Modern Civil Infrastructure Systems	Near-Term Challenges (2020-2060)	Infrastructure Protection and Recovery	Transition to Infor

Introduction to Civil Information Systems

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 688R, Spring Semester 2023

January 27, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Modern Civil Infrastructure Systems	Near-Term Challenges (2020-2060)	Infrastructure Protection and Recovery	Transition to Infor
			00000

Transition to

Information Era

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Post- Industrial Revolution (Mid-1900s)

New types of systems – planes, trains and automobiles – rely on human involvement as a means for sensing and controlling behavior, e.g.,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Driving a car,
- Manual collection of road tolls,
- Traffic controllers at an airport,
- Manual focus of a camera.

Systems work, but:

- Humans are slow.
- Humans make mistakes.
- They also easily tire.

Transition to Information Era

Since 1990 we have been in an Information Era

Characteristics	Stage 2	Stage 3
Characteristics	Electrical Era	Information Era
Onset in the U.S.	Late 1800s.	Late 1900s.
Economic Focus	Manufacturing	Services
Technologies	ElectroMechanical	Information
Product Lifecycle	Years	Months
Living Standard	Quality of Goods	Quality of Life
Geographical Impact	Regional/National	Global

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Design of Information-Age Systems

Premise of Information-Age System Design:

• Advances in computer software, sensing, and wireless networking technologies can work together to expand the functionality and performance of systems.

Trend toward Automation:

• New types of systems where human involvement for management of system functionality is replaced (or partially replaced) by software automation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Civil Engineering Applications:

- Automated road toll collection (Rt. 200).
- Automated baggage handling systems at airports.

Transition to Information Era

Metrics of Good Engineering Design:

- A good engineering design works correctly, has good performance, and is economical.
- Functionality and performance are resilient to uncertainties.
- System can be easily upgraded to take advantage of new technologies.

Metrics of Good Systems Operation:

A well-run system has "situational awareness" and handles unexpected events:

• Sense the system state and surrounding environment,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Look ahead and anticipate events, and
- Take action to control system behavior.

Features of Modern Computing

Key Question: How can we use modern computing technologies to improve Civil Engineering Systems?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Modern Civil Infrastructure Systems Near-Term Challenges (2020-2060) Infrastructure Protection and Recovery Transition to Info

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Man and Machine (Traditional View)

Man	Machine
 Good at formulating solutions to problems. 	 Manipulates Os and 1s. Very specific abilities.
 Can work with incomplete data and information. Creative. 	 Requires precise decriptions of problem solving procedures.
 Reasons logically, but very slow. Performance is static. Humans break the rules. 	 Dumb, but very fast. Performance doubles every 18-24 months. Machines will follow the
	rules.

Sensible Problem Solving Strategy

Let engineers and computers play to their strengths:

- Accelerates the solution procedure.
- Enables the analysis of problems having size and complexity beyond manual examination.
- Adds value in areas that will lead to long-term economic growth.

Getting things to work We need to:

- Describe to the computer solution procedures that are completely unambiguous.
- Look at data, organization and manipulation of data, and formal languages.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modern Civil Infrastructure Systems Near-Term Challenges (2020-2060) Infrastructure Protection and Recovery Transition to Info

Expanding Expectations of Computing

Pathway to Improved Programmer Productivity

Increasing System Complexity: Software programmers need to find ways to solve problems at high levels of abstraction.

Evolution of Computer Languages

Computer Languages. Formal description – precise grammar – for how a problem can be solved.

