx \int_{a}^{b} \tilde{f}(x) d x=\tilde{I} \tag{4}
\end{equation*}
$$

We want $\tilde{f}(x)$ to be a good approximation of $f(x)$.

Basic Questions:

(1) What strategies exist for choosing and integrating $\tilde{f}(x)$?
(2) How much computational work is needed to obtain a required level of accuracy?

General Framework

The approximation error is as follows:

$$
\text { Error }=\int_{a}^{b}[f(x)-\tilde{f}(x)] d x \leq(b-a) \max _{a \leq \xi \leq b}\|f(\xi)-\tilde{f}(\xi)\|
$$

This inequality tells us the approximation error E depends on two factors:

- The width of the integration interval (b-a).
- The maximum difference between $f(\xi)$ and $\tilde{f}(\xi)$ within the interval $a \leq \xi \leq b$.

Basic

Numerical Methods

Basic approaches to numerical integration:
(1) Polynomial Approximation
(2) Rectangular and Midpoint Rules
(3) Trapezoid Rule
(9) Simpson's Rule

Composite methods:
(1) Composite Trapezoid Rule
(2) Composite Simpson's Rule

Strategy: Choose an approximation $\tilde{f}(x)$ to $f(x)$ that is easily integrable and a good approximation to $f(x)$

Two candidate schemes:
(1) Interpolation polynomials approximating $f(x)$.
(2) Taylor series approximation of $f(x)$.

Note: In order for the Taylor series approximation to work, we need the functional derivatives at "a" to exist.

Polynomial Interpolation

Example 1: Consider the integral: $I=\int_{0}^{\pi} \sin (x) d x$.
Analytic Solution.

$$
\begin{equation*}
I=\int_{0}^{\pi} \sin (x) d x=[-\cos (x)]_{0}^{\pi}=2.0 \tag{5}
\end{equation*}
$$

Polynomial Interpolation

Consider the data set (3 data points):

x	0.0	$\pi / 2$	π
$\sin (\mathrm{x})$	0.0	1.0	0.0

A quadratic fit will have roots at $\mathrm{x}=0$ and $\mathrm{x}=\pi$, and pass through the point $\sin (\pi / 2)=1.0$.

Polynomial Interpolation

So let:

$$
\begin{equation*}
p(x)=A x(x-\pi) \tag{6}
\end{equation*}
$$

and determine the value of A by applying the constraint $\sin (\pi / 2)$
$=1.0$.

$$
\begin{equation*}
p(\pi / 2)=A \pi / 2(\pi / 2-\pi)=1.0 \rightarrow A=-4 / \pi^{2} . \tag{7}
\end{equation*}
$$

Integration

$$
\begin{equation*}
I=\int_{0}^{\pi} \sin (x) d x \approx\left[\frac{-4}{\pi^{2}}\right] \int_{0}^{\pi} x(x-\pi) d x=2.09 \tag{8}
\end{equation*}
$$

The relative error is 4.5%. Not bad.

Polynomial Approximation

Example 2: Consider the integral:

$$
\begin{equation*}
I=\int_{0}^{1} e^{x^{2}} d x \tag{9}
\end{equation*}
$$

The Taylor series approximation of $f(x)$ is:

$$
\begin{equation*}
f(x)=1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\cdots \frac{t^{(n+1)}}{(n+1)!} e^{c}, \quad \text { where } \quad t=x^{2} \tag{10}
\end{equation*}
$$

and c is a constant $0 \leq c \leq 1$.

Polynomial Approximation

Solution:

$$
\begin{equation*}
I=\int_{0}^{1}\left[1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\cdots \frac{x^{2 n}}{n!}\right] d x+\int_{0}^{1}\left[\frac{x^{2 n+2}}{(n+1)!}\right] e^{c} d x \tag{11}
\end{equation*}
$$

Let $\mathrm{n}=3$. We have

$$
\begin{equation*}
I=1+\frac{1}{3}+\frac{1}{10}+\frac{1}{42}+\text { Error }=1.4571+\text { Error } \tag{12}
\end{equation*}
$$

An upper bound on the numerical error is:

$$
\begin{equation*}
\text { Error } \leq \frac{e}{24} \int_{0}^{1} x^{8} d x=\frac{e}{216}=0.0126 \tag{13}
\end{equation*}
$$

Difficulties with Polynomial Approximation:

- Taylor series approximations only work well when higher order derivatives exist.

