Python Tutorial – Part I: Introduction

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 688P, Spring Semester 2022

January 18, 2023

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

 What is Python?
 Program Development with Python
 Data Types
 First Program (Evaluate and Plot Sigmoid Function)
 Buil

 000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000

Data Types

(Data Types in Python)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

 What is Python?
 Program Development with Python
 Data Types
 First Program (Evaluate and Plot Sigmoid Function)
 Buil

 000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000

Builtin Data Types

dtype	Description
Text Type: Numeric Types: Sequence Types: Mapping Type: Set Types: Boolean Type: Binary Types: None Type:	str int, float, complex list, tuple, range dict set, frozenset bool bytes, bytearray, memoryview NoneType
<u>_</u>	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example 1: Getting an int data type ...

```
a = 1
print ( type(a) )
```

Output:

< class 'int' >

Builtin Data Types

Example 2: Float, complex, boolean, string and list types ...

Output:

```
< class 'float' >
< class 'complex' >
< class 'bool' >
< class 'str' >
< class 'list' >
```

Builtin Data Types

Example 3: Formatting data type output ...

```
print("--- a = {:2d} ... ".format(a) ); # <-- Format integer output.
print("--- b = {:.2f} ... ".format(b) ); # <-- two-decimal places
print('--- c = {:.2f}'.format(c)) # of accuracy.
print("--- d = {:.5s} ... ".format( str(d) ))
print("--- e = {:15s} ... ".format(e) )
output = ["%.5s" % elem for elem in f ] # <-- convert list to string ...
print("--- f = ", output )
```

Output:

```
---- a = 1 ...

--- b = 1.50 ...

--- c = 1.00+1.50j

---- d = True ...

---- e = this is a string ...

---- f = ['A', 'B', 'C', 'D']
```

Floating-Point Numbers

Definition. Floating point variables and constants are used represent values outside of the integer range (e.g., 3.4, -45.33 and 2.714) and are either very large or small in magnitude, (e.g., 3.0e-25, 4.5e+05, and 2.34567890098e+19).

IEEE 754 Floating-Point Standard. Specifies that a floating point number take the form:

$$X = \sigma \cdot m \cdot 2^E. \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Here:

- σ represents the sign of the number.
- *m* is the mantissa (interpreted as a fraction 0 < m < 1).
- E is the exponent.

IEEE 754 Floating-Point Standard

Ensures floating point implementions and arithmetic are consistent across various types of computers (e.g., PC and Mac).

TEEE FLOATING POINT ARITHMETIC STANDARD FOR DOUBLE PRECISION FLOATS.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Largest and Smallest Floating-Point Numbers

Туре	De Contains	fault Value	Size	Range and Precision
float	IEEE 754 floating poin	0.0 t	32 bits	+- 13.40282347E+38 / +- 11.40239846E-45
	Floating point numbers are represented to approximately 6 to 7 decimal places of accuracy.			
double	IEEE 754 floating poin	0.0 t	64 bits	+- 11.79769313486231570E+308 / +- 14.94065645841246544E-324
	Double precision numbers are represented to approximately 15 to 16 decimal places of accuracy.			

Working with Double Precision Numbers

Simple Example. Here is the floating point representation for 0.15625

Note. Keep in mind that floating-point numbers are stored in a binary format – this can lead to surprises.

For example, when the decimal fraction 1/10 (0.10 in base 10) is converted to binary, the result is an expansion of infinte length.

Bottom line: You cannot store 0.10 precisely in a computer.

Working with Double Precision Numbers

Accessing the Math Library Module

import math; # <-- import the math library ...</pre>

Math Constants

Method	Description		
math.e	Returns Euler's number (2.7182).		
math.inf	Returns floating-point positive infinity.		
math.pi	Returns PI (3.1415926).		

Math Methods

 Method
 Description

 math.acos()
 Returns the arc cosine of a number.

 math.acosh()
 Returns the inverse hyperbolic cosine of a number.

 math.asin()
 Returns the arc sine of a number.

 math.asin()
 Returns the inverse hyperbolic sine of a number.

Working with Double Precision Numbers

Math Methods (continued) ...

