
Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Java Tutorial: Working with Objects and Classes

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688R, Spring Semester 2023

March 5, 2023

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Overview

1 Working with Objects

2 Encapsulation and Data Hiding

3 Relationships Among Classes

4 Association Relationships

5 Inheritance Mechanisms

6 Composition of Object Models

7 Applications

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Object-based Software

Basic Assumptions:

Everything is an object.

New kinds of objects can be created by making a package
containing other existing objects.

Objects have relationships for other types of objects.

Objects have type.

Object communicate via message passing – all objects of the
same type can receive and send the same kinds of messages.

Objects can have executable behavior.

Objects can be design to respond to occurrences and events.

Systems will be created through a composition (assembly) of
objects.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects and Classes

Working with Objects and Classes:

Collections of objects share similar traits (e.g., data, structure,
behavior).

Collections of objects will form relationships with other
collections of objects.

Definition of a Class

A class is a specification (or blueprint) of an object’s structure and
behavior.

Definition of an Object

An object is an instance of a class.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects and Classes

From Collections of Objects to Classes:

Generation of Objects from Class Specifications:

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects and Classes

Key Design Tasks

Identify objects and their attributes and functions,

Establish relationships among the objects,

Establish the interfaces for each object,

Implement and test the individual objects,

Assemble and test the system.

Implicit Assumptions:

Manual synthesis of the object model is realistic for systems
that have a modest number of elements and relationships.

As the dimensionality of the problem increases some form of
automation will be needed to discover elements and
relationships.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects and Classes

Organizational and Efficiency Mechanisms:

Interface

In
cr

ea
si

n
g

 s
p

ec
ia

li
za

ti
o

n

Input from
surrounding environment

General
concepts

Network of Communicating Objects Problem Domain Concepts organized
into a Class Hierarchy.

Messages

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 1. Working with Points

A Very Simple Class in Java
1 public class Point {

2 int x, y;

3
4 public Point (int x, int y) {

5 this.x = x; this.y = y;

6 }

7 }

Creating an Object
8 Point first = new Point (1, 2);

9 Point second = new Point (2, 5);

Accessing and Printing the attributes on an Object
10 System.out.printf(" first point (x,y) = (%2d, %2d)\n", first.x, first.y);

11 System.out.printf("second point (x,y) = (%2d, %2d)\n", second.x, second.y);

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

A circle can be described by the (x,y) position of its center and
by its radius.

y

(x, y)

radius

x

There are numerous things we can do with circles:

Compute their circumference, perimeter or area,

Check if a point is inside a circle.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

1 /*

2 * ==

3 * Circle (): Basic implementation of a circle program.

4 *

5 * Written by: Mark Austin February , 2019

6 * ==

7 */

8
9 import java.lang.Math .*;

10
11 public class Circle {

12 public double dX, dY, dRadius;

13
14 // Constructor

15
16 public Circle () {}

17
18 public Circle(double dX, double dY, double dRadius) {

19 this.dX = dX;

20 this.dY = dY;

21 this.dRadius = dRadius;

22 }

23
24 // Compute the circle area

25
26 public double Area() {

27 return Math.PI*dRadius*dRadius;

28 }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

29
30 // Copy circle parameters to a string format ...

31
32 public String toString () {

33 return "(x,y) = (" + dX + "," + dY + "): Radius = " + dRadius;

34 }

35
36 // --

37 // Exercise methods in class Circle ...

38 // --

39
40 public static void main(String [] args) {

41
42 System.out.println("Exercise methods in class Circle");

43 System.out.println("================================");

44
45 Circle cA = new Circle ();

46 cA.dX = 1.0; cA.dY = 2.0; cA.dRadius = 3.0;

47
48 Circle cB = new Circle(1.0, 2.0, 2.0);

49
50 System.out.printf("Circle cA : %s\n", cA.toString ());

51 System.out.printf("Circle cA : Area = %5.2f\n", cA.Area());

52 System.out.printf("Circle cB : %s\n", cB);

53 System.out.printf("Circle cB : Area = %5.2f\n", cB.Area());

54 }

55 }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

Script of Program Input and Output

Exercise methods in class Circle

================================

Circle cA : (x,y) = (1.0,2.0): Radius = 3.0

Circle cA : Area = 28.27

Circle cB : (x,y) = (1.0,2.0): Radius = 2.0

Circle cB : Area = 12.57

Points to note:

Objects are created with constructor methods. The line:

public Circle () {}

is the default constructor. It creates circle objects with all of
the circle attribute values initialized to zero.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

More points to note:

The next three statements use the dot notation (.) to
manually initialize the (x,y) coordinates of the circle center
and its radius.