This excludes functions that are continuous, but are not continuously differentiable. (e.g., $f(x)=|x|$ is continuous, but not differentiable at $x=0$).

- Some Taylor series converge too slowly to get a reasonable approximation by just a few terms of the series.

As a rule, if the series has a factorial in the denominator, this technique will work efficiently, otherwise, it will not.

Basic Interpolation Methods

Rectangular Interpolation

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \approx(b-a) f(a)=\tilde{I} \tag{14}
\end{equation*}
$$

Basic Interpolation Methods

Midpoint Interpolation

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \approx(b-a) f\left(\frac{a+b}{2}\right)=\tilde{I} \tag{15}
\end{equation*}
$$

Basic Interpolation Methods

Trapezoid Interpolation

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \approx \frac{(b-a)}{2}[f(a)+f(b)]=\tilde{I} \tag{16}
\end{equation*}
$$

Basic Interpolation Methods

Observation: The midpoint rule tends to be more accurate than the trapezoid rule:

When we get to error analysis we will see that, in fact, this is true!

Trapezoid Rule

Trapezoidal Rule

Sketch of Derivation: Let the interval of integration be defined by $h=(b-a)$, and two end points: $(a, f(a))$ and $(b, f(b))$.

Linear Polynomial Fit:

$$
\begin{equation*}
p(x)=f(a)+\left[\frac{f(b)-f(a)}{h}\right](x-a) \tag{17}
\end{equation*}
$$

Integrate $p(x)$, then simplify:

$$
\begin{aligned}
T & =\int_{a}^{b} p(x) d x=\left|f(a) x+\left[\frac{f(b)-f(a)}{h}\right] \cdot \frac{(x-a)^{2}}{2}\right|_{a}^{b} \\
& =\frac{h}{2}[f(a)+f(b)] .
\end{aligned}
$$

Definition: Assume that $f(x)$ is continuous over an interval $[a, b]$. Let n be a positive integer and $h=(b-a) / n$.

Next, let's divide $[a, b]$ into n subintervals, each of length h, with endpoints at $P=\left[x_{0}, x_{1}, x_{2}, \cdots, x_{n}\right]$.

We set:

$$
\begin{equation*}
T_{n}=\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{(n-1)}\right)+f\left(x_{n}\right)\right] \tag{18}
\end{equation*}
$$

Note: As n increases toward infinity,

$$
\begin{equation*}
\operatorname{limit}_{n \rightarrow \infty} T_{n}=\int_{a}^{b} f(x) d x \tag{19}
\end{equation*}
$$

Composite Trapezoidal Rule

Visual Representation

Error Analysis

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x=T_{n}-\frac{\left|f^{2}(\xi)\right|}{12} h^{2}(b-a) . \tag{20}
\end{equation*}
$$

where $[a \leq \xi \leq b]$. The method is $O\left(h^{2}\right)$ accurate.

Example 1. Error Analysis for $\int_{0}^{2} x^{2} d x$. Does equation 20 work?
Analytical Solution:

$$
\begin{equation*}
I=\int_{0}^{2} x^{2} d x=\left[\frac{1}{3} x^{3}\right]_{0}^{2}=\frac{8}{3} \tag{21}
\end{equation*}
$$

Trapezoidal Rule

One Step of Trapezoid: (here $h=2, b-a=2$)

$$
\begin{equation*}
\int_{0}^{2} x^{2} d x \rightarrow T_{1}=\frac{h}{2}[f(0)+f(2)]=4.0 . \tag{22}
\end{equation*}
$$

