Homework 4

Due: May 8, 2024 (No Extensions)

This homework covers use of Pandas and Geopandas for analysis of motor vehicle accidents in NYC, and use of Numpy, Pandas, and user-defined code for problems requiring interpolation, least squares, and integration using Trapezoid and Simpson's Rule, Gauss Quadrature and Romberg Integration.

Question 1: 20 points. Motor vehicle accidents in New York City are the leading cause of death for the city residents. Statistics indicate that close to one in four accidents results in someone being injured or losing their life. The problem is particularly acute for accidents involving high-speed, and/or when accidents involve pedestrians, bicyclists, or motor cycles. Root causes for this situation can be traced back to the city being flat and very walkable, as well as a significant biking culture.

The purpose of this question is to take a first step toward formally analyzing data on motor vehicle accidents and, specifically, understand where and when vehicle accidents occur? We will not investigate the particulars of who has been injured and associated details on the vehicles involved.

Accident Data: The folder python-code.d/data/cities/nyc/ contains data files that can be used in the analysis of motor vehicle accidents in NYC. The main file, Motor-Vehicle-Collisions.csv, comprises 2.06 million motor vehicle accidents recorded across the five boroughs of NYC and for about a decade.

The data is organized into 29 columns:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2062758 entries, 0 to 2062757
Data columns (total 29 columns):
    # Column Dtype
-_- ---_-- _-_--
    0 CRASH DATE object
    1 CRASH TIME object
    2 ~ B O R O U G H ~ o b j e c t
    3 ZIP CODE object
    LATITUDE float64
    LONGITUDE float64
    LOCATION object
    ON STREET NAME object
    CROSS STREET NAME object
    OFF STREET NAME object
    NUMBER OF PERSONS INJURED float64
    NUMBER OF PERSONS KILLED float64
    NUMBER OF PEDESTRIANS INJURED int64
    NUMBER OF PEDESTRIANS KILLED int64
```


Figure 1: Spatial view: Main streets in Lower Manhattan.

Figure 2: Temporal view: Heatmap of vehicle accidents organized into weekly measurements.

