
Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Abstract Classes and Interfaces

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688R, Spring Semester 2023

March 2, 2023

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Overview

1 Quick Review

2 Framework for Component-based Design

3 Abstract Classes

4 Working with Interfaces

5 Farm Worker Source Code

6 Five Applications
Two Factories making Widgets
Parsing and Evaluation of Functions with JEval
Using Interfaces in Spreadsheets
Horstmann’s Simple Graph Editor
Architecture for Block Interconnect System

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Objects and Classes

Motivating Ideas

Simplify the way we view the real world,

Provide mechanisms for assembly of complex systems.

Provide mechanisms for handling systems that are subject to
change.

Organizational and Efficiency Mechanisms

Interface

In
cr

ea
si

n
g

 s
p

ec
ia

li
za

ti
o

n

Input from
surrounding environment

General
concepts

Network of Communicating Objects Problem Domain Concepts organized
into a Class Hierarchy.

Messages

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Object-based Software

Basic Assumptions

Everything is an object.

New kinds of objects can be created by making a package
containing other existing objects.

Objects have relationships with other types of objects.

Objects have type.

Object communicate via message passing – all objects of the
same type can receive and send the same kinds of messages.

Objects can have executable behavior.

Objects can be design to respond to occurrences and events.

Systems will be created through a composition (assembly) of
objects.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Reiew: Objects and Classes

Working with Objects and Classes:

Collections of objects share similar traits (e.g., data, structure,
behavior).

Collections of objects will form relationships with other
collections of objects.

Definition of a Class

A class is a specification (or blueprint) of an object’s structure and
behavior.

Definition of an Object

An object is an instance of a class.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Objects and Classes

From Collections of Objects to Classes:

Generation of Objects from Class Specifications:

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Objects and Classes

Key Design Tasks

Identify objects and their attributes and functions,

Establish relationships among the objects,

Establish the interfaces for each object,

Implement and test the individual objects,

Assemble and test the system.

Implicit Assumptions → Connection to Data Mining

Manual synthesis of the object model is realistic for systems
that have a modest number of elements and relationships.

As the dimensionality of the problem increases some form of
automation will be needed to discover elements and
relationships.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Framework for

Component-based Design

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Framework for Component-based Design

Development for Reuse-Focused Design

W
at

er
fa

ll
de

ve
lo

pm
en

t

Requirements

Design

Library of Components

Iterations of analysis
and design.

Implementation of components.

Specification

time

New Design

Composition of components.

ti
m

e

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Framework for Component-based Design

Simplified View of a Component Technology Supply Chain

Specifications Run-time EnvironmentComponent Library

Archiecture
Implementation

Specification
Component

Step 4

Specification

Composition Environment

Step 1 Step 2 Step 3

Implementation Requires

Techniques for describing the overall system architecture.

Definition of pieces in a way that facilitates assembly with
other pieces (e.g., lego blocks).

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Framework for Component-based Design

Simple Component-based Software System

Component C’s

Component A

– is written to work with is an implementation of ...

.... are written and delivered independently

... external environment ...

specification
Component C’s

specification
Component B’s

implementation
Component B’s

implementation

Components B and C are defined via their specifications/interfaces.
Component A employs the services of components B and C.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

From Component- to Interface-based Design

During the early stages of design where the focus is on
understanding the roles and responsibilities of components within a
domain, ...

Interface-based Design

Interfaces are a specification for what an implementation should
look like.

Benefits:

Experience indicates that a focus on interfaces as a key design
abstraction leads to designs with enhanced flexibility.

Interface-based design procedures are particularly important
for the design and managed evolution of systems-of-systems –
e.g., cities.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Abstract Classes

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Abstract Classes

Abstract classes provide an abstract view of a real-world entity or
concept. They are an ideal mechanism when you want to create
something for objects that are closely related in a hierarchy.

Implementation

An abstract class is a class that is declared abstract. It may or
may not include abstract methods.

You cannot create an object from an abstract class – but they
can be sub-classed.

The subclasses will usually provide implementations for all of
the abstract methods in its parent class.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Example 1. Efficient Modeling of Shapes

A shape is a

High-level geometric concept that can be specialized into
specific and well-known two-dimensional geometric entities.

Examples: ovals, circles, rectangles, triangles, octogons, and
so forth.