Theoretical Error Estimate: $f(x)=x^{2}, \frac{d f}{d x}=2 x, \frac{d^{2} f}{d x^{2}}=2$.

$$
\begin{equation*}
\text { Error } \leq \frac{\left|f^{2}(\xi)\right|}{12} h^{2}(b-a) \rightarrow \frac{2 \cdot 2^{2} \cdot 2}{12}=\frac{16}{12}=1.33 \tag{23}
\end{equation*}
$$

Actual Error:

Absolute Error $=\mid$ Exact - Trapezoid $|=|8 / 3-4|=1.33$.

Trapezoidal Rule

Example 2. Evaluate $I=\int_{0}^{4} x e^{2 x} d x$.
Analytic Solution.

$$
\begin{equation*}
I=\int_{0}^{4} x e^{2 x} d x=\left[\frac{x}{2} e^{2 x}-\frac{1}{4} e^{2 x}\right]_{0}^{4}=5,216.92 \tag{25}
\end{equation*}
$$

One Step of Trapezoid Rule ($\mathrm{n}=1$).

$$
\begin{equation*}
T_{1}=\left[\frac{4-0}{2}\right][f(0)+f(4)]=23,847.66 . \tag{26}
\end{equation*}
$$

Not very accurate at all!

Composite Trapezoidal Rule

Example 3. Evaluate $I=\int_{0}^{4} x e^{2 x} d x$ with two segments $(\mathrm{n}=2)$.
Solution. We have:

$$
\begin{aligned}
I & =\int_{0}^{4} x e^{2 x} d x=\int_{0}^{2} x e^{2 x} d x+\int_{2}^{4} x e^{2 x} d x \\
& \approx\left[\frac{2-0}{2}\right][f(0)+f(2)]+\left[\frac{4-2}{2}\right][f(2)+f(4)] \\
& =[f(0)+2 f(2)+f(4)]=\left[0+4 e^{4}+4 e^{8}\right] \\
T_{2} & =\left[0+4 e^{4}+4 e^{8}\right]=12,142.22 .
\end{aligned}
$$

Answer is much better than one step, but still very poor accuracy.

Composite Trapezoidal Rule

Test Program Source Code:

```
# ==================================================================================
# TestIntegrationTrapezoid01.py: Use trapezod algorithm to integrate functions.
#
# Written By: Mark Austin July 2023
```



```
import math;
import Integration;
def f2(x):
    return x*math.exp(2 * x)
# main method ...
def main():
    print("--- ");
    print("--- Case Study 2: Integrate x*math.exp(2x) over [0, 4] ... ");
    print("--- =================================================== ... ");
    # Initialize problem setup ...
    a = 0.0;
    b}=4.
    nointervals = 2
    print("--- Inputs:")
```


Composite Trapezoidal Rule

Test Program Source Code: Continued ...

```
    print("--- a = {:9.4f} ...".format(a) )
    print("--- b = {:9.4f} ...".format(b) )
    print("--- no intervals = {:d} ...".format(nointervals) )
    # Compute numerical solution to integral..
    print("--- Execution:")
    xi = Integration.trapezoid( f2, a, b, nointervals )
    # Summary of computations ...
    print("--- Output:")
    print("--- integral = {:12.4f} ...".format( xi ) )
# call the main method ...
```

main()

Composite Trapezoidal Rule

Abbreviated Output:

--- Case Study 2: Integrate $x * m a t h . \exp (2 x)$ over [0, 4] ...

--- Inputs:
--- $\quad \mathrm{a}=0.0000 \ldots$
--- b $=4.0000 \ldots$
--- no intervals = 2 ...
--- Execution:
--- Output:
--- integral = 12142.2245
--- Case Study 2: Integrate $x *$ math. $\exp (2 x)$ over [0, 4] ...
--- ===1
--- Inputs:
--- $\quad a=0.0000 \ldots$
--- b = $4.0000 \ldots$
--- no intervals = 4 ...
--- Execution:
--- Output:
--- integral $=7288.7877$...

