
Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Python Tutorial – Part 2: Objects and Classes

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688P, Spring Semester 2022

February 20, 2023

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Overview

1 Working with Objects and Classes

2 Data Hiding and Encapsulation

3 Relationships Among Classes

4 Inheritance Mechanisms

5 Composition of Object Models

6 Working with Groups of Objects
Pathway from Objects to Groups of Objects

7 Case Study: GeoModeling the World’s Cities

Mark Austin

Mark Austin

Mark Austin

Mark Austin

Mark Austin

Mark Austin
Part 1

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Working with Objects

and Classes

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Working with Objects and Classes

Working with Objects and Classes:
Collections of objects share similar traits (e.g., data, structure,
behavior).
Collections of objects will form relationships with other
collections of objects.

Definition of a Class
A class is a specification (or blueprint) of an object’s structure and
behavior.

Definition of an Object
An object is an instance of a class.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Working with Objects and Classes

From Collections of Objects to Classes:

Generation of Objects from Class Specifications:

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Working with Objects and Classes

Principles for Development of Reusable Code:
Inheritance: Create new (specialized) classes from existing
classes through mechanism of concept extension.
Encapsulation: Hide some details of a class from other
(external) classes.
Polymorphism: Use common operation in di�erent ways
depending on details of data input.

Key Design Tasks
Identify objects and their attributes and functions,
Establish relationships among the objects,
Implement and test the individual objects,
Assemble and test the system.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 1. Working with Points

A Very Simple Class in Python
1 # ===

2 # Point .py: Create point objects ...

3 #

4 # Modified by: Mark Austin October , 2020

5 # ===

6
7 import math
8
9 class Point :

10
11 def __init__ (self , xCoord =0, yCoord =0):
12 self. __xCoord = xCoord
13 self. __yCoord = yCoord
14
15 # compute distance between two points ...

16
17 def distance (self , second):
18 x_d = self. __xCoord - second . __xCoord
19 y_d = self. __yCoord - second . __yCoord
20 return (x_d **2 + y_d **2)**0.5
21
22 # return string represention of object ...

23
24 def __str__ (self):
25 return "(%6.2f, %6.2f) " % (self.__xCoord , self. __yCoord)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 1. Working with Points

Create and Print two Point Objects
8 pt1 = Point (0.0 , 0.0)
9 pt2 = Point (3.0 , 4.0)

10
11 print (" --- pt1 = %s ..." % (pt1))
12 print (" --- pt2 = %s ..." % (pt2))

Output:
--- pt1 = (0.00, 0.00) ...
--- pt2 = (3.00, 4.00) ...

Compute Distance between Two Points
10 distance = pt1. distance (pt2)
11 print (" --- Distance between pt1 and pt2 --> %.2f ..." % (distance))

Output:
--- Distance between pt1 and pt2 --> 5.00 ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 2. Working with Circles

A circle can be described by the (x,y) position of its center and
by its radius.

y

(x, y)

radius

x

There are numerous things we can do with circles:
Compute their circumference, perimeter or area,
Check if a point is inside a circle.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 2. Working with Circles

1 # ===

2 # Circle .py: Simplified modeling of a circle ...

3 #

4 # Written by: Mark Austin October , 2020

5 # ===

6
7 import math
8
9 class Circle :

10 radius = 0
11 area = 0
12 perimeter = 0
13
14 def __init__ (self , x, y, radius):
15 self. radius = radius
16 self.area = math.pi* radius * radius
17 self. perimeter = 2.0* math.pi* radius
18 self.x = x
19 self.y = y
20
21 # Set circle radius , recompute area and perimeter ...

22
23 def setRadius (self , radius):
24 self. radius = radius
25 self.area = math.pi* radius * radius
26 self. perimeter = 2.0* math.pi* radius

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 2. Working with Circles

27
28 # Print details of circle ...

29
30 def printCircle (self):
31 print (" --- Circle : (x,y) = (%.2f, %.2f): radius = %.2f: area = %.2f: perimeter = %.2f"
32 % (self.x, self.y, self.radius , self.area , self. perimeter))

Create and Print two Circle Objects
1 x = Circle (0.0 , 0.0 , 3.0)
2 y = Circle (1.0 , 2.0 , 4.0)
3 x. printCircle ()
4 y. printCircle ()

Output:
--- Circle: (x,y) = (0.00, 0.00): radius = 3.00: area = 28.27
--- Circle: (x,y) = (1.00, 2.00): radius = 4.00: area = 50.27

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 3. Object Model of a Person

Part I: Program Architecture. The TestPerson will create
objects of type Person.

PersonTestPerson

Part II: Person Object Model:
1 # ===

2 # Person .py: Simplified model of a person ...

3 #

4 # Written by: Mark Austin October , 2022

5 # ===

6
7 class Person :
8 age = 0
9 ssn = 0

10
11 def __init__ (self , fname , lname):
12 self. firstname = fname
13 self. lastname = lname
14
15 def printname (self):
16 print (" --- Name: {:s}, {:s}". format (self. firstname , self. lastname))

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 3. Object Model of a Person

Part II: Person Object Model: (Continued) ...
17
18 # Get first and last names ...

19
20 def getFirstName (self):
21 return self. firstname
22
23 def getLastName (self):
24 return self. lastname
25
26 # Set / print age ...

27
28 def setAge (self , age):
29 self.age = age
30
31 def printAge (self):
32 print (" --- Age = {:d} ". format (self.age))
33
34 # Set / print social security number ...

35
36 def setSSN (self , ssn):
37 self.ssn = ssn
38
39 def printSSN (self):
40 print (" --- Social Security No: {:d} ...". format (self.ssn))

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 3. Object Model of a Person

Part III: Person Test Program:
1 # ===

2 # TestPerson .py: Test program for person objects ...