A second constructor method:

public Circle(double dX, double dY, double dRadius) {

}

creates a circle object and initializes the circle attribute values
in one line.

Statements of the form this.dX = dX take the value of dX
passed to the contructor method and assign it to the attribute
dX associated with this object.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Accessing Object Data and Object Methods

Now that we have created an object, we can use its data fields.
The dot operator (.) is used to access the different public variables
of an object.

Example 1

Circle cA = new Circle();

cA.dX = 1.0;

cA.dY = 2.0;

cA.dRadius = 3.0;

To access the methods of an object, we use the same syntax as
accessing the data of the object, i.e., the dot operator (.).

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Accessing Object Methods

Example 2

Circle cA = new Circle();

cA.dRadius = 2.5;

double dArea = cA.getArea();

Notice that we did not write dArea = getArea(cA);

Example 3

Let a, b, c, and d be complex numbers. To compute a*b + c*d we
write

a = new Complex(1,1); .. etc ..

Complex sum = a.Mult(b).Add(c.Mult(d));

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and
Data Hiding

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Definition of Aggregation

Aggregation is the grouping of components into a package.

Aggregation does not imply that the components are hidden
or inaccessible. It merely implies that the components are part
of a whole.

Definition of Encapsulation

Encapsulation is a much stronger form of organization.

Encapsulation forces users of a system to deal with it as an
abstraction (e.g., a black box) with well-defined interfaces
that define what the entity is, what it does, and how it should
be used.

The only way to access an object’s state is to send it a
message that causes one of the object’s internal methods to
execute.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Encapsulation – User’s view of AbstractionDesigner’s view of Aggregation

Unstructured Components Aggregation

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Principle of Information Hiding

The principle of information hiding states that information which is
likely to change (e.g., over the lifetime of a software/systems
package) should be hidden inside a module.

Application. Process for Implementation of Information Hiding.

Processes and data
Private processeshiding

Information

and data

and data.
Access to public processesAll data and processes

are public.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Graphical Representation of a Class

The object wrapping protects the object code from unintended
access by other code.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

In object-oriented terminology, and particularly in Java,

The wrapper object is usually called a class, the functions
inside the class are called private methods,

The data inside the class are private variables.

Public methods are the interface functions for the outside
world to access your private methods.

Implementation. The keyword private in:

public class Point {

private int x, y;

....

}

restricts to scope of x and y to lie inside the boundary of Point
objects.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Access to a point’s coordinates is controlled through the public
methods:

public int getX() {

return x;

}

public void setX(int x) {

this.x = x;

}

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Revised Circle Program

Revised circle program where data and circle properties can only be
accessed through an interface.

1 /*

2 * ==

3 * Circle (): Implementation of the Circle class where data and circle

4 * properties can only be accessed through an interface.

5 *

6 * Written by: Mark Austin February , 2019

7 * ==

8 */

9
10 import java.lang.Math .*;

11
12 public class Circle {

13 protected double dX, dY, dRadius;

14
15 // Constructor

16
17 public Circle () {}

18
19 public Circle(double dX, double dY, double dRadius) {

20 this.dX = dX;

21 this.dY = dY;

22 this.dRadius = dRadius;

23 }

24
25 // Compute the circle area

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Revised Circle Program

26
27 private double Area() {

28 return Math.PI*dRadius*dRadius;

29 }

30
31 // Create public interface for variables and area computation

32
33 public void setX (double dX) {

34 this.dX = dX;

35 }

36
37 public double getX () {

38 return dX;

39 }

40
41 ... details for setY() and getY() removed ...

42
43 public void setRadius (double dRadius) {

44 this.dRadius = dRadius;

45 }

46
47 public double getRadius () {

48 return dRadius;

49 }

50
51 public double getArea () {

52 return Area ();

53 }

54
55 // Copy circle parameters to a string format ...

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Revised Circle Program

56
57 public String toString () {

58 return "(x,y) = (" + dX + "," + dY + "): Radius = " + dRadius;

59 }

60
61 // --

62 // Exercise methods in class Circle ...