Composite Trapezoidal Rule

Systematic Refinement: $T_{1}, T_{2}, \cdots, T_{512}$:

No Intervals	h	Integral T_{n}
1	4.0	$T_{1}=23,847.66$
2	2.0	$T_{2}=12,142.22$
4	1.0	$T_{4}=7,288.79$
8	0.5	$T_{8}=5,764.76$
16	0.25	$T_{16}=5,355.94$
32	0.125	$T_{32}=5,251.81$
64	0.0625	$T_{64}=5,225.81$
128	0.0312	$T_{128}=5,219.10$
256	0.0156	$T_{256}=5,217.47$
512	0.0078	$T_{512}=5,217.06$

Key Takeaway: Trapezoid works, but convergence is very slow.

Composite Trapezoidal Rule

Example 4. Use the Trapezoid rule with $n=10$ segments to approximate $\int_{0}^{\pi} e^{x} \cos x d x$.

Determine the absolute true error $\left|E_{t}\right|$, and compare it with the true-error bound provided above.

Solution. We have

$$
\Delta x=(b-a) / n=(\pi-0) / 10=0.314159
$$

and $\Delta x / 2=0.157080$.
Moreover $x_{0}, x_{1}, \ldots, x_{10}$ satisify $x_{i}=a+i \Delta x=i \Delta x$, forall $i=0,1, \ldots, 10$.

Hence,

$$
x_{0}=0, x_{1}=0.314159, x_{2}=0.628319, \cdots, x_{10}=3.14159 .
$$

Trapezoidal Rule

Solution Continued. Therefore,
$\int_{0}^{\pi} e^{x} \cos x d x \approx \frac{\Delta x}{2}\left(e^{x_{0}} \cos \left(x_{0}\right)+\cdots+e^{x_{10}} \cos \left(x_{10}\right)\right)=-12.2695$.

Error Analysis. The analytical solution is:

$$
\begin{equation*}
\int_{0}^{\pi} e^{x} \cos x d x=-\left(1+e^{\pi}\right) / 2=-12.0703 \tag{28}
\end{equation*}
$$

This gives $\left|E_{t}\right|=0.199199$. Finally, we note $f^{\prime \prime}(x)$ reaches an absolute minimum value of -14.9210 at $x=3 \pi / 4$. And so

Worst case error $\leq(14.9210) \pi^{3} /(12)(10)^{2}=0.385537$.

Trapezoidal Rule

Example 5. How many intervals are needed to compute:

$$
\begin{equation*}
I=\int_{0}^{1}\left[\frac{\sin (x)}{x}\right] d x \tag{30}
\end{equation*}
$$

to an accuracy 10^{-8} ?
Solution. First, we note $\left|f^{2}(\xi)\right|_{\max }=1 / 3$.
For the trapezium rule:

$$
\begin{equation*}
\text { Error } \leq \frac{1}{12} h^{2}\left|f^{2}(\xi)\right|_{\max }=\frac{h^{2}}{36} \leq \frac{10^{-8}}{2} \tag{31}
\end{equation*}
$$

Hence, $h \leq \sqrt{18} \times 10^{-4}$. We also have $n h=1$.
Number of required intervals: $n \geq 2,357$.

Simpson's Rule

(Thomas Simpson, 1710-1761)

Simpson's Rule

Objective: Approximate the integral of a function by fitting a quadratic function $\mathrm{q}(\mathrm{x})$ through three equally spaced points: $[a, f(a)],[m, f(m)]$ and $[b, f(b)]$.

Interval of integration: $[b-a]=2 \mathrm{~h}$. Midpoint $m=[(a+b) / 2]$.

