
Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Abstract Classes and Interfaces

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688R, Spring Semester 2023

March 2, 2023

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Overview

1 Quick Review

2 Framework for Component-based Design

3 Abstract Classes

4 Working with Interfaces

5 Farm Worker Source Code

6 Five Applications
Two Factories making Widgets
Parsing and Evaluation of Functions with JEval
Using Interfaces in Spreadsheets
Horstmann’s Simple Graph Editor
Architecture for Block Interconnect System

Mark Austin

Mark Austin

Mark Austin

Mark Austin
Part 3

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Abstract Classes

Abstract classes provide an abstract view of a real-world entity or
concept. They are an ideal mechanism when you want to create
something for objects that are closely related in a hierarchy.

Implementation

An abstract class is a class that is declared abstract. It may or
may not include abstract methods.

You cannot create an object from an abstract class – but they
can be sub-classed.

The subclasses will usually provide implementations for all of
the abstract methods in its parent class.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Programming to an Interface

Motivation

Interfaces are the mechanism by which components describe
what they do, but not how they do it.

Interface abstractions are appropriate for collections of objects
that provide common functionality, but are otherwise
unrelated.

Implementation

An interface defines a set of methods without providing an
implementation for them.

An interface does not have a constructor – therefore, it
cannot be instantiated as a concrete object.

Any concrete class the implements the interface must provide
implementations for all of the methods listed in the interface.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Five Applications

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 1. Two Factories making Widgets

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 1. Two Factories making Widgets

Points to Note:

The client works with an abstract model of a factory and two
types of widgets, A and B, but only knows about their
interfaces.

The interfaces separate the client from details of how A and B
are manufactured.

Thus, a factory can change and the client will be completely
unaware.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Parsing/Evaluation of Functions with JEval

Purpose:

JEval parses and evaluates dynamic and static expressions at
run time.

As such, it is a great solution for filtering streams of data at
runtime.

Features:

Supports mathematical, Boolean, String and functional
expressions.

Supports all major mathematical and Boolean operators.

Supports custom functions.

39 Math and String functions built in and ready to use.

Supports variables and nested functions.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Examples: Relational and Arithmetic Expressions

String sExp = ”(2 < 3) || ((1 == 1) && (3 < 3))”;

String sExp = ”1 + 2 + 3*4 + 10.0/2.5”;

String sExp = ”1 + abs(-1)”;

String sExp = ”atan2(atan2(1, 1), 1)”;

String sExp = ”acos(-1.0)”;

Examples: Working with Strings

String sExp = ”toLowerCase(’Hello World!’)”;

String sExp = ”toUpperCase(trim(trim(’ a b c ’)))”;

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Examples: Working with variables

String sEexp = "#{a} >= 2 && #{b} >= 5 && #{c} >= 8";

Long a = (Long) row.get(0);
evaluator.putVariable("a", a.toString());
Long b = (Long) row.get(1);
evaluator.putVariable("b", a.toString());
Long c = (Long) row.get(2);
evaluator.putVariable("c", a.toString());

... etc ...

String result01 = evaluator.evaluate(sExp);

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Builtin String Functions

CharAt.java CompareTo.java Concat.java
EndsWith.java Equals.java Eval.java
IndexOf.java LastIndexOf.java Length.java
Replace.java StartsWith.java Substring.java
ToLowerCase.java ToUpperCase.java Trim.java

Builtin Math Functions

Abs.java Acos.java Asin.java
Atan.java Atan2.java Ceil.java
Cos.java Exp.java Floor.java
Log.java Max.java Min.java
Pow.java Random.java Rint.java
Round.java Sin.java Sqrt.java
Tan.java ToDegrees.java
ToRadians.java

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Builtin Operator Functions:

AbstractOperator.java GreaterThanOrEqualOperator.java
AdditionOperator.java LessThanOperator.java
BooleanAndOperator.java LessThanOrEqualOperator.java
BooleanNotOperator.java ModulusOperator.java
BooleanOrOperator.java MultiplicationOperator.java
ClosedParenthesesOperator.java NotEqualOperator.java
DivisionOperator.java OpenParenthesesOperator.java
EqualOperator.java Operator.java
GreaterThanOperator.java SubtractionOperator.java

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Syntax and Semantics

String sEexp = ”#{ a } >= 2 && #{ b } >= 6 && #{ c } >= 8”;

Variable a Variable b

String sEexp = ” atan2 (atan2 (1, 1), 1)”;

Builtin Function

Greater than or equal to Operator

Logical And Operator

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Function Interface

public interface Function {

// Return name of the function ...

public String getName();

// Execute the function for a specified argument ...

public FunctionResult execute(Evaluator evaluator, String arguments) ...
}

Using the Function Interface

public class Acos implements Function { ... }
public class Max implements Function { ... }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Operator Interface

public interface Operator {
// Evaluates two double operands.
public abstract double evaluate(double leftOperand,

double rightOperand);

// Evaluate one double operand ...
public abstract double evaluate(final double operand);

}

Using the Operator Interface

public abstract class AbstractOperator implements Operator { ... }

public class DivisionOperator extends AbstractOperator { ... }
public class BooleanAndOperator extends AbstractOperator { ... }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Application 3: Graphical Interface

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Modeling a Spreadsheet Cell

public class Cell {
private String expression; // expression in cell
private Set<String> children; // list of cells which reference this
private Set<String> parent; // list of cells this references
private Object value; // Value of displayed cell ...