Method	Description
math.atan()	Returns the arc tangent of a number in radians
<pre>math.atan2()</pre>	Returns the arc tangent of y/x in radians
<pre>math.ceil()</pre>	Rounds a number up to the nearest integer
<pre>math.cos()</pre>	Returns the cosine of a number
<pre>math.cosh()</pre>	Returns the hyperbolic cosine of a number
<pre>math.exp()</pre>	Returns E raised to the power of x
<pre>math.fabs()</pre>	Returns the absolute value of a number
<pre>math.floor()</pre>	Rounds a number down to the nearest integer
math.gcd()	Returns the greatest common divisor of two integers
<pre>math.isfinite()</pre>	Checks whether a number is finite or not
<pre>math.isinf()</pre>	Checks whether a number is infinite or not
<pre>math.isnan()</pre>	Checks whether a value is NaN (not a number) or not
<pre>math.isqrt()</pre>	Rounds a square root number down to the nearest integer
<pre>math.ldexp()</pre>	Returns the inverse of math.frexp() which is
	x * (2**i) of the given numbers x and i
math.lgamma()	Returns the log gamma value of x

Working with Double Precision Numbers

Math Methods (continued)			
Method	Description		
<pre>math.log()</pre>	Returns the natural logarithm of a number, or the logarithm of number to base.		
<pre>math.log10()</pre>	Returns the base-10 logarithm of x		
<pre>math.log1p()</pre>	Returns the natural logarithm of 1+x		
<pre>math.log2()</pre>	Returns the base-2 logarithm of x		
<pre>math.perm()</pre>	Returns the number of ways to choose k items from n		
	items with order and without repetition		
<pre>math.pow()</pre>	Returns the value of x to the power of y		
<pre>math.prod()</pre>	Returns the product of all the elements in an iterable		
<pre>math.radians()</pre>	Converts a degree value into radians		
math.remainder()	Returns the closest value that can make numerator		
	completely divisible by the denominator		
<pre>math.sin()</pre>	Returns the sine of a number		
<pre>math.sinh()</pre>	Returns the hyperbolic sine of a number		
<pre>math.sqrt()</pre>	Returns the square root of a number		
<pre>math.tan()</pre>	Returns the tangent of a number		
math.tanh()	Returns the hyperbolic tangent of a number		
<pre>math.trunc()</pre>	Returns the truncated integer parts of a number		

3

 What is Python?
 Program Development with Python
 Data Types
 First Program (Evaluate and Plot Sigmoid Function)
 Buil

 000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000

Working with Double Precision Numbers

Example 4: Formatting PI ...

Output:

```
---- PI = 3.14 ...

--- PI = 3.141592653589793 ...

--- PI = 3.14 ...

--- PI = 3.141592653590 ...

--- PI = 3.141593e+00 ...
```

 What is Python?
 Program Development with Python
 Data Types
 First Program (Evaluate and Plot Sigmoid Function)
 Buil

 000000
 00000000000
 0000000000
 0000000000
 0000

First Program

(Evaluate and Plot Sigmoid Function)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problem Desription

Problem Description

In neural network models, the sigmoid function:

$$\sigma(x) = \left[\frac{1}{1+e^{-x}}\right].$$
 (2)

serves as an activation. Our first program evaluates and plots $\sigma(x)$ over the range $x \in [-10, 10]$.

Running the Program

From the terminal window, simply type:

prompt >> python3 TestSigmoidFunction.py

Evaluate and Plot Sigmoid Function

The Python interpreter/compiler will complain if one or more of the required packages (e.g., matplotlib) are missing.

Use pip to install missing Python Packages

The standard package-management system used to install and manage software packages is called pip (or pip3).

Example: And installation is easy!

prompt >> pip3 install numpy
prompt >> pip3 install matplotlib

To get a list of installed packages:

```
prompt >> pip3 list
```

 What is Python?
 Program Development with Python
 Data Types
 First Program (Evaluate and Plot Sigmoid Function)
 Buil

 0000000
 00000000000
 0000000000
 000000000
 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Evaluate and Plot Sigmoid Function

Abbreviated Output:

Package	Version
jupyter Keras	1.0.0 2.4.3
 matplotlib	3.4.1
numpy	1.19.5
pandas	1.1.5
 scikit-learn scipy	0.24.2 1.6.2
sklearn	0.0

 What is Python?
 Program Development with Python
 Data Types
 First Program (Evaluate and Plot Sigmoid Function)
 Buil

