Roots of Equations

Mark A. Austin
University of Maryland
austin@umd.edu
ENCE 201, Fall Semester 2023

September 30, 2023

Overview

(1) Numerical Solution of Equations
(2) Iterative Methods
(3) Method of Bisection

- Numerical Procedure, Examples
(4) Newton Raphson Iteration
(5) Modified Newton Raphson Iteration
(6) Python Code Listings
- Method of Bisection
- Newton Raphson Algorithm
- Modified Newton Raphson

Numerical

Solution of Equations

Numerical Solution of Equations

Math Problem. Given $f(x)$, find a value of x such that $f(x)=$ $\mathrm{g}(\mathrm{x}), \mathrm{f}(\mathrm{x})=$ constant, or $\mathrm{f}(\mathrm{x})=0$.

All forms may be put in the format $\mathrm{F}(\mathrm{x})=0$.

Numerical Solution of Equations

Mathematical Difficulties.

Quality of a Solution

Several possibilities exist:

- Solution x^{*} is good if $f\left(x^{*}\right) \approx 0.0$
- Solution x^{*} is good if it is close to the exact answer.

Easy to find functions that satisfy one criteria, but not both.

Numerical Solution of Equations

Example 1. Consider the equation:

$$
\begin{equation*}
f(x)=\left[\frac{\left(x^{20}+1\right) x(x-2)}{1000}\right] \tag{1}
\end{equation*}
$$

We know $x=0$ and $x=2$ are roots, but:

- $x=0.123$ satisfies (i) but not (ii).
- $x=2.001$ satisfies (ii) but not (i).

x	$F(x)$
0.123	-2.31×10^{-4}
2.001	2.1200
0.000	0.0000
2.000	0.0000

Numerical Solution of Equations

Iterative Methods

Iterative Methods

Procedure. Solve problem through a sequence of approximations:

Apply process iteratively:

Ideally, $x_{0}, x_{1}, \cdots, x_{n}$ will converge to the true answer.
Potential problems:

- Sequence may not converge.
- Convergence may be slow.

Iterative Methods

Example 1. Divide-and-average method for computing \sqrt{A} is equivalent to solving:

$$
\begin{equation*}
x^{2}=A \Longrightarrow x=\frac{A}{x} \Longrightarrow \frac{1}{2}\left[x+\frac{A}{x}\right] \Longrightarrow x_{n+1}=\frac{1}{2}\left[x_{n}+\frac{A}{x_{n}}\right] . \tag{2}
\end{equation*}
$$

Let $A=4$. Use initial guess $x_{1}=1 \approx \sqrt{4}$.

n	x_{n}	x_{n+1}
1	1.0000	2.5000
2	2.5000	2.0500
3	2.0500	2.0060
4	2.0060	2.0000

Problem Solving

Strategies

Problem Solving Strategies

Bracketing Methods: Requires two initial guesses that bracket the solution.

- Various algorithms for computing estimates to $f(x)=0$, e.g, Bisection, Secant stiffness.

Problem Solving Strategies

Open Methods: Methods may involve one or more initial guesses, but no need to bracket a solution.

- Algorithms are designed to provide updates: Newton Raphson Iteration, Modified Newton Raphson.