Simpson's Rule

Sketch of Derivation: Suppose that:

$$
\begin{equation*}
q(x)=q_{0}+q_{1}(x-a)+q_{2}(x-a)(x-m) \tag{32}
\end{equation*}
$$

fits through $[a, f(a)],[m, f(m)]$ and $[b, f(b)]$.
We can use the method of divided differences to show:

$$
\begin{aligned}
& q_{0}=f(a) \\
& q_{1}=(f(m)-f(a)) / h \\
& q_{2}=(f(b)-2 f(m)+f(a)) / 2 h^{2}
\end{aligned}
$$

Simpson's Rule

Sketch of Derivation:

Next, integrate $\mathrm{q}(\mathrm{x})$ and simplify. This gives:

$$
\begin{equation*}
S=\int_{a}^{b} q(x) d x=\frac{h}{3}[f(a)+4 f(m)+f(b)] . \tag{33}
\end{equation*}
$$

For a single step of Simpon's rule,

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x=\int_{a}^{b} q(x) d x-\frac{1}{90}\left[\frac{(b-a)}{2}\right]^{5} f^{4}(\xi) \tag{34}
\end{equation*}
$$

where $[a \leq \xi \leq b]$.

Simpson's Rule

Important Point

Notice that the error depends on the fourth derivative of $f(x)$.
Thus, if $f(x)$ happens to be a polynomial of degree three or less,

$$
\begin{equation*}
f(x)=f_{0}+f_{1} x+f_{2} x^{2}+f_{2} x^{3} \tag{35}
\end{equation*}
$$

then Simpsons rule will give an exact answer, i.e,

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x=\int_{a}^{b} q(x) d x \tag{36}
\end{equation*}
$$

Composite Simpson's Rule

Objective: Simply chain together a sequence of simpson rule approximations:

Composite Simpson's Rule

Numerical Formula

$$
\begin{equation*}
S_{n}=\frac{h}{3} \sum_{j=1}^{n / 2}\left[f\left(x_{2 j-1}\right)+4 f\left(x_{2 j}\right)+f\left(x_{2 j+1}\right)\right] \tag{37}
\end{equation*}
$$

Error Analysis

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x=S_{n}-\frac{h^{4}}{180}(b-a)\left|f^{4}(\xi)\right| \tag{38}
\end{equation*}
$$

where $[a \leq \xi \leq b]$ and $h=(b-a) / n$ is the step length. The method is $O\left(h^{4}\right)$ accurate.

Simpson's Rule

Example 1. Consider the integral: $\int_{0}^{\pi} \sin (x) d x$.
Applying Simpson's Rule to the data set:

x	0.0	$\pi / 2$	π
$\sin (\mathrm{x})$	0.0	1.0	0.0

gives:

$$
\begin{equation*}
S=\frac{\pi / 2}{3}[f(0)+4 f(\pi / 2)+f(\pi)]=\frac{\pi}{6}[0+4 * 1+0] . \tag{39}
\end{equation*}
$$

which, by coincidence, is identical to the quadratic polynomial approximation.

Simpson's Rule

Now let's extend the data set from 3 to 5 points:

x	0.0	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π
$\sin (\mathrm{x})$	0.0	$1 / \sqrt{2}$	1.0	$1 / \sqrt{2}$	0.0

Applying Simpson's Rule for four intervals:

$$
\begin{aligned}
S_{4} & =\frac{\pi / 4}{3}[f(0)+4 f(\pi / 4)+2 f(\pi / 2)+4 f(3 \pi / 4)+f(\pi)] \\
& =\frac{\pi}{12}[0.0+4 / \sqrt{2}+2 * 1.0+4 / \sqrt{2}+0.0] \\
& =\frac{\pi}{12}[2.0+8 / \sqrt{2}] \\
& =2.0045 .
\end{aligned}
$$

Simpson's Rule

Estimate of Maximum Absolute Error:

$$
\begin{equation*}
\text { Maximum Error } \leq \frac{h^{4}}{180}(b-a)\left|f^{4}(\xi)\right| \tag{40}
\end{equation*}
$$

We have: $f(x)=\sin (x) \rightarrow f^{4}(\xi)=\sin (\xi) \leq 1.0$.
The interval $(b-a)=\pi$ and $h=\pi / 4$. Thus, we estimate:

$$
\begin{equation*}
\text { Maximum Error } \leq \frac{(\pi / 4)^{4}}{180} \pi=\left[\frac{\pi^{5}}{16 \times 16 \times 180}\right]=0.0066 \tag{41}
\end{equation*}
$$

Actual error $=0.0045$.