Capturing Shape Data

There are sets of data values (e.g., vertex coordinates) and
computable properties (e.g., area and perimeter) that are
common to all shapes.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Capturing Shape Data

(x,y) location

x

(x,y) locationy
width

he
ig

ht

Computable properties: all shapes have an area, perimeter, an
(x,y) centroid and a position or (x,y) location.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Organizing Shapes into a Natural Hierarchy

<< abstract >>

Shape

Circle

Oval

Square

Rectangle

QuadrilateralTriangle

Squares are a specific type of rectangle, which, in turn, are a
specific type of quadralateral. Circles are a special type of oval.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Class Diagram for TestShape Program

public double perimeter();

public abstract double perimeter();
public abstract double area();
public abstract String toString();

Location c;

<<abstract>>
Shape

TestShape

Location

double x, y;

Circle Rectangle

double dRadius; double dSide1, dSide2;

public String toString();
public double area();
public double perimeter();

public String toString();
public double area();

All extensions of Shape will need to provide implementations for
the methods area(), perimeter() and toString().

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Implementation Efficiency and Convenience

Instead of solving problems with algorithms that work with
specific object types, algorithms can be developed for shapes.

1 Shape s[] = new Shape [3] ;

2
3 s[0] = new Rectangle(3.0, 3.0, 2.0, 2.0);

4 s[1] = new Circle(1.0, 2.0, 2.0);

5 s[2] = new Rectangle(2.5, 2.5, 2.0, 2.0);

The JVM will figure out the appropriate object type at run
time.

The abstract shape class reduces the number of dependencies
in the program architecture, making it ammenable to change
– trivial matter to add Triangles to the class hierarchy.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Walking Along an Array of Shapes
1 System.out.println("---------------------");

2 for (int ii = 1; ii <= s.length; ii = ii + 1) {

3 System.out.println(s[ii -1]. toString ());

4 System.out.println("Perimeter = " + s[ii -1]. perimeter ());

5 System.out.println("---------------------");

6 }

Program Output:

Rectangle : Side1 = 3.0 Side2 = 3.0

Perimeter = 12.0

Circle : Radius = 1.0 [x,y] = [2.0,2.0]

Perimeter = 6.283185307179586

Rectangle : Side1 = 2.5 Side2 = 2.5

Perimeter = 10.0

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Example 2. Class Diagram for Operation of a Retail Catalog

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Abstract Classes

Points to Note:

The central class is the Order.

Associated with each order are the Customer making the
purchase and the Payment.

Payments is an abstract generalization for: Cash, Check, or
Credit.

The order contains OrderDetails (line items), each with its
associated Item.

Also note:

Names of abstract classes, such as Payment, are in italics.

Relationships between classes are the connecting links.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Interfaces

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Programming to an Interface

Motivation

Interfaces are the mechanism by which components describe
what they do, but not how they do it.

Interface abstractions are appropriate for collections of objects
that provide common functionality, but are otherwise
unrelated.

Implementation

An interface defines a set of methods without providing an
implementation for them.

An interface does not have a constructor – therefore, it
cannot be instantiated as a concrete object.

Any concrete class the implements the interface must provide
implementations for all of the methods listed in the interface.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Example 1. Software Interface for Farm Workers

Working

Person

Farmer

implements

implements

Animal

Dog

WorkingHorse

Horse

extends

extends extends

extends

FarmWorkers

*

uses1

implements

WorkingDog

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Example 1. Software Interface for Farm Workers

Workers is simply an abstract class that defines an interface, i.e.,

public interface Working {

public abstract void hours ();

}

In Java, the interface is implemented by using the keyword
implements in the class declaration, e.g.,

public class Farmer implements Working {

This declaration sets up a contract that guarantees the Farmer
class will provide a concrete implementation for the method
hours().

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Important Point. Instead of writing code that looks like:

Farmer mac = new Farmer (...);

WorkingDog max = new WorkingDog (...);

WorkingHorse silver = new WorkingHorse (...);

We can treat this group of objects as a set of Working entities, i.e.,

Working mac = new Farmer (...);

Working max = new WorkingDog (...);

Working silver = new WorkingHorse (...);

Methods and algorithms can be defined in terms of all Working
entities, independent of the lower-level details of implementation.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Programming to an Interface

Motivation and Benefits

In Java, an interface represents what a class can do, but not how it
will do it, which is the actual implementation.

Two key benefits:

Information hiding. As long as the objects conform to the
interface specification, then there is no need for the clients to
know the exact type of the objects they use.