63 // --

64
65 public static void main(String [] args) {

66
67 System.out.println("Exercise methods in class Circle");

68 System.out.println("================================");

69
70 Circle cA = new Circle ();

71 cA.setX (1.0);

72 cA.setY (2.0);

73 cA.setRadius (3.0);

74
75 Circle cB = new Circle(1.0, 2.0, 2.0);

76
77 System.out.printf("Circle cA : %s\n", cA.toString ());

78 System.out.printf("Circle cA : Area = %5.2f\n", cA.getArea ());

79
80 System.out.printf("Circle cB : %s\n", cB);

81 System.out.printf("Circle cB : Area = %5.2f\n", cB.getArea ());

82 }

83 }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Revised Circle Program

Points to note:

Use of the keyword protected in:

protected double dX, dY, dRadius;

restricts access of dX, dY and dRadius to methods within
Circle and any subclass of Circle.

The methods getX() and setX(), etc, create a public
interface for Circle.

By convention, the toString() method creates and returns a
string description of the objects contents. And it can be called
in two ways as demonstrated at the bottom of main(). The
fragment of code cA.toString() will return a string which will
be matched against the %s format specification. However, cB
also calls toString() and is shorthand for cB.toString().

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships

Among Classes

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

Motivation

Classes and objects by themselves are not enough to describe
the structure of a system.

We also need to express relationships among classes.

Object-oriented software packages are assembled from
collections of classes and class-hierarchies that are related in
three fundamental ways.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

1. Use: Class A uses Class B (method call).

Call Method

CLASS A CLASS B

Class A uses Class B if a method in A calls a method in an object of
type B.

Example

double dAngle = Math.sin (Math.PI / 3.0);

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

2. Containment (Has a): Class A contains a reference to Class
B.

CLASS BCLASS A

Clearly, containment is a special case of use (i.e., see Item 1.).

Example

public class LineSegment {

private Point start, end;

.......

}

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

3. Inheritance (Is a): In everyday life, we think of inheritance as
something that is received from a predecessor or past generation.
Here, Class B inherits the data and methods (extends) from Class
A.

CLASS A CLASS B

Extends

Examples of Java Code

public class ColoredCircle extends Circle { }

public class GraphicalView extends JFrame { }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Relationships

Definition

As association is a discrete and/or logical relationship between
classes. Associations are the glue that tie the elements of a system
together.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Binary Association Relationships

Binary associations express static bidirectional relationships
between two classes.

B

A

Class A Class B
association name

multiplicity indicators

role of class A role of class B

B
inside

contained
within

surrounds

Example
A

Meta-Model Engineering Viewpoint

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Binary Association Relationships

Meta-Model for Links and Association Relationships. Links
and associations establish relationships among entities within the
problem world or the solution world.

1..*
Link

Association Class

Object

Instance−of Instance−of

Relationship

Relationship

*

1 1..*

1..*

*

*

*

Points to note:

Associations are descriptions of links with a common
implementation.

Links are instances of an association relationship.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Relationships

Multiplicity Constraints. Indicate the number of objects
participating in an instance of an association.

B

Numerically specified

Many (one or more)

Many (zero or more)

Optional (zero or one)

Exactly one to one

MultiplicityRelationship

1

0..1

m..n

1..*

*

A

A

A

A

A B

B

B

B

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Relationships

Example 1. Object A links to Object B

Object B

Internal data reference
or pointer

link

Object A

Example 2. A bank and a suite of ATMs

1...*
Bank ATM

Has 1

A bank has one or more ATMs.

Each ATM is associated with one (and only one) bank.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Class Relationships

From Binary Relations to Association Classes

Relationship is

A B A

C

B

Binary Association Association Class

relation

upgraded to a class

Association classes are used when:

The association itself has attributes or operations that need to
be represented in the class model.

It makes sense for the “one association occurrence, one
association class instance” constraint to exist.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Class Relationships

Two examples:

has

Window 2Window 1

Relative Position

Horizontal spacing;
Vertical spacing;
Distance apart;

Window Wall

Containment

Boolean isInside
Boolean isOutside
Boolean isTouching
Boolean isInplane;

nearby

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Inheritance Structures

Inheritance structures allow you to capture common characteristics
in one model artifact and permit other artifacts to inherit and
possibly specialize them. Class hierarchies are explicitly designed
for customization through extension.

In this approach to development:

Forces us to identify and separate the common elements of a
system from those aspects that are different/distinct.