Evolution. It takes about a decade for significant advances in computing to occur:

Capability	1970s	1980s	1990s
Users	Specialists	Individuals	Groups
Usage	Numerical	Desktop com-	E-mail, web,
	computations	puting	file transfer.
Interaction	Type at key-	Screen and	audio/voice.
	board	mouse	
Languages	Fortran, C	MATLAB	HTML, Java

Popular Computer Languages

Tend to be designed for a specific set of purposes:

- FORTRAN (1950s today). Stands for formula translation.
- C (early 1970s today). New operating systems.
- C++ (early 1970s today). Object-oriented version of C.
- MATLAB (mid 1980s today). Stands for matrix laboratory.
- Python (1990s today). A great scripting language.
- HTML (1990s today). Layout of web-page content.
- Java (1994 today). Object-Oriented language for network-based computing.
- XML (late 1990s today). Description of data on the Web.

Post- 2000 Era

Imagine: What if COVID-19 had arrived in 2000?

- No iPhone, No iPad, No iTunes.
- No Facebook, No Instagram, No WhatsApp.
- No Google Maps, No Google Streetview.
- No Dropbox, No Zoom.

Recent Advances in Technology:

- Average internet speeds: In 2000, 0.07 Mbs; In 2009, 5-7 Mbs; In 2020, 100-200 Mbs; 5G, 1000-2000 Mbs.
- Cloud-based data storage and computational services (AWS).
- New languages: Swift \rightarrow App development on iPhone/iPad.
- Many new types of sensors and methods of data collection.

Modern Civil Infrastructure Systems	Near-Term Challenges (2020-2060)	Infrastructure Protection and Recovery	Transition to Info

Post- 2000 Era

New Computing Infrastructure \rightarrow New Architectures, Languages, ...

Capability	2000-present	2020-2030	
Users	Groups of people, sensors	Integration of the cyber	
	and computers.	and physical worlds.	
Usage	Mobile computing. Con-	Embedded real-time con-	
	trol of physical systems.	trol of physical systems.	
	Social networking.		
Interaction	Touch, multi-touch,		
	proximity.		
Languages	XML, RDF, OWL.	New languages to sup-	
		port time-precise compu-	
		tations.	

Post-2010 Era \rightarrow Emergence of AI

State-of-the-Art Implementation (2020, Google, Siemens, IBM)

• Al and ML will be deeply embedded in new software and algorithms.

Artificial Intelligence:

• Knowledge representation and reasoning with ontologies and rules. Semantic graphs. Executable event-based processing.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Machine Learning:

- Modern neural networks. Input-to-output prediction.
- Data mining.
- Identify objects, events, and anomalies.
- Learn structure and sequence. Remember stuff.

Post-2010 Era \rightarrow Generative AI

Variational AutoEncoders (Generative Models)

Modern Civil Infrastructure Systems Near-Term Challenges (2020-2060) Infrastructure Protection and Recovery Transition to Info

Post-2010 Era \rightarrow AI Generated Architecture

Convergence: Engineering-Architecture-AI

Al-generated art ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modern Civil Infrastructure Systems	Near-Term Challenges (2020-2060)	Infrastructure Protection and Recovery	Transition to Info

References

- Array of Things: See https://arrayofthings.github.io
- Austin M.A., Delgoshaei P., Coelho M. and Heidarinejad M., Architecting Smart City Digital Twins: Combined Semantic Model and Machine Learning Approach, Journal of Management in Engineering, ASCE, Volume 36, Issue 4, July, 2020.
- Bello J.P. et al., SONYC: A System for Monitoring, Analyzing, and Mitigating Urban Noise Pollution, Communications of the ACM, 62, 2, 2019, pp. 68-77.
- Coelho M., and Browning L.S., INL Digital Engineering: Model-Based Design, Digital Threads, Digital Twins, Artificial Intelligence, and Extended Reality for Complex Energy Systems, INL/CON-22-69247, Idaho National Laboratory, Idaho Falls, Idaho 83415, September, 2022.
- Leveson N.G., A New Approach to Software Systems Safety Engineering, System Safety Engineering: Back to the Future, MIT, 2006.

 Tien J.M., Toward a Decision Informatics Paradigm: A Real-Time Information-Based Approach, to Decision Making, IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews, Vol. 33, No. 1, February, 2003.