Improved flexibity. System behavior can be changed by
swapping the object used with another implementing the same
interface.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Programming to an Interface

Combining Abstract Classes and Interfaces

method3()

B
¡¡ Interface ¿¿

method3()
method2()
method1()

method3()
method2()
method1()

A
¡¡ abstract ¿¿

implements

DC E
method1()
method2()
method3()

method1()
method2()

Now we can write:

Creating objects of type C,D and E. Executing methods ...

===================================== =====================

B c1 = new C (...); c1.method1();

B d1 = new D (...); d1.method2();

B e1 = new E (...); e1.method3();

===================================== =====================

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Farm Worker

Source Code

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: Animal.java

1 public class Animal {

2 String name;

3
4 public Animal(String name) { this.name = name; }

5 public String toString () { return this.name; }

6 }

Source Code: Dog.java

1 public class Dog extends Animal {

2 public Dog(String name) { this.name = name; }

3
4 public String toString (){

5 return "*** In Dog: " + this.name;

6 }

7 }

Source Code: Horse.java

1 public class Horse extends Animal {

2 public Horse(String name) { this.name = name; }

3
4 public String toString () {

5 return "*** In Horse: " + this.name;

6 }

7 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: WorkingDog.java
1 public class WorkingDog extends Dog implements Working {

2 public WorkingDog(String name) {

3 this.name = name;

4 }

5
6 public void hours () {

7 System.out.println ("*** Working dog hours -- working weekends !!");

8 }

9 }

Source Code: WorkingHorse.java
1 public class WorkingHorse extends Horse implements Working {

2 public WorkingHorse(String name) {

3 this.name = name;

4 }

5
6 public void hours () {

7 System.out.println ("*** Working horse hours -- also working weekends !!");

8 }

9 }

Source Code: Working.java (Interface)
1 public interface Working {

2 public abstract void hours ();

3 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: Person.java

1 /*

2 * ===

3 * Person.java. Create person objects and compute their age ...

4 *

5 * Written By: Mark Austin December 2006

6 * ===

7 */

8
9 import java.util.Calendar;

10 import java.util.Date;

11 import java.util.GregorianCalendar;

12
13 public class Person {

14 protected String sName;

15 protected Date birthdate;

16
17 // ==

18 // Set/get name of a person

19 // ==

20
21 public void setName(String sName) {

22 this.sName = sName;

23 }

24
25 public String getName () {

26 return sName;

27 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: Person.java (continued)

28
29 // ==

30 // Compute age of a person ...

31 // ==

32
33 public int getAge () {

34 ... details removed ...

35 }

36
37 public void setBirthDate(Date aBirthDate) {

38 this.birthdate = aBirthDate;

39 }

40
41 public void setBirthDate(int iYear , int iMonth , int iDay) {

42 Calendar cal = Calendar.getInstance ();

43 cal.set(iYear , iMonth , iDay);

44 this.birthdate = cal.getTime ();

45 }

46
47 public Date getBirthDate () {

48 return birthdate;

49 }

50
51 // ==

52 // Create a String description of a persons cridentials

53 // ==

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: Person.java (continued)
54
55 public String toString () {

56 String s = "Name: " + getName () + "\n";

57 s += " Age: " + getAge () + "\n";

58 return s;

59 }

60 }

Source Code: Farmer.java
1 public class Farmer extends Person implements Working {

2 public Farmer () {

3 super ();

4 }

5
6 public Farmer(String name) {

7 super ();

8 this.sName = name;

9 }

10
11 public String toString () {

12 return "*** In Farmer: " + this.sName;

13 }

14
15 public void hours () {

16 System.out.println ("*** Working farmer -- working 7 days a week!!");

17 }

18 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: FarmerWorkers.java (Test Program)

1 public class FarmWorkers {

2 public static void main (String args[]) {

3
4 // Create objects for farmers

5
6 Working mac = new Farmer("Old MacDonald");

7 System.out.println(mac.toString ());

8 mac.hours ();

9
10 // Create objects for working farm animals ..

11
12 Working max = new WorkingDog("Max");

13 System.out.println(max.toString ());

14 max.hours ();

15
16 Working silver = new WorkingHorse("Silver");

17 System.out.println(silver.toString ());

18 silver.hours ();

19 }

20 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Test Program Output:

*** In Farmer: Old MacDonald

*** Working farmer -- working 7 days a week!!

*** In Dog: Max

*** Working dog hours -- working weekends!!

*** In Horse: Silver

*** Working horse hours -- also working weekends!!

You might wonder:

Can I use this approach to call methods that are within a
participating class (e.g., WorkingHorse), but not defined in the
interface?