// Class constructor

public Cell() {
children = new TreeSet<String>();
parent = new TreeSet<String>();

}

..... etc
}

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Basic Cell Model

String: expression

Object: value

Network of Dependencies among Cells

children cells

parent cells
C

A

B

D

E F

The parents of Cell A are cells B and C; the children are cells
E and F.

No loops in the graph of dependency relationships.

Topological sort ! update cell values in one pass.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Basic Spreadsheet Interface

public interface SpreadsheetInterface {
public static final String LOOP = "#LOOP"; // loop Error Value
public int getColumnCount(); // Number of columns
public int getRowCount(); // Number of rows

// Set and get the cell expression at prescribed location...

public void setExpression(String location, String expression);
public String getExpression(String location);

// Returns the expression stored at the cell at location.

public Object getValue(String location);

// Returns the value associated with the computed stored expression.

public void recompute();
}

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Extended Spreadsheet Interface

public interface IterableSpreadsheetInterface extends SpreadsheetInterface {

// Set/get number of times to compute the value stored in each loop cell.

public void setMaximumIterations(int maxIterationCount);
public int getMaximumIterations();

// Set/get the maximum change in value between successive loop iterations...

public void setMaximumChange(double epsilon);
public double getMaximumChange();

// Recompute value of all cells ...

public void recomputeWithIteration();
}

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Creating the Spreadsheet Model

public class Spreadsheet implements SpreadsheetInterface {
private int numRows, numColumns; // no. of rows and cols
private Map<String, Cell> cells; // collection of all cells
private String lastCellLocation; // last cell accessed

// Set expression of the cell at location ...

public void setExpression(String location, String expression) { ... }

// Recompute value of all cells

public void recompute() { ... }

// Use DFS to check for loops in the relationships among cells ...

private void checkLOOP(String cellLocation) { ... }
}

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Creating a Spreadsheet Object

int columns = Integer.parseInt(args[0]);
int rows = Integer.parseInt(args[1]);

SpreadsheetInterface spreadsheet = new Spreadsheet(rows, columns);

javax.swing.SwingUtilities.invokeLater(new Runnable() {
public void run() {

new SpreadsheetGUI("Spreadsheet GUI", spreadsheet);
}

});

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 4. Horstmann’s Simple Graph Editor

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 4. Horstmann’s Simple Graph Editor

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Problem Statement.

Hierarchy and network abstractions in a two-layer block
component/container model.

Component

A

B C

Level 2

Level 1

Relations

Port

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Organizational Constraints:

Within a hierarchy, each level is logically connected to the
levels above and below it.

A port cannot be contained by more than one entity. Links
cannot cross levels in the hierarchy,

Port-to-port communications must have compatible data
types (e.g., signal, energy).

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Actor-Oriented Models and Design (adapted from Lee, 2003)

Actor-Oriented DesignObject-Oriented Design

Class Name

Data

Methods

Actor Name

Data (state)

Parameters

Ports
Call Return

Input data

Output data

Object-Oriented Modeling and Design

Components interact primarily through method calls (transfer
of control).

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Actor-Oriented Modeling and Design

Components interact via some sort of messaging scheme that
is typically concurrent.

Constraints in the flow of control define the model of
computation.

Rules define what an actor does (e.g. perform external
communication) and when.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Typical Ptolemy Application (see Brooks et al., 2008)

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Class diagram for modeling of system architectures in Ptolemy.

Manager

Entity

ComponentEntity

AtomicActor

CompositeEntity

Executable

Actor

CompositeActor

ComponentPort

NamedObj

ComponentRelation

RelationPort

container

container

¡¡interface¿¿

¡¡interface¿¿

Workspace
0..n

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

From Individual Components to Networks of Components

Networks of components form graphs:

Graph. A graph is an object that contains nodes and edges.
Edges are accessed through the nodes that they connect.

Node. A node is an object that is contained by a graph and
is connected to other nodes by edges.

Edge. An edge is an object that is contained by a graph and
connects nodes.

An edge has a “head” and a “tail” as if it was directed, but
also has a method isDirected() that says whether or not the
edge should be treated as directed.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Port. A Port is the interface of an Entity to any number of
Relations. The role of a port is to aggregate a set of links to
relations.

Thus, for example, to represent a directed graph, entities can
be created with two ports, one for incoming arcs and one for
outgoing arcs.

Relation. A Relation links ports, and therefore the entities
that contain them.

	Quick Review
	Framework for Component-based Design
	Abstract Classes
	Working with Interfaces
	Farm Worker Source Code
	Five Applications
	Two Factories making Widgets
	Parsing and Evaluation of Functions with JEval
	Using Interfaces in Spreadsheets
	Horstmann's Simple Graph Editor
	Architecture for Block Interconnect System