3 # ===

4
5 from Person import Person
6
7 # main method ...

8
9 def main ():

10 print (" --- Enter TestPerson .main () ... ");
11 print (" --- =============================== ... ");
12
13 # Exercise methods in class Person ...

14
15 x = Person (" Angela ", " Austin ")
16 x. printname ()
17
18 print (" --- First name: {:s} ". format (x. getFirstName ()))
19 print (" --- Family name: {:s} ". format (x. getLastName ()))
20
21 # Initialize attribute values ..

22
23 x. setAge (29)
24 x. setSSN (123456789)
25
26 # Print attribute values ..

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 3. Test Program for Person Object Model

Part III: Person Test Program: (Continued) ...
28 x. printAge ()
29 x. printSSN ()
30
31 print (" --- =============================== ... ");
32 print (" --- Finished TestPerson .main () ... ");
33
34 # call the main method ...

35
36 main ()

Output:
--- Enter TestPerson.main() ...
--- =============================== ...
--- Name: Angela, Austin
--- First name: Angela
--- Family name: Austin
--- Age = 29
--- Social Security No: 123456789
--- =============================== ...
--- Finished TestPerson.main() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 3. Object Model of a Person

Part IV: Files before Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Person.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestPerson.py

Part IV: Files after Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Person.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestPerson.py
drwxr-xr-x 4 austin staff 128 Feb 18 13:27 __pycache__

./__pycache__:
total 16
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 Person.cpython-37.pyc

Note: When TestPerson imports Person, python builds a compiled
bytecode for Person (with .pyc extension).

Subsequent imports will be easier and faster.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Data Hiding and

Encapsulation

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Hiding Information

Data Hiding
Data Hiding is isolation of the client from a part of program
implementation. Some objects in the module are kept internal,
invisible, and inaccessible to the user.

Principle of Information Hiding
The principle of information hiding states that information which is
likely to change (e.g., over the lifetime of a software/systems
package) should be hidden inside a module.

Key Advantages
Prevents accidental linkage to incorrect data.
It heightens the security against hackers that are unable to
access confidential data.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Data Hiding and Encapsulation

Encapsulation – User’s view of AbstractionDesigner’s view of Aggregation

Unstructured Components Aggregation

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Data Hiding and Encapsulation

Application. Process for Implementation of Information Hiding.

Processes and data Private processeshiding
Information

and data

and data.
Access to public processesAll data and processes

are public.

Data Hiding in Python (Private and Protected) ...
Data hiding is implemented by using a double underscore
before (prefix) the attribute name. Making an attribute
private hides it from users.
Use of a single underscore makes the variable/method
protected. The variables/methods will be available to the
class, and all of its subclasses.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 4. Revised Circle Object Model

Part I: Revised Circle Object Model
1 # ==

2 # Circle .py: Implementation of circle model with encapsulation

3 # (hiding) of circle parameters and properties .

4 #

5 # Written by: Mark Austin October , 2020

6 # ==

7
8 import math
9

10 class Circle :
11 __radius = 0 # <-- private parameters

12 __area = 0
13 __perimeter = 0
14
15 def __init__ (self , x, y, radius):
16 self. __radius = radius
17 self. __area = math.pi* radius * radius
18 self. __perimeter = 2.0* math.pi* radius
19 self.__x = x
20 self.__y = y
21
22 # Set circle coordinates ...

23
24 def setX(self , x):
25 self.__x = x

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 4. Revised Circle Object Model

Part I: Revised Circle Object Model (Continued) ...
27 def setY(self , y):
28 self.__y = y
29
30 # Set circle radius , recompute area and perimeter ...

31
32 def setRadius (self , radius):
33 self. __radius = radius
34 self. __area = math.pi* radius * radius
35 self. __perimeter = 2.0* math.pi* radius
36
37 # Get circle parameters ...

38
39 def getX(self):
40 return self.__x
41
42 def getY(self):
43 return self.__y
44
45 def getRadius (self):
46 return self. __radius
47
48 def getArea (self):
49 return self. __area
50
51 def getPerimeter (self):
52 return self. __perimeter

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 4. Revised Circle Object Model

Part I: Revised Circle Object Model (Continued) ...
54 # String represention of circle ...

55
56 def __str__ (self):
57 return " --- Circle : (x,y) = (%.2f, %.2f): radius = %.2f: area = %.2f:
58 perimeter = %.2f" % (self.__x , self.__y , self.__radius ,
59 self.__area , self. __perimeter)

Part II: Test Program for Circle Object Model
1 # ===

2 # TestCircles .py: Exercise circle objects .

3 #

4 # Written by: Mark Austin December 2022

5 # ===

6
7 from Circle import Circle
8
9 # main method ...

10
11 def main ():
12 print (" --- Enter TestCircles .main () ... ");
13 print (" --- =============================== ... ");
14
15 print (" --- Part 1: Create and print circle ... ");
16
17 x = Circle (0.0 , 0.0 , 3.0)
18 print (x)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 4. Revised Circle Object Model

Part II: Test Program for Circle Object Model (Continued) ...
20 print (" --- =============================== ... ");
21 print (" --- Finished TestCircles .main () ... ");
22
23 # call the main method ...

24
25 main ()

Part III: Program Output
--- Enter TestCircles.main() ...
--- =============================== ...
--- Circle: (x,y) = (0.00, 0.00): radius = 3.00: area = 28.27
--- =============================== ...
--- Finished TestCircles.main() ...

	Working with Objects and Classes
	Data Hiding and Encapsulation
	Relationships Among Classes
	Inheritance Mechanisms
	Composition of Object Models
	Working with Groups of Objects
	Pathway from Objects to Groups of Objects

	Case Study: GeoModeling the World's Cities