No! You can only call methods defined in the interface.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Five Applications

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 1. Two Factories making Widgets

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 1. Two Factories making Widgets

Points to Note:

The client works with an abstract model of a factory and two
types of widgets, A and B, but only knows about their
interfaces.

The interfaces separate the client from details of how A and B
are manufactured.

Thus, a factory can change and the client will be completely
unaware.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Parsing/Evaluation of Functions with JEval

Purpose:

JEval parses and evaluates dynamic and static expressions at
run time.

As such, it is a great solution for filtering streams of data at
runtime.

Features:

Supports mathematical, Boolean, String and functional
expressions.

Supports all major mathematical and Boolean operators.

Supports custom functions.

39 Math and String functions built in and ready to use.

Supports variables and nested functions.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Examples: Relational and Arithmetic Expressions

String sExp = ”(2 < 3) || ((1 == 1) && (3 < 3))”;

String sExp = ”1 + 2 + 3*4 + 10.0/2.5”;

String sExp = ”1 + abs(-1)”;

String sExp = ”atan2(atan2(1, 1), 1)”;

String sExp = ”acos(-1.0)”;

Examples: Working with Strings

String sExp = ”toLowerCase(’Hello World!’)”;

String sExp = ”toUpperCase(trim(trim(’ a b c ’)))”;

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Examples: Working with variables

String sEexp = "#{a} >= 2 && #{b} >= 5 && #{c} >= 8";

Long a = (Long) row.get(0);

evaluator.putVariable("a", a.toString());

Long b = (Long) row.get(1);

evaluator.putVariable("b", a.toString());

Long c = (Long) row.get(2);

evaluator.putVariable("c", a.toString());

... etc ...

String result01 = evaluator.evaluate(sExp);

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Builtin String Functions

CharAt.java CompareTo.java Concat.java

EndsWith.java Equals.java Eval.java

IndexOf.java LastIndexOf.java Length.java

Replace.java StartsWith.java Substring.java

ToLowerCase.java ToUpperCase.java Trim.java

Builtin Math Functions

Abs.java Acos.java Asin.java

Atan.java Atan2.java Ceil.java

Cos.java Exp.java Floor.java

Log.java Max.java Min.java

Pow.java Random.java Rint.java

Round.java Sin.java Sqrt.java

Tan.java ToDegrees.java

ToRadians.java

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Builtin Operator Functions:

AbstractOperator.java GreaterThanOrEqualOperator.java

AdditionOperator.java LessThanOperator.java

BooleanAndOperator.java LessThanOrEqualOperator.java

BooleanNotOperator.java ModulusOperator.java

BooleanOrOperator.java MultiplicationOperator.java

ClosedParenthesesOperator.java NotEqualOperator.java

DivisionOperator.java OpenParenthesesOperator.java

EqualOperator.java Operator.java

GreaterThanOperator.java SubtractionOperator.java

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Syntax and Semantics

String sEexp = ”#{ a } >= 2 && #{ b } >= 6 && #{ c } >= 8”;

Variable a Variable b

String sEexp = ” atan2 (atan2 (1, 1), 1)”;

Builtin Function

Greater than or equal to Operator

Logical And Operator

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Function Interface

public interface Function {

// Return name of the function ...

public String getName();

// Execute the function for a specified argument ...

public FunctionResult execute(Evaluator evaluator, String arguments) ...

}

Using the Function Interface

public class Acos implements Function { ... }

public class Max implements Function { ... }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 2. Evaluation of Functions with JEval

Operator Interface

public interface Operator {

// Evaluates two double operands.

public abstract double evaluate(double leftOperand,

double rightOperand);

// Evaluate one double operand ...

public abstract double evaluate(final double operand);

}

Using the Operator Interface

public abstract class AbstractOperator implements Operator { ... }

public class DivisionOperator extends AbstractOperator { ... }

public class BooleanAndOperator extends AbstractOperator { ... }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Application 3: Graphical Interface

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Modeling a Spreadsheet Cell

public class Cell {

private String expression; // expression in cell

private Set<String> children; // list of cells which reference this

private Set<String> parent; // list of cells this references

private Object value; // Value of displayed cell ...

// Class constructor

public Cell() {

children = new TreeSet<String>();

parent = new TreeSet<String>();

}

..... etc

}

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Basic Cell Model

String: expression

Object: value

Network of Dependencies among Cells

children cells

parent cells
C

A

B

D

E F

The parents of Cell A are cells B and C; the children are cells
E and F.

No loops in the graph of dependency relationships.

