Python Tutorial – Part I: Introduction

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 688P, Spring Semester 2022

January 18, 2023

Overview

 What is Python?
 Program Development with Python
 Data Types
 First Program (Evaluate and Plot Sigmoid Function)
 Buil

 0000000
 00000000000
 00000000000
 00000000000
 00000000000

Data and

Dataset Transformation

(Pandas)

Working with Pandas

Introduction to Pandas

Pandas is an open source Python Library that supports working and analysis of tabular data sets.

Benefits:

- Pandas can clean messy data sets, and make them readable and relevant.
- Pandas allows us to analyze large data sets and make conclusions based on statistical theories.
- Three data structures: Series, DataFrame and Panel.

Installation:

```
prompt >> pip3 install pandas
```

What can Pandas do?

Basic Operations:

- Create series and dataframes.
- Read CSV and JSON files.
- Plot data.

Clean Data:

- Clean empty cells.
- Fix wrong format.
- Remove duplicates.

Advanced Operations:

- Combine (concatenate, join, merge) Panda objects.
- Compute correlations.

Panda Series and DataFrames

Panda Series

A Panda Series is a one-dimensional ... labeled array capable of holding data of any type (integer, string, float, python objects, etc.).

Panda DataFrame

A Panda DataFrame is a two-dimensional (potentially heterogeneous) tabular data structure with labeled axes for the rows and columns.

Panda Series

Panda Series Elements: columns, data ...

Basic Operations:

 Create a series; access elements; index and select data; binary operations; conversion operations.

Panda Series

Example 1: Manually create series from list:

```
# Part 1: Manually create series ...
a = [1, 2, 3, 4, 3, 2, 1 ]
myvar = pd.Series(a)
print(myvar)
# Part 2: Create series from a list with labels ...
myvar = pd.Series(a, index = ["a", "b", "c", "d", "c", "b", "a" ])
print(myvar)
```

Abbreviated Output: Parts 1 and 2 ...

Part	01	Part	02
0	1	a	1
1	2	b	2
• • • •		• • • • •	
5	2	b	2
6	1	a	1
dtype	e: int64	dtype	e: int64

Panda Series

Example 2: Manually create series from dictionary:

```
calories = {"day1": 420, "day2": 380, "day3": 390}
myvar = pd.Series(calories)
print(myvar)
```

day1	420
day2	380
day3	390
dtype:	int64

Panda Series

Example 3: Create series from NumPy functions

```
# series01 = pd.Series(np.arange(2,8)) ... ");
series01 = pd.Series(np.arange(2,8))
print(series01)
```

Output:

Panda Series

Example 4: Create series from NumPy functions

```
series02 = pd.Series( np.linspace(0,10,5) )
print(series02)
```

```
print( series02.size)
print( len(series02) )
print( series02.values )
```

0	0.0		
1	2.5		
2	5.0		
3	7.5		
4	10.0		
dtyp	e: float64		
5		# < series02.size	
5		# < series02 length	
[0.	2.5 5.	7.5 10.] # < series02 values	
			5

Panda DataFrames

Panda DataFrame Elements: rows, columns, data ...

Basic Operations:

• Create dataframe; deal with rows and columns; index and select data; iterate over rows and columns.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Working with Panda DataFrames

Example 1: Manually create small dataset ...

```
mydataset = {
    'cars': [ "BMW", "Honda", "Acura"],
    'year': [ 2013, 2017, 2022]
}
myvar = pd.DataFrame(mydataset)
print(myvar)
```

	cars	year
0	BMW	2013
1	Honda	2017
2	Acura	2022

What is Python? Program Development with Python Data Types First Program (Evaluate and Plot Sigmoid Function) Buil

Working with Panda DataFrames

Example 2: Create dataframes from 1-d and 2-d arrays ...

```
myvar = pd.DataFrame( np.arange(1,8) ) # <-- dataframe from 1-d array
print(myvar)
df = pd.DataFrame( [ [1,2],
                     [3.4].
                     [5,6] ] )
                                       # <-- dataframe from 2-d array
```

print(df)

Abbreviated Output:

Da	taframe from 1-d np array	Dataf	ram	e fr	om 2-d	np	array	7		
								•		
	0		0	1						
0	1	0	1	2						
1	2	1	3	4						
2	3	2	5	6						
5	6									
6	7									
						 (A) > 	()	• = •	3	Sac

Working with Panda DataFrames

Example 3: Create simple dataframe from multiple series ...

Output:

Part	1: datafr	ame from series	Part 2:	rename ro	WS
	calories	duration		calories	duration
0	520	50	day1	520	50
1	480	48	day2	480	48
2	400	40	day3	400	40

Working with Panda DataFrames

Example 4: Create dataframe from JSON object ...

Create JSON object (same format as Python dictionary) ...

```
data = {
   "Duration":{ "0":60, "1":60, "2":60, "3":45, "4":45, "5":60 },
   "Pulse":{ "0":110, "1":117, "2":103, "3":109, "4":117, "5":102 },
   "Maxpulse":{ "0":130, "1":145, "2":135, "3":175, "4":148, "5":127 },
   "Calories":{ "0":409, "1":479, "2":340, "3":282, "4":406, "5":300 }
}
```

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

```
df = pd.DataFrame(data)
print(df)
```

	Duration	Pulse	Maxpulse	Calories
0	60	110	130	409
1	60	117	145	479
2	60	103	135	340
3	45	109	175	282
4	45	117	148	406
5	60	102	127	300

Working with Panda DataFrames

Example 5: Select rows and columns from dataframe ...

```
# Select columns of a dataframe ...
```

```
print( df[ [ 'Duration', 'Calories'] ].head() )
```

Selecting rows of a dataframe ...

```
print( df.loc['1'].head() ) # <-- extract and print row 1
print( df.loc['2'].head() ) # <-- extract and print row 2</pre>
```

Output:

Columns of dataframe			Row 1		Row 2			
	Duration	Calories	Duration	60	Duration	60		
0	60	409	Pulse	117	Pulse	103		
1	60	479	Maxpulse	145	Maxpulse	135		
2	60	340	Calories	479	Calories	340		
3	45	282	Name: 1,	dtype: int64	Name: 2,	dtype: int	64	
4	45	406						

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Working with Pandas

Example 6: Read and plot CSV data file.

```
df = pd.read_csv('../data/AirPassengers.csv')
print(df.head())
```

```
print(df.info()) # <-- print dataframe info and shape ...
print(df.shape)</pre>
```

Output:

	Month	#Passengers
0	1949-01	112
1	1949-02	118
2	1949-03	132
3	1949-04	129
4	1949-05	121

 What is Python?
 Program Development with Python
 Data Types
 First Program (Evaluate and Plot Sigmoid Function)
 Buil

 000000
 00000000000
 0000000000
 0000000000
 0000

Working with Pandas

Example 6: (continued)

```
import matplotlib.pyplot as plt
```

```
ax = plt.gca()
df.plot(kind='line',x='Month',y='#Passengers',color='blue',ax=ax)
plt.show()
```

Output:

э