Composite Simpson's Rule

Systematic Refinement: $S_{2}, S_{4}, \cdots, S_{32}$:

No Intervals	h	Integral S_{n}
2	$\pi / 2$	$S_{2}=2.0944$
4	$\pi / 4$	$S_{4}=2.0045$
8	$\pi / 8$	$S_{8}=2.00027$
16	$\pi / 16$	$S_{16}=2.00002$
32	$\pi / 32$	$S_{32}=2.000001$

Key Takeaway: Simpson's Rule converges much faster than Trapezoid ...

Simpson's Rule

Example 2. Evaluate $I=\int_{0}^{4} x e^{2 x} d x$.
Analytic Solution.

$$
\begin{equation*}
I=\int_{0}^{4} x e^{2 x} d x=\left[\frac{x}{2} e^{2 x}-\frac{1}{4} e^{2 x}\right]_{0}^{4}=5,216.92 . \tag{42}
\end{equation*}
$$

Systematic Refinement: $S_{2}, S_{4}, \cdots, S_{32}$:

No Intervals	h	Integral S_{n}
2	2	$S_{2}=8,240.41$
4	1	$S_{4}=5,670.97$
8	0.5	$S_{8}=5,256.75$
16	0.25	$S_{16}=5,219.67$
32	0.125	$S_{32}=5,217.10$

Simpson's Rule

Example 3. How many intervals are needed to compute:

$$
\begin{equation*}
I=\int_{0}^{1}\left[\frac{\sin (x)}{x}\right] d x \tag{43}
\end{equation*}
$$

to an accuracy 10^{-8} ?
Solution. For the Simpson's Rule:

$$
\begin{equation*}
\text { Error } \leq \frac{1}{180} h^{4}\left|f^{4}(\xi)\right|_{\max } \leq \frac{10^{-8}}{2} \tag{44}
\end{equation*}
$$

Number of required intervals: $n \geq 20$.
This is significantly better than Trapezoidal Rule ($\mathrm{n}=2,357$), but still a lot of work. We need a more efficient method!

Python Code Listings

Code 1: Composite Trapezoid Rule

```
# =========================================================================
# Integration.trapezoid(): Numerical integration of f(x) with
    composite trapezoid rule.
#
# Args: f (function): the equation f(x).
    a (float): the initial point.
    b (float): the final point.
    n (int): number of intervals.
Returns:
    xi (float): numerical approximation of the definite integral.
```



```
import math
import numpy as np
def trapezoid(f, a, b, n):
    h = (b - a) / n
    sum_x = 0
    for i in range(0, n - 1):
        x =a + (i + 1) * h
        sum_x += f(x)
    xi = h / 2 * (f(a) + 2 * sum_x + f(b))
    return xi
```


Code 2: Composite Simpson's Rule


```
# Integration.simpson(): Numerical integration of f(x) with 1/3 Simpson's Rule.
# Args: f (function): the equation f(x).
    a (float): the initial point.
    b (float): the final point.
    n (int): number of intervals.
Returns:
    xi (float): numerical approximation of the definite integral.
```



```
import math
import numpy as np
def simpson(f, a, b, n):
    h = (b - a) / n
    sum_odd = 0
    sum_even = 0
    for i in range(0, n - 1)
        x =a + (i + 1) * h
        if (i + 1) % 2 == 0:
            sum_even += f(x)
        else:
            sum_odd += f(x)
        xi}=\textrm{h}/3*(f(a)+2*sum_even + 4 * sum_odd + f (b)
    return xi
```

