Numerical Solution of Equations
 Iterative Methods
 Method of Bisection
 Newton Raphson Iteration
 Modified Newton Raphson Iteration

Roots of Equations

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 201, Fall Semester 2023

September 30, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Numerical Solution of Equations Iterative Methods Method of Bisection Newton Raphson Iteration Modified Newton Raphson Iteration

Overview

Numerical

Solution of Equations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Numerical Solution of Equations

Math Problem. Given f(x), find a value of x such that f(x) = g(x), f(x) = constant, or f(x) = 0.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

All forms may be put in the format F(x) = 0.

Numerical Solution of Equations

Mathematical Difficulties.

Quality of a Solution

Several possibilities exist:

- Solution x^* is good if $f(x^*) \approx 0.0$
- Solution x* is good if it is close to the exact answer.

Easy to find functions that satisfy one criteria, but not both.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Numerical Solution of Equations

Example 1. Consider the equation:

$$f(x) = \left[\frac{(x^{20} + 1)x(x - 2)}{1000}\right]$$
(1)

We know x = 0 and x = 2 are roots, but:

- x = 0.123 satisfies (i) but not (ii).
- x = 2.001 satisfies (ii) but not (i).

х	F(x)
0.123	-2.31×10^{-4}
2.001	2.1200
0.000	0.0000
2.000	0.0000

Numerical Solution of Equations Iterative Methods Method of Bisection Newton Raphson Iteration Modified Newton Raphson It 00000

Numerical Solution of Equations

æ

Numerical Solution of Equations Iterative Methods Method of Bisection Newton Raphson Iteration Modified Newton Raphson Iteration

Iterative Methods

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Iterative Methods

Procedure. Solve problem through a sequence of approximations:

Apply process iteratively:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ideally, x_0 , x_1 , \cdots , x_n will converge to the true answer.

Potential problems:

- Sequence may not converge.
- Convergence may be slow.

Iterative Methods

Example 1. Divide-and-average method for computing \sqrt{A} is equivalent to solving:

$$x^{2} = A \Longrightarrow x = \frac{A}{x} \Longrightarrow \frac{1}{2} \left[x + \frac{A}{x} \right] \Longrightarrow x_{n+1} = \frac{1}{2} \left[x_{n} + \frac{A}{x_{n}} \right].$$
 (2)

Let A = 4. Use initial guess $x_1 = 1 \approx \sqrt{4}$.

n	x _n	x_{n+1}
1	1.0000	2.5000
2	2.5000	2.0500
3	2.0500	2.0060
4	2.0060	2.0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Numerical Solution of Equations Iterative Methods Method of Bisection Newton Raphson Iteration Modified Newton Raphson Iteration

Problem Solving

Strategies

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problem Solving Strategies

Bracketing Methods: Requires two initial guesses that bracket the solution.

 Various algorithms for computing estimates to f(x) = 0, e.g, Bisection, Secant stiffness.

Problem Solving Strategies

Open Methods: Methods may involve one or more initial guesses, but no need to bracket a solution.

• Algorithms are designed to provide updates: Newton Raphson Iteration, Modified Newton Raphson.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで