
Department of Civil and Environmental Engineering, Spring Semester, 2024

ENCE 201 Midterm 1, Open Notes and Open Book

Name :

E-mail (print neatly!):

Exam Format and Grading. This take home midterm exam is open notes and open book. You need to
comply with the university regulations for academic integrity.

There are three questions. Partial credit will be given for partially correct answers, so please show all your
working.

Please see the class web page for instructions on how to submit your exam paper.

Question Points Score

1 10

2 15

3 15

Total 40

1

Question 1: 10 points. This question covers linear matrix equations and their solution.

Consider the family of equations:

x+ ky = 1
kx+ y = 1

(1)

where x and y are variables and k is a number.

[1a] (2 pts) Write equations 1 in matrix form A.X = B.

[1b] (2 pts) In part [1a], what are the dimensions of matrices A, X and B?

[1c] (2 pts) Write down the augmented matrix [A|B].

[1d] (4 pts) Find values of k for which equations 1 will have exactly one solution. What are the corre-
sponding values of x and y?

2

Question 2 (15 points). This question covers use of Python to compute and print the maximum and
minimum coordinate positions, and perimeter of the six-sided polygon shown in Figure 1.

x

y

42 6

2

4

1 3 5 7

1

3

5

Figure 1. Six-sided irregular polygon.

Look the Python code over carefully and answer the questions that follow:

==
TestPolygonSixSides.py: Compute max/min nodal coordinatees and
perimeter of six-sided polygon.
#
Written by: Mark Austin March 2024
==

import math
import numpy as np

Function to print two-dimensional matrices ...

def PrintMatrix(name, a):
print("Matrix: {:s} ".format(name));
for row in a:

for col in row:
print("{:8.4f}".format(col), end=" ")

print("")

Compute polygon perimeter ...

def perimeter(coord):
norows = coord.shape[0];

3

dperimeter = 0.0;
for i in range(1,norows):

dx = coord[i][0] - coord[i-1][0];
dy = coord[i][1] - coord[i-1][1];
dperimeter = dperimeter + math.sqrt(dx*dx + dy*dy);

dx = coord[norows-1][0] - coord[0][0];
dy = coord[norows-1][1] - coord[0][1];
dperimeter = dperimeter + math.sqrt(dx*dx + dy*dy);

return dperimeter;

===
main method ...
===

def main():
print("--- Enter TestPolygonSixSides.main() ... ");
print("--- == ... ");

print("--- Part 1: Initialize coefficients for matrix equations ... ");

coord = np.array([(1.0, 1.0),
(1.0, 5.0),
(6.0, 5.0),
(6.0, 3.0),
(3.0, 3.0),
(3.0, 1.0)]);

PrintMatrix("Polygon Coordinates", coord);

print("--- Part 2: Max/min coordinate positions ... ");

print("--- Min x = {:f} ...".format(min (coord[:,0])));
print("--- Max x = {:f} ...".format(max (coord[:,0])));
print("--- Min y = {:f} ...".format(min (coord[:,1])));
print("--- Max y = {:f} ...".format(max (coord[:,1])));

print("--- Part 3: Compute and print distance of coords from origin ... ");

distance = np.zeros(coord.shape[0])
for i in range(6):

x = coord[i][0];
y = coord[i][1];
distance[i] = math.sqrt(x**2 + y**2)

print("--- Min distance from origin = {:f} ...".format(min (distance)));
print("--- Max distance from origin = {:f} ...".format(max (distance)));

print("--- Part 4: Compute and print perimeter and area of polygon ... ");

print("--- Polygon perimeter = {:f} ...".format(perimeter(coord)));

print("--- == ... ");

4

print("--- Enter TestPolygonSixSides.main() ... ");

call the main method ...

if __name__ == "__main__":
main()

The program output is:

--- Enter TestPolygonSixSides.main() ...
--- == ...
--- Part 1: Initialize coefficients for matrix equations ...
Matrix: Polygon Coordinates

1.0000 1.0000
1.0000 5.0000
6.0000 5.0000
6.0000 3.0000
3.0000 3.0000
3.0000 1.0000

--- Part 2: Max/min coordinate positions ...
--- Min x = 1.000000 ...
--- Max x = 6.000000 ...
--- Min y = 1.000000 ...
--- Max y = 5.000000 ...
--- Part 3: Compute and print distance of coords from origin ...
--- Min distance from origin = 1.414214 ...
--- Max distance from origin = 7.810250 ...
--- Part 4: Compute and print perimeter and area of polygon ...
--- Polygon perimeter = 18.000000 ...
--- == ...
--- Enter TestPolygonSixSides.main() ...

[2a] (2 pts) What does the line:

import numpy as np

do, and why is it needed in this program?

5

[2b] (2 pts) What does the line:

import math

do, and why is it needed in this program?

[2c] (2 pts) Write a small script of Python code to retrieve and print the matrix dimensions, and number of
rows and columns in the coord matrix.

[2d] (3 pts) Briefly explain how the various parts (i.e., use of builtin functions and formatting specification)
of the statement:

print("--- Min x = {:f} ...".format(min (coord[:,0])));

work.

6

[2e] (3 pts) Now let’s consider the block of code:

distance = np.zeros(coord.shape[0])
for i in range(6):

x = coord[i][0];
y = coord[i][1];
distance[i] = math.sqrt(x**2 + y**2)

Create a table that shows the iteration value i, and values of x, y and distance[i], for each iteration of
the loop computation.

7

[2f] (3 pts) Finally, consider the statement:

print("--- Polygon perimeter = {:f} ...".format(perimeter(coord)));

and the block of code:

dperimeter = 0.0;
for i in range(1,norows):

dx = coord[i][0] - coord[i-1][0];
dy = coord[i][1] - coord[i-1][1];
dperimeter = dperimeter + math.sqrt(dx*dx + dy*dy);

dx = coord[norows-1][0] - coord[0][0];
dy = coord[norows-1][1] - coord[0][1];
dperimeter = dperimeter + math.sqrt(dx*dx + dy*dy);

within the function perimeter. Construct a table that shows how the perimeter computation systemat-
ically assembles the polygon perimeter.

8

Question 3 (15 points). Suppose that a x-y coordinate system is rotated anticlockwise by an angle
θ to create a new coordinate system x1-y1.

θ

x

y

x1

y1 Point (x,y)

θ

The matrix product:

[
x1
y1

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x
y

]
. (2)

describes how points in the x-y coordinate system are transformed into the x1-y1 coordinate system. Let us
denote the 2-by-2 coordinate transformation matrix A(θ).

[3a] (2 pts) Is matrix A(θ) skew-symmetric?

[3b] (3 pts) For two rotations θ1 and θ2 verify that:

A(θ1)A(θ2) = A(θ1 + θ2). (3)

Show all of your working ...

9

[3b] continued ...

[3c] (2 pts) Now suppose that the coordinate axes are rotated anticlockwise by angle θ three times. Draw
and label a sequence of coordinate systems (similar to the diagram above) that illustrate the essential
features of this scenario.

10

[3d] (5 pts) Using the ideas and results of Parts [3b] and [3c], derive a formula for cos(3θ) in terms of
cos(θ) alone, i.e.,

cos(3θ) = 4 cos3(θ)− 3 cos(θ). (4)

Show all of your working.

11

[3e] (3 pts) Show that for all values of x, y, z and a ≥ 0 the triple product of matrices:

[
x y z

]
·

 1 + a −a 0
−a 1 + a −a
0 −a 1 + a

 ·
 x
y
z

 ≥ 0 (5)

12