Commonalities are captured in a super-class and inherited and
specialized by the sub-classes.

Inherited features may be overridden with extra features
designed to deal with exceptions.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Base and Derived Classes

Goal: Avoid duplication and redundancy of data in a problem
specification.

In
cr
ea
si
ng

sp
ec
ia
liz
at
io
n

Derived Class

Base Class

public constants ...
public methods ...

public constants ...
public methods ...

Interface to the base class

Interface to the derived class

extends

In
cr
ea
si
ng

ab
st
ra
ct
io
n

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Base and Derived Classes

Points to note:

A class in the upper hierarchy is called a superclass (or base,
parent class).

A class in the lower hierarchy is called a subclass (or derived,
child, extended class).

The classes in the lower hierarchy inherit all the variables
(static attributes) and methods (dynamic behaviors) from the
higher-level classes.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Example 2. Hierarchy of Temperature Sensors

Temperature Thermometer

Consider a class hierarchy for attributes and functions in a
family of temperature sensors.

The super-class represents a generic temperature sensor.

Super-class attributes: measured temperature, sensor weight,
mean-time-to-failure (MTTF).

Methods are provided to test the sensor.

Water Temperature Thermometer

A water temperature thermomenter is a generic temperature
sensor + a field to store the depth at which the temperature
was recorded.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Test Sensor ()

Temp Sensor

Temperature
Status :

 −− property : MTBF
−− weight

Air Temp Sensor

Depth

Water Temp Sensor

Read Temperature
Read Sensor : Status()
Reset Sensor ()

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Multiple Inheritance Structures

In a multiple inheritance structure, a class can inherit
properties from multiple parents.

The downside is that properties and/or operations may be
partially or fully contradictory.

Example

People is a generalization of Children and Customers.

Young customers inherits properties from Customers and
Children.

Note. Unlike C++ and Python, Java explicitly prevents multiple
inheritance. Java classes can, however, have multiple interfaces.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Children

People

Young Customers

Customers

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 3. Extending Circle to Colored Circle

1 /*

2 * ===

3 * ColoredCircle (): Implementation of the ColoredCircle class where

4 * data and circle properties can only be accessed

5 * through an interface.

6 *

7 * Written By: Mark Austin April 2019

8 * ===

9 */

10
11 package objects;

12
13 import java.awt.Color;

14
15 public class ColoredCircle extends Circle {

16 private Color color;

17
18 // Constructor methods

19
20 public ColoredCircle () {

21 super ();

22 this.color = Color.blue;

23 }

24
25 public ColoredCircle(double dX , double dY , double dRadius , Color color) {

26 super ();

27
28 this.dX = dX;

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 3. Extending Circle to Colored Circle

28 this.dX = dX;

29 this.dY = dY;

30 this.dRadius = dRadius;

31 this.color = color;

32 }

33
34 // Set and retrieve colors

35
36 public void setColor(Color color) {

37 this.color = color;

38 }

39
40 public String getColors () {

41 return "Color (r,g,b) = (" + color.getRed () + "," + color.getGreen () + "," + color.getBlue () + ")";

42 }

43
44 // ===

45 // Exercise methods in class ColoredCircle ()......

46 // ===

47
48 public static void main(String [] args) {

49
50 System.out.println("Exercise methods in class ColoredCircle");

51 System.out.println("=======================================");

52
53 // Create , initialize , and print circle "cA" ...

54
55 ColoredCircle cA = new ColoredCircle(1.0, 2.0, 3.0, Color.blue);

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 3. Extending Circle to Colored Circle

Example 3. Extending Circle to create Colored Circle

Two public methods are defined for this class:

setColor. This method takes a color as its argument and
assigns this value to the color of the circle.

ColoredCircle. This method has the same name as the
class itself; it is a constructor method.

The method call super() invokes the constructor method of the
superclass [i.e., the method Circle()].

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Composition of

Object Models

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Composition of Object Models

Definition

Composition is known as is a part of or is a relationship.

The member object is a part of the containing class and the
member object cannot survive or exist outside the enclosing or
containing class or doesn’t have a meaning after the lifetime of the
enclosing object.

Is it Aggregation or Composition?

Ask the question: if the part moves, can one deduce that the
whole moves with it in normal circumstances?

Example: A car is composition of wheels and an engine. If you
drive the car to work, hopefully the wheels go too!