```
14 NUMBER OF CYCLIST INJURED int64
15 NUMBER OF CYCLIST KILLED int64
1 6 \text { NUMBER OF MOTORIST INJURED int64}
1 7 \text { NUMBER OF MOTORIST KILLED int64}
18 CONTRIBUTING FACTOR VEHICLE 1 object
19 CONTRIBUTING FACTOR VEHICLE 2 object
20 CONTRIBUTING FACTOR VEHICLE 3 object
CONTRIBUTING FACTOR VEHICLE 4 object
2 \mp@code { C O N T R I B U T I N G ~ F A C T O R ~ V E H I C L E ~ 5 ~ o b j e c t }
3 \text { COLLISION_ID int64}
VEHICLE TYPE CODE 1 object
VEHICLE TYPE CODE 2 object
VEHICLE TYPE CODE 3 object
VEHICLE TYPE CODE 4 object
VEHICLE TYPE CODE 5 object
dtypes: float64(4), int64(7), object(18)
memory usage: 456.4+ MB
None
(2062758, 29)
```

Geospatial Data: The data files dcm-nyc-major-street.csv and nyc-shoreline.csv contain geospatial data on the main streets and shoreline in the NYC area.

Things to do: Write a Python program that will read the motor vehicle accidents and geospatial data files, and systematically filter and transform the data into spatial and temporal views of accident events in Lower Manhattan. Figure 1 shows a spatial view of streets in Lower Manhattan. Figure 2 shows a heatmap/temporal view of accidents, organized along the dimensions of time-of-the-day and day of the week. Thus, for this question, columns $0-5$ of the accident data are most relevant.

For the spatial view:

1. Filter the accident data to only keep accidents occuring in Manhattan - this operation will reduce the number of accidents from 2 million to approximately 318,000 . Then, remove from consideration accidents that do not have a (lat,long) coordinates - there are about 10,000 of them.
2. Add locations of remaining accidents to Figure 1. Small blue dots might work, but there are over 300,000 of them ...

For the temporal view:
2. For each accident date, extract the day of the week and time of day. Map this data to rows and columns in the heatmap/temporal view, then display. Again, there are over 300,000 data points, so a good strategy might be to display the data as percentages?

Question 2: 20 points. Figure 3 is a three-dimensional view of a 2 by 2 km site that is believed to overlay a thick layer of mineral deposits.

Figure 3: Three-dimensional view of mineral deposits.

To create a model of the mineral deposit profile and establish the economic viability of mining the site, a preliminary subsurface exploration consisting of 16 bore holes is conducted. Each bore hole is drilled to approximately 45 m , with the upper and lower boundaries of mineral deposits being recorded. The bore hole data is as follows:

Borehole	$\mathrm{X}(\mathrm{m})$	$Y(\mathrm{~m})$	Upper Surface (m)	Lower Surface (m)
--10.0	10.0	-28.5	-42.5	
2	750.0	10.0	-27.0	-41.8
3	1250.0	10.0	-26.0	-41.3
4	1990.0	10.0	-24.6	-40.5
5	10.0	750.0	-32.2	-43.4
6	750.0	750.0	-30.8	-42.6
7	1250.0	750.0	-29.8	-42.1
8	1990.0	750.0	-28.3	-41.4
9	10.0	1250.0	-34.7	-44.0
10	750.0	1250.0	-33.2	-43.2
11	1250.0	1250.0	-32.2	-42.7
12	1990.0	1250.0	-30.8	-42.0
13	10.0	1990.0	-38.4	-44.8
14	750.0	1990.0	-37.0	-44.1
15	1250.0	1990.0	-36.0	-43.6
16	1990.0	1990.0	-34.5	-43.9

With the bore hole data collected, the next step is to create a simplified three-dimensional computer model of the site and subsurface mineral deposits. The mineral deposits will be modeled as a single six-sided object. The four vertical sides are simply defined by the boundaries of the site. The upper and lower sides are to be defined by a three-dimensional plane

$$
\begin{equation*}
z(x, y)=a_{o}+a_{1} \cdot x+a_{2} \cdot y \tag{1}
\end{equation*}
$$

where coefficients a_{o}, a_{1}, and a_{2} correspond to minimum values of

$$
\begin{equation*}
S\left(a_{o}, a_{1}, a_{2}\right)=\sum_{i=1}^{N}\left[z_{i}-z\left(x_{i}, y_{i}\right)\right]^{2} \tag{2}
\end{equation*}
$$

Things to do:

1. Show that minimum value of $S\left(a_{o}, a_{1}, a_{2}\right)$ corresponds to the solution of the matrix equations

$$
\left[\begin{array}{rrr}
N & \sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} y_{i} \tag{3}\\
\sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i} \cdot y_{i} \\
\sum_{i=1}^{N} y_{i} & \sum_{i=1}^{N} x_{i} \cdot y_{i} & \sum_{i=1}^{N} y_{i}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
a_{o} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{N} z_{i} \\
\sum_{i=1}^{N} x_{i} \cdot z_{i} \\
\sum_{i=1}^{N} y_{i} \cdot z_{i}
\end{array}\right]
$$

2. Create a comma-separated datafile (e.g., borehole-data.csv) for the geological surface data.
3. Write a Python program to read the borehole csv datafile, and then create a three-dimensional plot of the geological borehole data at the lower and upper surfaces.
4. Set up and solve the matrix equations derived in part 1 for the upper and lower mineral planes. Compute and print the average depth and volume of mineral deposits enclosed within the site.

Note. The least squares solution corresponds to the minimum value of function $S\left(a_{o}, a_{1}, a_{2}\right)$. At the minimum function value, we will have

$$
\begin{equation*}
\frac{\partial S}{\partial a_{o}}=\frac{\partial S}{\partial a_{1}}=\frac{\partial S}{\partial a_{2}}=0 \tag{4}
\end{equation*}
$$

Matrix Equation 3 is simply the three equations 4 written in matrix form. You should find that the equation of the upper surface is close to $z(x, y)=-28.5+x / 500-y / 200$ and the lower surface close is to $z(x, y)=-42.5+x / 1000-y / 850$.

Question 3: 10 points. It is well known that first derivative of $f(x)=\sin (x)$ is $\cos (x)$. Given the double angle formulae,

$$
\begin{equation*}
\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin (a-b)=\sin (a) \cos (b)-\cos (a) \sin (b) \tag{6}
\end{equation*}
$$

write a Python program that will estimate forward and central finite difference approximations. For each approximation, plot the error in the derivative estimate versus h about the point $x=0$. Plots covering the interval $\mathrm{h}=-\pi / 4$ to $\mathrm{h}=\pi / 4$ might be reasonable. Repeat for $\mathrm{x}=\pi / 2$.

Question 4: 10 points. Write a Python program that uses the methods of divided differences and Lagrange interpolation to fit the data set:

x	-1	2	4	5	6
f (x)	2	7	10	3	4

Use the Lagrange interpolation formula to approximate the functional value at $x=3.0$. Create plots of the dataset coordinates and interpolated polynomial curves.

Question 5: 10 points. Consider the integral

$$
\begin{equation*}
I=\int_{0}^{10} 3 x^{2}+4 x^{3}+5 x^{4} d x=111,000 \tag{7}
\end{equation*}
$$

Write a Python program to compute numerical approximations to equation 7 using: (1) the Trapezoid rule, (2) Simpson's rule, and (3) two-point Gauss Quadrature. For cases 1 and 2, use only three data ordinates. Compute and print the absolute and relative errors for each numerical procedure.

Question 6: 10 points. Write a Python program that uses Romberg Integration to show:

$$
\begin{equation*}
\int_{0}^{1}\left[\frac{1+x^{2}}{1+x^{4}}\right] d x=\frac{\pi \cdot \sqrt{2}}{4} \tag{8}
\end{equation*}
$$

Start off by evaluating the function at $0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, and 1 . Compute and print the absolute and relative errors.