Topological sort → update cell values in one pass.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Basic Spreadsheet Interface

public interface SpreadsheetInterface {

public static final String LOOP = "#LOOP"; // loop Error Value

public int getColumnCount(); // Number of columns

public int getRowCount(); // Number of rows

// Set and get the cell expression at prescribed location...

public void setExpression(String location, String expression);

public String getExpression(String location);

// Returns the expression stored at the cell at location.

public Object getValue(String location);

// Returns the value associated with the computed stored expression.

public void recompute();

}

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Extended Spreadsheet Interface

public interface IterableSpreadsheetInterface extends SpreadsheetInterface {

// Set/get number of times to compute the value stored in each loop cell.

public void setMaximumIterations(int maxIterationCount);

public int getMaximumIterations();

// Set/get the maximum change in value between successive loop iterations...

public void setMaximumChange(double epsilon);

public double getMaximumChange();

// Recompute value of all cells ...

public void recomputeWithIteration();

}

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Creating the Spreadsheet Model

public class Spreadsheet implements SpreadsheetInterface {

private int numRows, numColumns; // no. of rows and cols

private Map<String, Cell> cells; // collection of all cells

private String lastCellLocation; // last cell accessed

// Set expression of the cell at location ...

public void setExpression(String location, String expression) { ... }

// Recompute value of all cells

public void recompute() { ... }

// Use DFS to check for loops in the relationships among cells ...

private void checkLOOP(String cellLocation) { ... }

}

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 3. Using Interfaces in Spreadsheets

Creating a Spreadsheet Object

int columns = Integer.parseInt(args[0]);

int rows = Integer.parseInt(args[1]);

SpreadsheetInterface spreadsheet = new Spreadsheet(rows, columns);

javax.swing.SwingUtilities.invokeLater(new Runnable() {

public void run() {

new SpreadsheetGUI("Spreadsheet GUI", spreadsheet);

}

});

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 4. Horstmann’s Simple Graph Editor

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 4. Horstmann’s Simple Graph Editor

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Problem Statement.

Hierarchy and network abstractions in a two-layer block
component/container model.

Component

A

B C

Level 2

Level 1

Relations

Port

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Organizational Constraints:

Within a hierarchy, each level is logically connected to the
levels above and below it.

A port cannot be contained by more than one entity. Links
cannot cross levels in the hierarchy,

Port-to-port communications must have compatible data
types (e.g., signal, energy).

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Actor-Oriented Models and Design (adapted from Lee, 2003)

Actor-Oriented DesignObject-Oriented Design

Class Name

Data

Methods

Actor Name

Data (state)

Parameters

Ports
Call Return

Input data

Output data

Object-Oriented Modeling and Design

Components interact primarily through method calls (transfer
of control).

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Actor-Oriented Modeling and Design

Components interact via some sort of messaging scheme that
is typically concurrent.

Constraints in the flow of control define the model of
computation.

Rules define what an actor does (e.g. perform external
communication) and when.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Typical Ptolemy Application (see Brooks et al., 2008)

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Class diagram for modeling of system architectures in Ptolemy.

Manager

Entity

ComponentEntity

AtomicActor

CompositeEntity

Executable

Actor

CompositeActor

ComponentPort

NamedObj

ComponentRelation

RelationPort

container

container

¡¡interface¿¿

¡¡interface¿¿

Workspace
0..n

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

From Individual Components to Networks of Components

Networks of components form graphs:

Graph. A graph is an object that contains nodes and edges.
Edges are accessed through the nodes that they connect.

Node. A node is an object that is contained by a graph and
is connected to other nodes by edges.

Edge. An edge is an object that is contained by a graph and
connects nodes.

An edge has a “head” and a “tail” as if it was directed, but
also has a method isDirected() that says whether or not the
edge should be treated as directed.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Application 5. Architecture for Interconnect System

Port. A Port is the interface of an Entity to any number of
Relations. The role of a port is to aggregate a set of links to
relations.

Thus, for example, to represent a directed graph, entities can
be created with two ports, one for incoming arcs and one for
outgoing arcs.

Relation. A Relation links ports, and therefore the entities
that contain them.

	Quick Review
	Framework for Component-based Design
	Abstract Classes
	Working with Interfaces
	Farm Worker Source Code
	Five Applications
	Two Factories making Widgets
	Parsing and Evaluation of Functions with JEval
	Using Interfaces in Spreadsheets
	Horstmann's Simple Graph Editor
	Architecture for Block Interconnect System