 0000000
 00000000000
 0000000000
 0000000000
 0000

Program Source Code in Visual Studio Code

			0800	8
		Started Interest Started TestSigmoidFunction.py X		
		austin > ence688p.d > python-code.d > neural > 🔹 TestSigmoidFunction.py >		
		# TestSigmoidFunction.py: Evaluate and plot sigmoid function.		
ç,				
		issort with		
		import mathematical		
		def siamoid (x):		
		# main method		
		def main[].		
		<pre>print("==== Enter TestSignoidFunction.main() "};</pre>		
		# Part 1: evaluate and print values of sigmoid function		
		<pre>xvalues = list(no.aranne(-10.0, 10.0, 0.5));</pre>		
		for x in xvalues:		
		<pre>print (" sigmoid({:6.2f})> {:14.10f}".format(x, sigmoid(x)));</pre>		
		values = D		
		yvalues.append(sigmoid(x));		
		fin, ax = plt.subplots()		
		ax.plot(xvalues, yvalues)		
0		<pre>ax.set(xlabel='x', ylabel='sigmoid(x)', title='Plot sigmoid(x) vs x')</pre>		
\sim		ax.grid()		
512				
⊗04	A 0	Lin 1, Col 1	Spaces: 4 UTF-8 LF () Python 3.8.264-bit 🖗 🕻	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Program Source Code + Output in Visual Studio Code

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Program Source Code

```
1
2
    # TestSigmoidFunction.pv: Evaluate/plot sigmoid function.
3
    #
4
    # Written by: Mark Austin
                                           September, 2020
5
6
7
    import math
8
    import matplotlib
9
    import matplotlib.pvplot as plt
10
    import numpy as np
11
12
    # define sigmoid function ...
13
14
    def sigmoid (x):
15
       return 1/(1 + math.exp(-x))
16
17
    # main method ...
18
19
    def main():
20
        print("--- Enter TestSigmoidFunction.main() ...");
21
        22
23
        # Part 1: Evaluate and print sigmoid function
24
25
        xvalues = list( np.arange( -10.0, 10.0, 0.5 ) );
26
        for x in xvalues:
27
           print ("--- sigmoid({:6.2f}) --> {:14.10f}".format(x, sigmoid(x)));
28
29
        # Part 2: Create list of sigmoid(x) values ...
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Program Source Code

```
29
        # Part 2: Create list of sigmoid(x) values ...
30
31
       vvalues = []
32
       for x in xvalues:
33
           vvalues.append( sigmoid(x) ):
34
35
        # Part 3: Organize and display plot ...
36
37
        fig, ax = plt.subplots()
38
        ax.plot( xvalues, yvalues )
39
        ax.set(xlabel='x', ylabel='sigmoid(x)',
40
              title='Plot sigmoid(x) vs x')
41
        ax.grid()
42
43
        # display and save plot ...
44
45
       plt.show()
46
47
       fig.savefig("sigmoid-plot.jpg")
48
49
        50
        print("--- Leave TestSigmoidFunction.main() ...");
51
52
    # call the main method ...
53
54
    main()
```

Program Source Code

Points to Note:

- Line comment statements begin with the # character.
- Lines 7-10 import the math, matplotlib, matplotlib.pyplot and numpy modules to the program, and make the functions therein available.
- Functions are the primary method of code organization and reuse in Python.
- User-defined functions are declared with the def keyword. A function contains a block of code with an optional return keyword.
- Lines 13-14 evaluate and return the sigmoid function.
- Use of the second function, main(), is a carry over from programming with C, where all programs begin their execution in main(). Its use in Python is optional.

Program Source Code

Points to Note (continued):

- Line 25 creates a list of x coordinates. The numpy function np.arange() covers [-10, 10] in increments of 0.5.
- Lines 26-27 systematically traverse the elements of xvalues, and compute and print the corresponding values of the sigmoid() function.
- Line 27 formats and prints the output. The specification
 {:6.2}f means that the output should be printed as a
 floating point number, six characters wide, and with two
 decimal places of accuracy to the right of the decimal point.
- Lines 31-33 traverse the elements of xvalues, and systematically assemble a list of sigmoid function yvalues.
- Lines 37-47 format a plot of yvalues vs xvalues, and save to sigmoid-plot.jpg.