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Composition of Object Models

Notation for Aggregation and Composition

Item

List

Point

Rectangle

AggregationComposition

Recall: Aggregation is all about grouping of things ...

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 4. Modeling Line Segments

Example 1. Line segment is composed from two points:

LineSegment Point
21

Source Code: Abbreviated Point.java

1 public class Point {

2 private int x, y;

3
4 public Point(int x, int y) {

5 this.x = x;

6 this.y = y;

7 }

8
9 public int getX() {

10 return x;

11 }

12
13 public void setX(int x) {

14 this.x = x;

15 }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 4. Modeling Line Segments

Source Code: Point.java continued:

16
17 public int getY() { return y; }

18 public void setY(int y) { this.y = y; }

19
20 public String toString () {

21 return "(" + x + "," + y + ")";

22 }

23 }

Source Code: Abbreviated LineSegment.java

1 public class LineSegment {

2 Point begin , end;

3
4 public LineSegment (int x1, int y1 , int x2, int y2) {

5 begin = new Point(x1 , y1);

6 end = new Point(x2, y2);

7 }

8
9 public String toString () {

10 return "Line segment: from " + begin + " to " + end;

11 }

12 }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 4. Modeling Line Segments

Creating a Line Segment Object:

LineSegment segmentA = new LineSegment(1, 2, 3, 4);

The layout of memory is as follows:

Point

x = 1

y = 2

x = 3

y = 4

segmentA LineSegment

Here, segmentA refers to the memory location for the linesegment
object. The linesegment object contains references to Point
objects containing the (x,y) coordinates.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Spatial Applications

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Spatial Models (Points, Lines, Polygons)

Points, lines and regions are fundamental spatial data types.

RegionPoint Line

Points are 0-dimensional entities. Lines are 1-dimensional
entities. Regions are 2-dimensional entities.

Spatial operations: union, intersection, difference.

We need software that can compute operations on these
entities in a consistent manner (e.g., Google: Java Topology
Suite).

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Class Diagram for GIS Domain

Partitions and Networks
Partitions and networks are two abstractions for modeling
collections of spatial objects.

Partitions Spatially Distributed Network

Examples of partitions: rooms in a building, districts in a
state, countries in a continent.

Examples of networks: plumbing and HVAC networks,
highways and railway networks, communication and power
networks.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Class Diagram for GIS Domain

Conceptual model for partition hierarchies (adapted from
Chunithipaisanl S. et al., 2004)

Coord

Partition

Boundary

1..n

1

Edges

3..n

Node Link

Neighbour
2

Left Right

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Class Diagram for GIS Domain

The conceptual model for partitions states:

A Partition can be decomposed into 1 or more Partitions
(sub-Partitions).

Each Partition has one boundary (here we ignore the
possibility of partitions containing holes).

Boundaries are composed of edges (..at least 3 edges).

Each Edge segment has a Node and Link.

Nodes and Link are paired in a one-to-one correspondence.

A Node has a coordinate.

Edges also have Neighboring Partitions.

Neighboring Partitions can be classified as to whether they are
on the Left and Right of the Edge.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Class Diagram for GIS Domain

Conceptual model for networks (Adapted from: Chunithipaisanl S.
et al., 2004).

1.....m

FeatureNetwork
1..n

Geometry Topology

LinkNode

Line

Chain Point

Coord

i
2

0...n 0...n

1

111

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Class Diagram for GIS Domain

The conceptual model for networks states:

A Network is composed of Features.

2. Each Feature has Geometry and Topology.

Geometry is a generalization for Chains and Points...

A Chain corresponds to one or more Line segments.

A Point has a coordinate.

Topology is a generalization for Nodes and Links.

Nodes also have coordinates.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Layered Organization of Attributes in Urban Data

Geographic Information System
Layers of Data / Information in Military Decision Making

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Spatial and Temporal Domains

Goal. We want to know that systems do the right thing (event) in
the right place (spatial) at the right time (temporal).

Spatial Domain

L
at
it
ud

e

Longitude

Wednesday

Monday

Tuesday

9 am 10 am 11 am

Temporal Domain

2D Spatial Domain: OpenStreetMap, Java Topology Suite.
Temporal Domain: Calendars, Scheduling Algorithms, Ontologies
of Time, UPPAAL.

	Working with Objects
	Encapsulation and Data Hiding
	Relationships Among Classes
	Association Relationships
	Inheritance Mechanisms
	Composition of Object Models
	Applications

